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Abstract

This paper presents a simple and effective rule 
learning algorithm for highly unbalanced data sets. By 
using the small size of the minority class to its advantage 
this algorithm can conduct an almost exhaustive search 
for patterns within the known fraudulent cases. This 
algorithm was designed for and successfully applied to a 
law enforcement problem, which involves discovering 
common patterns of fraudulent transactions.  

1. Introduction 

Most of the standard classification algorithms usually 
assume that training examples are evenly distributed 
among different classes. However, as indicated in [1], 
unbalanced data sets often appear in many practical 
applications. Studies show that unbalanced class 
distributions in many applications cause poor 
performances from standard classification algorithms.  

There have been many attempts at dealing with 
classification of unbalanced data sets. Methods include 
resizing training sets, adjusting misclassification costs, 
and recognition-based learning.  Resizing training sets is a 
simple strategy that includes over-sampling minority class 
examples [2] and down-sizing the majority class [3]. 
Cost-sensitive classifiers [4] have been developed to 
handle the problems with different misclassification error 
costs, but may also be used for unbalanced data sets. 
Recognition-based learning approaches learn rules from 
the minority class examples with or without using the 
examples of the majority class [5].  

In this paper, we describe a simple and effective 
recognition-based rule learning algorithm, RLSD (Rule 
Learning for Skewed Data), for highly unbalanced data 
sets. RLSD was developed for a law enforcement problem 
and achieved encouraging results in a field test. It is 
currently being transferred for a routine use. The goal of 
this project is neither to replace human inspectors nor to 
automate the fraudulent transaction detection process.  
Instead, it is intended to assists inspectors in identifying 
potential fraudulent transactions in an operational 
environment.  

2. The Data Mining Task 

Application of this algorithm is presented in terms of a 
hypothetical application for fraud detection. Each transaction 
in the database has a time stamp and is associated with a 
person. A person is often involved in more than one 
transaction. In addition to time and person, each transaction 
has six other features. One of the six features indicates if the 
transaction is fraudulent.  

While fraud is defined over individual transactions, the 
aggregation of a person’s transactions plays a vital role in 
identifying him. To prepare the data for mining, we create an 
example for each transaction. Each example is a vector of 70 
attribute values that are mostly numeric. Most attributes are 
computed from the person’s historical transactions during a 
prior period.  

An example is marked as bad, if the corresponding 
transaction was found to be fraudulent. Otherwise, it is marked 
as good. The distribution of examples among these two 
classes, bad and good, is highly unbalanced with about 0.01% 
to 0.05% of all examples belonging to class bad.  

Unlike many other classification tasks, the discovery of 
highly accurate rules is improbable due to the insufficient 
information. Human inspectors may have to pull out thousands 
of transactions before actually finding a fraudulent one. 
Human inspectors and the fraudulent detection system 
complement each other. Rules with 1% classification accuracy 
can help human inspectors focus on a small set of highly 
suspicious transactions.  

Because of resource limits, the number of transactions that 
could be pulled out for detailed inspection is restricted by a 
maximum inspection rate, called inspection budget, for 
example 2% of all transactions. Under the constraint of the 
maximum inspection rate, the rules generated cannot be overly 
general.  

3. RLSD Rule Learning Algorithm for Skewed 
Datasets  

We assume that the learning task involves two classes: the 
minority class P and the majority class N. The goal of RLSD 
is to learn rules for the minority class.  RLSD consists of three 
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phases: feature discretization, rule generation, and rule 
evaluation and selection.

3.1 Feature Discretization  

Most of the attributes in our application are numeric. 
Therefore it is critical to develop an effective and efficient 
feature discretization algorithm in RLSD. We modified 
the ChiMerge algorithm [6] for unbalanced data sets. For 
each numeric attribute, ChiMerge first sorts all training 
examples according to their values of the attribute. Each 
pair of neighboring values forms an initial interval. Then, 
ChiMerge repeatedly merges adjacent intervals with the 
most similar class distributions until no adjacent intervals 
have similar class distributions.  

ChiMerge does not scale well for a large number of 
training examples, because it must sort all training 
examples for every numeric attribute and the number of 
initial intervals is often very large. We developed a new 
version of ChiMerge, ChiMerge-RLSD, for unbalanced 
data sets. In ChiMerge-RLSD, initial intervals are formed 
based on values of all minority class examples, so it sorts 
only minority class examples and the number of initial 
intervals is significantly smaller. Majority class examples 
are then assigned to one of the initial intervals according 
to their values. ChiMerge-RLSD scales very well and is 
thousands of times faster than ChiMerge in our 
application. ChiMerge-RLSD serves also as a feature 
selection algorithm, because it ignores the attributes in 
which class distributions are not significantly different.  

3.2 Rule Generation 

Rule generation in RLSD is a frequent pattern 
discovery task and it discovers all frequent patterns of the 
minority class examples. Each frequent pattern constitutes 
a minority class rule that covers some minority class 
examples. The algorithm of rule generation is given in 
Table 1. 

