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Abstract Combination (ensembles) of classifiers is now
a well established research line. It has been observed that
the predictive accuracy of a combination of independent
classifiers excels that of the single best classifier. While
ensembles of classifiers have been mostly employed to
achieve higher recognition accuracy, this paper focuses on
the use of combinations of individual classifiers for hand-
ling several problems from the practice in the machine
learning, pattern recognition and data mining domains. In
particular, the study presented concentrates on managing
the imbalanced training sample problem, scaling up some
preprocessing algorithms and filtering the training set.
Here, all these situations are examined mainly in connec-
tion with the nearest neighbour classifier. Experimental
results show the potential of multiple classifier systems
when applied to those situations.

Keywords Algorithm scalability · Ensembles; Filtering
outliers · Imbalanced training sample · Nearest
neighbour rule · Preprocessing techniques

Introduction

Recently, efforts aimed at combining multiple classifiers
into one classification system (ensemble of classifiers,
multiple classifier systems, mixtures of experts, commit-
tees of learners, etc.) have become very popular, and are
regarded as one of the most promising current research
directions in machine learning and pattern recognition [1].
The main purpose for building up an ensemble is to obtain
higher classification accuracy than that produced by its
components (individual classifiers that make it up).

Ensembles have been defined as consisting of a set of
individually trained classifiers whose decisions are com-
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rbarandela@hotmail.com

J.S. Sánchez
Universitat Jaume I, Castelló, Spain

bined when classifying new instances [2]. The combi-
nation can be made in many different ways. The simplest
employs the majority rule in a plain voting system.
Despite its simplicity, it is generally regarded as a very
robust combination. More elaborate schema use weight
voting rules, where each component is associated with a
weight. This weight is computed while training the clas-
sifier, and must reflect how accurate the individual clas-
sifier is, as estimated by its performance on the training
set. Other, more sophisticated, architectures have also
been proposed, consisting of two levels of classifiers in
what has been called ‘stacked-generalisation’ or ‘meta-
learning’ (learning from the information generated by a
set of learners [3]).

It is widely accepted that improvement in the overall
predictive accuracy by the ensemble can occur only if
there is diversity among its components, i.e. if the individ-
ual classifiers do not always agree. Of course, no benefit
arises from combining the predictions of a set of classifi-
ers that frequently coincide in the classifications (strongly
correlated classifiers). Although measuring diversity is not
straightforward [4], this classifiers’ independence has
been sought through different ways, by:

� Manipulating the training patterns (training each clas-
sifier on different subsets of the training prototypes):
cross-validation, bagging, boosting, etc.

� Manipulating the input features (training each classifier
with different subsets of the available features).

� Manipulating the class labels of the training prototypes.
� Incorporating random noise into the feature values or

into some parameters of the learning model considered.

Most of the research done up to now has been con-
cerned with the creation of ensembles consisting of classi-
fiers based on the same learning model. Although it is
likely that learning with different algorithms will produce
diverse classifiers, this diversity is not guaranteed. More-
over, this approach would require the employment of an
effective weighted combination, since some of these
classifiers would perform much worse than others.

Ensembles based on the combination of a set of classi-
fiers are currently used to achieve higher recognition accu-
racy [5]. In this paper, we explore possibilities to obtain
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other benefits from the employment of an ensemble. In
particular, we present results of experiments carried out
to research the convenience of using ensembles for three
different tasks:

a) to cope with unbalanced training samples,
b) to get scalability of some pre-processing algorithms,
c) to filter the training sample.

In our research, we have focused on the widely used
nearest neighbour rule. This selection has been motivated
by the flexibility and other positive characteristics of this
classification method.

The nearest neighbour rule

The Nearest Neighbour (1-NN) rule is one of the oldest
and better-known algorithms for nonparametric classi-
fication [6]. The entire Training Sample (TS) is stored in
computer memory. To classify a new instance, its distance
is computed to each of the stored training cases. The new
instance is then assigned to the class represented by its
nearest neighbouring training pattern. The 1-NN rule is
very popular because of its

a) conceptual simplicity,
b) easy implementation,
c) known error rate bounds, and
d) potentiality to compete favourably with other classi-

fication methods in real data applications.