This algorithm conducts a specific-to-general search. 
For each positive example, an initial rule is created as the 
example itself. This rule is the most specific rule covering 
the example. If this rule has already been generated, then 
it is discarded. Otherwise, the algorithm tries to merge 
this rule with each of the existing rules to generate more 
general rules covering this example. This process repeats 
for each of the positive examples. After all rules are 
generated, rules with recall less than the minimum recall 
are removed.  

Two rules may be merged to form a new rule if they 
share some common conditions. The merged rule, which 
includes all shared conditions, is more general than both 
rules and covers the examples covered by either of them. 
It can be shown that the merged rule is the most specific 
rule covering these examples.  

When the number of rules exceeds the maximum number 
of rules allowed, an existing rule is removed. In the current 
implementation, a randomly selected rule is removed. The 
random method works well because many similar rules are 
generated. 

Table 1. Rule Generation Algorithm 
P: the set of all positive examples 
M: the maximum number of rules allowed 
RuleGeneration(P, M) 
   Rules = empty 
   For each positive example p in P 
      CurrentRule = p and mark CurrentRule as initial rule 
      If CurrentRule is in Rules 
         For each rule r in Rules 
            If r is more general than CurrentRule 
               increase #positive-examples covered by r by 1 
      Else 
         MergeRules(CurrentRule, Rules, M) 
         AddRule(CurrentRule, Rules, M) 
    For each rule r in Rules 
      If recall(r) < minimum_recall   Remove r

MergeRules(cr, Rules, M) 
   For each rule r in Rules 
      If r is more general than cr
         increase # of positive examples covered by r by 1 
      Else If r is more specific than cr
         If r is marked as initial rule 
            increase # of positive examples covered by cr by 1 
         Else if r and cr share common conditions 
            generate a new rule nr with all common conditions 
           AddRule(nr, Rules, M) 

AddRule(r, Rules, M) 
   If r is not in Rules
      Add r to Rules
   If # of rules in Rules is larger than M 
      Randomly remove a non-initial rule from Rules

3.3 Rule Evaluation And Selection 

Rules generated in the rule generation phase are matched 
against all negative examples in this phase. This algorithm 
consists of two steps: rule evaluation and rule selection. The 
rule evaluation step repeatedly matches each rule with each 
negative example. The rule is removed, should its precision 
fall below minimum precision. By the end of the process, a 
subset of rules whose precision are larger than or equal to the 
minimum precision survives.  

The rule selection algorithm is simple and selects rules 
with the largest F-measure scores. F-measure of a rule r is 
defined below. 
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It selects the rule with the largest F-measure score and then 
removes the positive examples covered by the selected rule. F-
measure scores of the remaining rules are recomputed with the 
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remaining positive examples. It repeats this process until 
there are no remaining positive examples or no rule that 
satisfies both minimum precision and recall covers any 
remaining positive examples. 

4. Experiments 

We ran experiments on four data sets from the law 
enforcement application discussed in Section 2. Each of 
the four data sets consists of the data of three consecutive 
months for training and the fourth month data for testing. 
Each of the four training data set contains more than 6 
millions transactions which involve more than 600,000 
people and each test data set contains more than 2 million 
transactions with more than 200,000 people. To run 
experiments in a controlled environment, all training and 
test examples were generated from transactions that were 
inspected. This made the distributions of the data sets less 
skewed than deployment environments. Table 2 shows the 
summary of the four data sets.  

RLSD has three important parameters: β, minimum 
recall, and minimum precision. With different values of 
β, rules are ranked differently. With a high minimum 
recall, specific rules are pruned to avoid generating rules 
that overfit the training data. With a high minimum 

precision, only accurate rules survive. We ran RLSD with 
different values of minimum recall and minimum precision. 
β was set to 2. For comparison, we conducted experiments 
using a popular decision tree learning system C5.0 with two 
different strategies for unbalanced data distributions, resizing 
training data sets and adjusting misclassification costs. 

Table 2. Summary of the four experimental data sets
  #bad Exas #good Exas 

Training 273 68988 Data Set 1 
Test 59 24317 

Training 220 73421 Data Set 2 
Test 84 26169 

Training 237 67350 Data Set 3 
Test 74 25924 

Training 232 68333 Data Set 4 
Test 266 38630 

Table 3 shows the results with varying values of the 
minimum recall and precision. The purpose of this experiment 
is to understand the role of the minimum recall and minimum 
precision and how recall may be traded for precision. It 
provides us a base line performance. Results reported in Table 
3 are the average on the four data sets. Results in the last four 
columns are the results on the test sets.  

Table 3. RLSD’s experimental results with varying minimum recall and precision values 

When the minimum precision was low (0.005), 
RLSD was able to find some rule for every fraudulent 
transaction. With the increase of the minimum precision, 
the recall on training set decreases quickly. The recall on 
training set also decreases as the minimum recall 
increases. No rule was found when the minimum recall 
and precision were respectively set to 0.1 and 0.04 or 0.2 
recall and 0.02. The number of rules selected decreases 
with the increase of the minimum recall. RLSD may 

generate rules that overfit the training data with low 
minimum recalls and precisions.  