From the above definition, it is obvious that the 1-NN
rule suffers from two significant drawbacks: the large
memory requirement needed to store the whole TS, and
also the large response time needed. This disadvantage is
more critical in the data mining context with huge data-
bases [7,8]. This computational burden has been consider-
ably reduced by the development of suitable data struc-
tures and associated search algorithms, and by proposals
to reduce the TS size. On the other hand, the 1-NN rule,
as any other non-parametric method, is extremely sensi-
tive to the presence of noisy, atypical or erroneously
labelled prototypes in the TS, which usually lead to a
decrease in performance.

Earlier reported results stimulated research into and
applications of ensembles of classification models like
neural networks and decision trees, while they discour-
aged the use of ensembles of 1-NN classifiers. Experi-
ments with Bagging (Bootstrap Aggregation [9]) have not
shown a difference in performance in the built ensemble
as compared to the single 1-NN classifier trained with the
original learning set. These results have led to the con-
clusion that the 1-NN classifier is a very stable model:
small changes in the TS do not cause serious perturbations
in the behaviour of the classifier. In other words, bagging
(random sub-sampling with replacement) has not proved
to be effective in building ensembles from individual
1-NN classifiers with enough diversity.

Nevertheless, in the last few years, several attempts to
create ensembles of 1-NN classifiers have been published.

Bay [10] searched to break down the stability by con-
structing different nearest neighbour individual classifiers,
each learning with a randomly selected subset of features.
On the other hand, Skalak [11] and Alpaydin [12] based
the destabilization of the 1-NN classifier on the appli-
cation of different procedures for reducing the TS size.
This latter approach has the additional advantage of
allowing a decrease in the computational burden inherent
to the 1-NN classifier. In particular, Alpaydin uses the
well-known order-dependence characteristic of the Con-
densed Subset algorithm [13] to produce several different
training samples for learning a limited number of nearest
neighbour classifiers. Skalak employed a stacked-
generalisation approach with a layer consisting of several
nearest neighbour classifiers and a decision tree in the
second level.

Kubat and Chen [14] also proposed an ensemble of
several 1-NN rules, such that each independent classifier
considers only one of the available features. Class assign-
ment to new patterns is done through weighted majority
voting of the individual classifiers. Their system is aimed
at coping with irrelevant features, and at reducing the
computational cost of the 1-NN rule.

Handling the imbalanced training sample problem

Recently, concern has arisen about the complications pro-
duced by imbalanced training samples in supervised
classification models. A TS is said to be imbalanced when
one of the classes (the minority one) is heavily under-
represented in comparison to the other (the majority)
class. For simplicity, and following the common pub-
lished practice, we consider here only two-class cases and,
therefore, the examples are said to be either positive or
negative (that is, either from the minority class or the
majority class, respectively). This imbalanced situation is
usual in several real domains where the classifier is to
detect a rare but important case, such as fraudulent tele-
phone calls, oil spills in satellite images, failures in a
manufacturing process, or an infrequent disease. High
imbalance is present in information retrieval tasks. It has
been observed that imbalanced training samples may
cause a significant deterioration in the performance attain-
able by supervised methods, particularly when classifying
patterns belonging to the minority class.

To evaluate the performance of learning systems, a con-
fusion matrix like that in Table 1 (for a two-class problem)
is usually employed. The elements in this table character-
ise the classification behaviour of the given system. The
columns are the actual class and the rows correspond to
the predicted class. The sum of the two columns gives the

Table 1 Confusion matrix

Actual positive Actual negative

Predict positive True Positive (TP) False Positive (FP)
Predict negative False Negative (FN) True Negative (TN)
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total number of prototypes in each class, which is n+ =
TP + FN and n- = FP +TN, respectively.

The standard evaluation measure in pattern recognition
is the classification accuracy, defined as acc = (TP +
TN)/(n+ +n-). However, this form of classification accu-
racy assumes that the error costs (that is, the cost of a
false positive or false negative) are equal. This assumption
has been criticised as being unrealistic, particularly in the
case of highly imbalanced datasets that generally have
non-uniform error costs.

Many authors point out that the performance of a learn-
ing algorithm in applications with class imbalance should
not be expressed in terms of the average classification
accuracy. For instance, consider a domain where only
0.2% of patterns are positive. In such a situation, labelling
all new patterns as negative would give an accuracy of
99.8%, but fails on all positive cases. Classifiers that
optimise for accuracy in these problems are of question-
able value, since they rarely predict the minority class.
Consequently, in the presence of imbalanced datasets, it
is more appropriate to use other performance measures.

Alternative criteria for evaluating classifier perform-
ance are ROC curves and the geometric mean of accu-
racies. These are good indicators of performance on
imbalanced datasets, because they are independent of the
distributions of prototypes between classes, and are thus
robust in circumstances where such a distribution might
change with time or be different in the training and test
sets.

ROC space [15] represent the FP rate, FP/n�, on the
X-axis of a graph and the TP rate, TP/n+, on the Y-axis.
Each classifier can be represented by a point in the ROC
space corresponding to its FP and TP rates. The point
(0,0) corresponds to the strategy of never making a posi-
tive (minority) prediction and the point (1,1) to always
predicting the positive class. The point (0,1) represents
perfect classification (all positive patterns are classified
correctly, and no negative case is misclassified as
positive), and the line x = y represents the strategy of
randomly guessing the class. In ROC analysis, a classifier
A is better than a classifier B if it is located to the north-
west (TP is higher, FP is lower, or both) of B in ROC
space. Classifiers that admit smooth variations of several
of its parameters can be represented in the ROC space by
appropriate curves.

On the other hand, the geometric mean of accuracies
measured separately on each class [16] is defined as g =
(acc+ • acc-)., where acc+ = TP/n+ is the accuracy on pat-
terns from the positive class, and acc- = TN/n- denotes the
accuracy on patterns from the minority class. This
measure closely relates with the distance to perfect
classification in the ROC space.

The rationale behind this measure is to maximise the
accuracy on each of the two classes while keeping these
accuracies balanced. For instance, a high acc+ by a low
acc- will result in a poor g value. The g measure has the
distinctive property of being nonlinear, that is, a change
in acc+ (or acc-) has a different effect on g depending on
the magnitude of acc+: the smaller the value of acc+, the

greater the change of g. This means that the cost of mis-
classifying each pattern from the minority class increases
the more often positive patterns are misclassified.

In this section, the g criterion will be used to evaluate
the learning algorithms, both because the interesting
general properties of g, and also because the proposed
classifiers do not directly have a changing parameter
which properly justifies a ROC analysis.

Most of the attempts at addressing this imbalance
problem can be sorted into three categories [17]:

a) Over-sampling (re-sampling some training patterns
many times) the minority class so as to match the size
of the other class.

b) Downsizing (under-sampling) the majority class so as
to match the size of the other class.

c) Internally biasing the discriminating process so as to
compensate for the class imbalance.

The two basic methods for re-sampling the TS cause the
class distribution to become more balanced. Nevertheless,
both strategies have shown important drawbacks. Under-
sampling can throw out potentially useful data, while
over-sampling increases the TS size and hence the time
to design a classifier. Furthermore, since over-sampling
typically replicates examples of the minority class, over-
fitting is more likely to occur. Recent research has focused
on improving these basic methods. Kubat and Matwin
[16] proposed an under-sampling procedure aimed at
removing only those instances of the majority class that
are ‘redundant’ or that ‘border’ the minority prototypes.
They assume that these bordering negative cases are noisy
examples. Chawla et al [18] combine under-sampling and
over-sampling methods and, instead of over-sampling by
merely replicating minority prototypes, they form new
minority instances by interpolating between several
examples of the minority class that lie close together.

Pazzani et al. [19] take a slightly different approach
when learning from an imbalanced TS by assigning differ-
ent weights to prototypes of the different classes. On the
other hand, Ezawa et al [20] bias the classifier in favour of
certain attributes relationships. Kubat et al [21] use some
counter-examples to bias the recognition process.