When the minimum recall increases, the number of 
selected rules decreases. This is because when the 
minimum recall is high, rules with low recalls and high 
precisions were pruned and RLSD had to select more 
general rules with a lower precision. The number of 
selected rules increases with the increase of the minimum 
precision until a point and then decreases with the 
increase of the minimum precision. This is due to the fact 

All Selected Rules Best Rule Minimum 
Recall  

Minimum 
Precision  

# of Rules 
Selected 

Recall on 
Training Set Recall  Precision  Recall  Precision  

0.005 48.75 1 0.65 0.0076 0.062 0.048 
0.01 49.75 0.97 0.59 0.0087 0.095 0.041 
0.02 50 0.85 0.38 0.0115 0.057 0.042 
0.03 56.25 0.72 0.26 0.0122 0.050 0.040 

0.01 

0.04 51.25 0.65 0.19 0.0131 0.035 0.046 
0.005 41.75 1 0.72 0.0072 0.077 0.029 
0.01 43 0.96 0.62 0.0093 0.092 0.037 
0.02 39.75 0.79 0.40 0.0102 0.074 0.042 
0.03 29.25 0.57 0.27 0.0126 0.062 0.041 

0.05 

0.04 17 0.37 0.15 0.0180 0.048 0.043 
0.005 25.5 1 0.80 0.0068 0.128 0.029 
0.01 28 0.94 0.72 0.0077 0.089 0.025 
0.02 17.75 0.57 0.35 0.0124 0.135 0.030 

0.1 

0.03 5.75 0.27 0.12 0.0148 0.058 0.024 
0.005 14.5 1 0.91 0.0062 0.236 0.018 0.2 
0.01 19.25 0.82 0.70 0.0076 0.238 0.018 
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that when the minimum precision increases, the selected 
rules become more and more specific and therefore more 
rules have to be selected to cover fraudulent transactions. 
When the minimum precision gets too large, only a small 
number of rules satisfy it so that the number of selected 
rules starts to drop.  

As expected, with the increase of the minimum 
precision, the recall on test data decreases and the 
precision increases. The precision increases with the 
minimum precision because rules with low precision were 
pruned when the minimum precision was high. When the 
minimum precision is small, the recall increases and 
precision decreases with the increase of the minimum 
recall. When the minimum precision becomes large, the 
recall starts decreasing and the precision starts increasing 
with the increase of the minimum recall. The highest 
precision (0.018) is achieved when the minimum recall is 
0.05 and the minimum precision is 0.04 and is 4.5 times 
better than the random selection (0.0042). When both the 
minimum recall and precision were small, RLSD selected 
a large number of highly specific rules and many of these 
rules overfit the training data and did not cover any 
fraudulent transactions on test data.  

The best rule is the rule with the highest F-measure 
score on test data. The recall of the best rule increases 
with the minimum recall with some exceptions and the 
precision decreases while the minimum recall increases. It 
seems that the minimum precision itself has little impact 
on the precision of the best rule. This is not surprising 
because when the minimum recall is fixed, the best rule is 
always the rule with the highest precision. The highest 
precision of the best rule is 0.048, which is about 12 times 
better than the random selection. 

We conducted experiments with C5.0 on the same four 
data sets using two methods adjusting misclassification 
cost of minority class examples and downsizing majority 
class examples.  

In our experiment, we set the misclassification cost of 
minority class examples to 100, 200, 300, and 400 
respectively. When the cost was set to 100, no rule was 
generated for the minority class, so the recall is 0. When 
the cost was set to 400, all examples were classified as 
minority class examples, so the recall is 1. When the cost 
was set to 200 and 300, C5.0 generated a few highly 
specific rules for the minority class, each of which covers 
only one minority class example. A default rule was also 
generated for the minority class. When applying these 
rules to test data, only the default rule covered some 
minority class examples.  

In downsizing majority class examples, we randomly 
selected 5%, 3%, 1%, 0.5%, 0.3%, and 0.1% majority 
class examples. The recall increases and the precision 
decreases when the percentage of randomly selected 
majority class examples decreases. With downsizing, 
C5.0 performed reasonably well. The curves shown in 
Figure 1 compare C5.0 results with RLSD results. RLSD-

1 represents the results in Table 4 with the minimum 
recall = 0.01 while RLSD-2 is for the minimum recall = 
0.05 in Table 4. 
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Figure 1. Comparison of RLSD and C5.0 

5. Conclusion  

We described a novel recognition-based rule learning 
algorithm, RLSD, for data sets with highly unbalanced 
class distributions and a law enforcement data mining 
application. The law enforcement application posed 
several challenges such as highly unbalanced class 
distributions, high uncertainty, and inspection budget for 
exiting data mining tools. RLSD was designed for these 
challenges and achieved reasonably well results in this 
application. Despite this application inspiration, RLSD is 
generic enough to be applied to other applications with 
similar challenges. 
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