Approach proposed

In this paper, we follow another procedure to cope with
this imbalanced situation. Instead of using a single clas-
sifier, an ensemble is implemented. The idea is to train
each of the individual components of the ensemble with a
balanced learning sample. That is, to replace an individual
classification model (in our case, the 1-NN rule) with an
imbalanced TS, by a combination of several classifiers,
each using a balanced TS for its learning process.
Working in this way, it is possible to appropriately handle
the difficulties of the imbalance, while avoiding the
drawbacks inherent to the over- and under-sampling
techniques.

To achieve this, as many training sub-samples as
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Table 2 Characterisation of the experimental datasets (always two-class cases)

Dataset Features Training sample Test sample No. of
classifiers

Class 1 Class 2 Class 1 Class 2

Phoneme 5 1268 3054 318 764 3
Satimage 36 500 4647 126 1162 11
Glass 9 24 150 5 35 7
Vehicle 18 170 508 42 126 3

required to get balanced subsets are generated. The num-
ber of sub-samples will be determined by the difference
between the number of prototypes from the majority class
and that of the minority class. For instance, in Glass data-
set (see Table 2) the majority class is, approximately,
seven times greater than the minority one. Thus, seven
sub-samples are created for building up an ensemble of
seven 1-NN classifiers. Each of these individual classifiers
is trained with a learning set consisting of all the proto-
types in the minority class and the same number of train-
ing instances selected from among those belonging to the
majority class. These prototypes from the majority class
that are to be included in each training sub-sample have
been chosen by two different procedures. In that way, we
have two different types of ensemble:

Ensemble 1: Prototypes from the majority class are ran-
domly selected, without replacement.
Ensemble 2: Prototypes from the majority class are ran-
domly selected, with replacement.

Experimental evaluation

The experiments here reported were conducted with four
real datasets taken from the UCI Repository [22]. In each
dataset, five-fold cross validation was employed. Results
to be presented hereafter represent the averaged g values
of the five replications. To facilitate comparison with a
previously published report [16], we have employed the
same four datasets and with the same changes in their
structures. In the Glass set the problem was transformed
to discriminate class 7 against all the other classes, and
in the Vehicle dataset, the task was to classify class 1
against all the others. Satimage dataset was also mapped
to configure a two-class case, the training patterns of
classes 1, 2, 3, 5 and 6 were joined to form a unique
class and the original class 4 was left as the minority one.
Descriptions of the datasets are in Table 2, as well as the
number of classifiers designed for each dataset (always in
odd number, to avoid ties in voting).

Experimental results are reported in Table 3. Values of

Table 3 Averaged g values (and standard deviations) in the imbalanced experiments

Dataset Single classifier Ensemble 1 Ensemble 2 Kubat-Matwin

Phoneme 73.8 (6.0) 74.3 (8.0) 74.0 (8.0) 74.4 (7.9)
Satimage 70.9 (15.5) 79.4 (4.0) 79.6 (4.5) 71.7 (4.6)
Glass 86.7 (12.2) 86.6 (10.1) 86.0 (11.8) 86.4 (10.9)
Vehicle 55.8 (4.1) 68.4 (3.3) 68.0 (3.6) 62.0 (3.5)

the g criterion have been increased by both ensembles in
all datasets, with the only exception of Glass. The TS of
this dataset suffers not only from the imbalance issue. In
addition to that, the minority class is too small. The
adequacy of the TS size must be measured by considering
the number of training cases of the smallest class, and not
that of the whole TS. For the minority class in Glass data-
set, the size/dimensionality rate is very low: 2.7 examples
for each attribute. Results of Ensembles 1 (selection
without replacement) and 2 (with replacement) are very
similar. In all the experiments, decision (class label
assignment) of the ensembles was always done by simple
(majority) voting. Results obtained with the method pro-
posed by Kubat and Matwin [16] are also included in
Table 3.

In Table 4, the geometric mean results of Ensemble
1 are statistically compared with those obtained with the
proposal of Kubat and Matwin [16]. One-side t-tests are
employed to assess the significance of the differences
between the two approaches. Ensemble 1 is also compared
with the performance of the single 1-NN classifier,
reported as a baseline.

Ensemble 1 is significantly better than Kubat–Matwin
approach in two of the employed datasets. Phoneme is the
less imbalanced of the datasets: only 2.4 negative proto-
types for each positive instance. Problematic character-
istics of the Glass dataset have already been mentioned.
In these two datasets, both techniques (Ensemble 1 and
Kubat–Matwin) have not been able to improve on the
results yielded with the single classifier.

Table 4 Statistical assessment of the differences between Ensemble 1 and
the Kubat–Matwin proposal

Dataset Ensemble 1 vs. Ensemble 1 vs.
Single classifier Kubat–Matwin

Phoneme no significance no significance
Satimage p < 0.001 p < 0.001
Glass no significance no significance
Vehicle p < 0.001 p < 0.001
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Scalability of some pre-processing algorithms

Another research area that has recently seen a lot of
activity in pattern recognition and data mining is the
development of methods for scaling up algorithms so that
they can be applied to huge databases that cannot be
entirely loaded in RAM, or that make their handling pro-
hibitively expensive.

Two possible ways to cope with the problem of having
a huge input data set have been researched. One way con-
sists of redesigning known algorithms so that, while
approximately maintaining its performance, it can be
applied efficiently to these large data sets [23]. The second
possibility is to reduce the size of (scale down) the data
set. In this second approach, one would try to obtain a
reduced set such that the results produced with it would
replicate almost exactly those yielded when working with
all the data. Different sampling schemas have been
reported to produce a sample of the data [24]. Other, more
heuristic techniques, called Instance or Prototype
Selection algorithms, do not rely on statistical sampling,
but take advantage of peculiarities of classification algor-
ithms. Many of these instance selection techniques aim at
removing from the TS the non-representative or superflu-
ous training patterns so as to reduce storage requirement
and computational cost while maintaining or even improv-
ing the classification accuracy [25]. Two good surveys of
instance selection algorithms can be found in Refs. [7,26].

Since the 1-NN rule must store all the available training
patterns and search through all of them to identify a new
pattern, it has large memory requirements and is slow in
the classification phase. The practical importance of this
subject has motivated the publication of several instance
selection algorithms, many of them following the idea of
Hart [13] for obtaining a consistent subset. A consistent
subset of a TS is some subset that correctly classifies
every pattern in such a TS using the 1-NN.

Particularly remarkable is the approach of Ritter et al
[27], with a clear and precise formulation of the desired
goals and of the way to reach them (the Selective Subset).
The aim of the algorithm of Ritter et al is the same than
in several approaches to obtain minimal consistent subsets
[28–30]. Although challenging, minimality is not neces-
sarily a good property for real problems in practice. A
larger subset of prototypes can represent more accurately
the original (optimal) boundaries. The convenience of
using minimality (with regard to consistency) has been
recently discussed [31,32].

Barandela et al. [33] presented a reduction technique
(Modified Selective Subset: MSS), that rests upon a modi-
fication of the Selective algorithm. The main purpose of
this modification is to strengthen the condition to be ful-
filled by the resulting reduced subset to attain a better
approximation to the original decision boundaries. In the
algorithm of MSS, preference is given to training patterns
that lie close to the original (as defined by the whole TS)
1-NN decision boundaries. This idea has already been
used with different flavours to obtain consistent subsets
[34,35]. MSS employs, as a criterion to measure the close-

ness to the boundary, the distance to its nearest enemy or
Nearest Unlike Neighbour (NUN) [28]. In the work of
Tomek [34], this is called NNO: nearest neighbour from
the opposite class. Several experimental results with real
data have shown that MSS yields higher classification
accuracy than Hart’s and Ritter’s approaches [33]. See
Appendix I for a more detailed description of the MSS
technique.

On the other hand, the benefits of combining Editing
[36] with the consistent subset for attaining a much more
significant size reduction have often been stated [37,38].
The main purpose of the Editing technique is to remove
atypical training patterns, mainly those lying in the border
between overlapping classes, for increasing prediction
accuracy. Atypical data are usually defined [39] as those
instances that do not follow the same model as the rest
of the instances in the same class. This definition
“includes not only erroneous data but also surprising
veridical data” [40]. Incorrectly labelled training proto-
types are also regarded as atypical instances by several
authors [41]. A description of Wilson’s editing can be
found in Appendix I.

MSS, as many other reduction techniques, and as the
Editing algorithm [36], requires one to examine all the
available training patterns. That is, these algorithms oper-
ate in a batch mode. This characteristic makes intractable
their application when the TS size is too large. Since,
paradoxically, it is on large training samples that reduction
techniques are most necessary, an approach to scale them
is a must. That is, an approach to scale up these algorithms
is necessary to be able to scale down the sample size.

Approach proposed

Most current approaches for scaling algorithms have been
looking either for effective ways for sub-sampling the
training data, or for suitable data structures. Chan and
Stolfo [42] employ ensembles of decision trees and paral-
lel processors to handle large datasets. A similar approach
is followed in Chawla et al. [43].

In this paper, this idea of using ensembles of classifiers
is again explored, but not to scale a learning algorithm.
Now, the goal is to scale the above-mentioned prepro-
cessing techniques. Briefly, the proposed procedure con-
sists of partitioning the TS and applying the preprocessing
techniques (Edition, MSS, as well as the joint employment
of both) on each sub-sample. The resulting (processed)
sub-samples are then used as training sets for correspond-
ing 1-NN classifiers. Afterwards, these individual 1-NN
classifiers are used to build an Ensemble. Classification
of new samples is done through employment of this
ensemble of 1-NN classifiers (each with a preprocessed
TS).

Experimental evaluation

Table 5 presents a description of eight datasets taken from
the UCI Repository [22], and which are among those that
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Table 5 Description of the datasets for the scalability experiments

Dataset No. classes No. features Training set size Test set size

Cancer 2 9 546 137
Heart 2 13 216 54
Liver 2 6 276 69
Pima 2 8 615 153
Glass 6 9 174 40
Iris 3 4 120 30
Vehicle 4 18 678 168
Wine 3 13 144 34

Table 6 Classification accuracy (and standard deviations) in the scalability experiments with a MCS

Dataset Ensemble

Original Editing MSS Editing + MSS

Cancer 96.9 (2.0) 96.8 (2.3) 96.5 (1.4) 95.3 (4.2)
Heart 65.2 (4.2) 67.4 (3.8) 61.5 (4.4) 67.4 (5.0)
Liver 63.8 (3.7) 69.9 (3.9) 59.1 (4.7) 66.4 (3.0)
Pima 68.9 (3.3) 71.5 (3.2) 65.1 (3.8) 71.2 (3.6)
Glass 68.0 (8.6) 59.5 (11.2) 65.0 (8.5) 61.0 (9.1)
Iris 96.0 (1.5) 97.3 (1.5) 95.9 (2.6) 97.3 (2.8)
Vehicle 64.5 (2.8) 57.6 (3.4) 63.0 (2.8) 57.8 (3.1)
Wine 74.1 (8.7) 71.8 (5.3) 67.7 (8.6) 72.4 (5.3)

have received more attention in the machine learning
literature. These datasets were employed here to explore
the idea of implementing an ensemble to obtain scalability
of the Edition and MSS algorithms, as well as of the com-
bination of both techniques. The experiments simulate that
the whole TS cannot be entirely loaded into memory.
Accordingly, the TS is divided into three subsets. Thus,
the experiments reported were done with ensembles con-
sisting of three individual components, all with the 1-NN
rule and with training samples of equal sizes (one-third
of the dataset). Five-fold cross validation was used in
each dataset.

Results in Table 6 correspond to the classification accu-
racy obtained when employing simple voting in an ensem-
ble created by partitioning the TS by a sequential selection
of the patterns. The same experiments were also carried
out with other schema (random selection, with and with-
out replacement), but the classification accuracies were
always lower. Results obtained when working with a
single classifier (with the whole TS) are provided in Table
7 for comparison.

Table 7 Classification accuracy (and standard deviations) in the scalability experiments with a single classifier

Dataset Single classifier

Original Editing MSS Editing + MSS

Cancer 95.6 (2.5) 96.3 (2.3) 94.7 (2.0) 96.8 (1.9)
Heart 58.2 (6.2) 64.4 (1.6) 58.5 (7.2) 63.3 (2.4)
Liver 62.3 (4.8) 69.3 (7.0) 60.6 (6.3) 67.0 (4.2)
Pima 65.9 (5.2) 72.0 (2.9) 63.0 (4.9) 70.9 (2.3)
Glass 70.0 (5.3) 65.6 (6.7) 67.0 (4.1) 64.5 (6.9)
Iris 96.0 (1.5) 96.7 (2.4) 95.3 (5.0) 95.3 (3.0)
Vehicle 64.2 (1.8) 61.3 (2.8) 63.0 (1.7) 61.0 (2.8)
Wine 72.4 (3.6) 71.2 (9.2) 70.6 (6.2) 70.0 (8.4)

As can be seen from Tables 6 and 7, the classification
performance of the MSS algorithm (and of this reduction
technique combined with Editing) does not suffer from
degradation by using them through the procedure pro-
posed. In fact, both the resulting ensemble and single clas-
sifier obtain similar results (column 5 in both tables). This
means that it is possible to scale up these methods by
using an ensemble, without affecting performance.

The same conclusion can be reached from the results in
Table 8. Both in the resulting ensemble and in the single
classifier, similar reduction rates of the storage require-
ments are obtained. In fact, in six of the datasets, employ-
ment of an ensemble allows for more reduction of the TS
size. On the other hand, as is to be expected, combination
of Wilson’s editing with the MSS results (also in the
ensemble) in a rather small TS size.

As an additional and interesting point, note that the
ensemble without pre-processing (i.e. with the original
TS) outperforms the single classifier in five of the eight
datasets (see column 2 in both Tables 6 and 7). This
observation opposes the well-known statement of Breiman
[9] on the stability of the nearest neighbour rule.
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Table 8 Training sample size in the scalability experiments

Dataset Initial Single classifier Ensemble
size

Editing MSS Edit+MSS % Editing MSS Edit+MSS %

Cancer 546 528.8 55.6 20.8 3.8 527.6 56.2 20.0 3.7
Heart 216 138.0 122.2 36.4 16.9 129.0 120.6 36.2 16.8
Liver 276 175.0 164.4 58.8 21.3 163.0 166.0 57.8 20.9
Pima 615 427.8 303.0 77.2 12.6 423.3 310.8 92.2 15.0
Glass 174 119.4 99.4 43.2 24.8 92.6 114.0 52.4 30.1
Iris 120 115.6 20.6 11.4 9.5 112.8 32.0 19.8 16.5
Vehicle 678 234.6 419.0 182.8 27.0 383.6 458.2 143.0 21.1
Wine 144 103.8 60.0 15.8 11.0 95.4 65.0 15.4 10.7

A possible alternative to the procedure above outlined
is to partition the TS, to apply the preprocessing tech-
niques to each sub-sample, and then to join the resulting
preprocessed sub-samples to again build a (preprocessed)
complete TS. Afterwards, unknown patterns are to be
classified with a unique classifier (the 1-NN rule), and not
with an ensemble. With this alternative, the computational
requirements are reduced. However, predictive accuracy
is somehow decreased (see Table 9). These results point
to the convenience of the ensemble, not only to facilitate
the preprocessing of the training sample, but also for the
classification task.

Summarising the results reported in this section, we
conclude that in applications with a very large TS (a very
common situation in data mining), it is possible to divide
the original TS into a set of partitions, process each sub-
sample separately, and then implement an ensemble with
a number of individual classifiers. This obtains similar
results, in terms of classification accuracy and size
reduction, to those produced when the entire TS can be
loaded into memory. Therefore, ensembles can be deemed
successful in scaling the editing and pruning algorithms.

Filtering the training sample

Outlier data is a concept that has been considered in stat-
istics for some time. It has been defined as a case that
differs significantly from the rest of the instances in its
class or group. Difficulties for detecting these cases and
to handle them have long been discussed [39]. Now the
term has also come to the fore in the machine learning,

Table 9 Classification accuracy (and standard deviation) obtained when the TS is preprocessed with the joint application of Wilson’s Editing and the MSS

Datasets Single classifier Ensemble for Preprocessing
from the start preprocessing and for separately and then

classification joining

Cancer 96.8 (1.9) 95.3 (4.2) 96.1 (2.3)
Heart 63.3 (2.4) 67.4 (5.0) 65.9 (3.8)
Liver 67.0 (4.2) 66.4 (3.0) 65.8 (5.3)
Pima 70.9 (2.3) 71.2 (3.6) 71.8 (2.2)
Glass 64.5 (6.9) 61.0 (9.1) 64.0 (9.5)
Iris 95.3 (3.0) 97.3 (2.8) 94.0 (2.8)
Vehicle 61.0 (2.8) 57.8 (3.1) 57.5 (3.6)
Wine 70.0 (8.4) 72.4 (5.3) 68.6 (5.7)

pattern recognition and data mining areas. Several reports
have been published about the effect of these ‘noisy’ or
atypical patterns when included in the TS, and how to
counteract this drawback.

Gopalakrishnan et al. [44] are concerned with the long
training time usually required by some neural network
models, and propose the use of a clustering technique for
identifying noisy training cases that slow down the learn-
ing phase of these models. John [45] addresses the identi-
fication of outliers in categorical data, and promotes an
iterative procedure to clean the training data. He works
with the C4.5 tree induction algorithm, and removes those
training instances linked to the nodes eliminated during
the pruning phase (ie. those cases whose removal from
the TS will most increase the model’s estimate of its own
performance). Afterwards, the model is again built con-
sidering only the cleaned training data. His purpose is to
obtain smaller trees and with better predictive accuracy.

Within the context of the 1-NN rule, extensive efforts
have also been given to improvement of the classification
performance when there are outliers in the TS. For
example, Wilson’s original proposal [36] aims at retaining
in the TS only ‘good’ samples (i.e. training samples that
are correctly classified by the k-NN rule) (see Appendix
I). Tomek [46] extended this approach with a procedure
that utilised all the l-NN classifiers, with l ranging from
1 through k, for a given value of k.

Koplowitz and Brown [47] proposed an alternative to
Wilson’s scheme in which some samples are discarded
from the TS and others are relabelled according to the
classification of a k-NN rule. Devijver and Kittler [48]
introduced the well-known Multiedit algorithm, which is
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based on iteratively using the holdout error estimate.
Although the Multiedit algorithm has been proven to be
asymptotically optimal, in practice it shows poor behav-
iour when applied to finite sets of prototypes [38].

More recently, a genetic algorithm was proposed [49]
as a way of editing the 1-NN classification rule. Sánchez
et al [38] introduced a method to select training prototypes
by using some proximity graphs. Many other editing
techniques have been further presented in the literature
[50–52].

Approach proposed

Brodley and Friedl [41] presented an innovative approach
to identify atypical prototypes in the TS. This approach
consists of employing an ensemble of classifiers to decide
which prototypes are to be considered as atypical and,
consequently, removed from the TS. That is, the idea of
Brodley and Friedl is to create an ensemble filter to
process the TS. That filter will identify a training instance
as atypical if h of the m individual classifiers cannot class-
ify it correctly. They introduced two variants of their fil-
tering procedure:

� Ensemble filter 1 (majority filter): an instance is con-
sidered as atypical if more than half of the m individual
classifiers classify it incorrectly.

� Ensemble filter 2 (consensus filter): an instance is con-
sidered atypical if all of the m individual classifiers
classify it incorrectly.

In this section, we present experimental results that
include initial research on the suitability of the proposals
of Brodley and Friedl, and also of a new alternative intro-
duced in the present paper:

� Ensemble filter 3 (removals and re-labelling): an
instance is removed from the TS if less than half of
the m individual classifiers coincide in the label assign-
ment. If more than half of the m individual classifiers
agree, then the training prototype receives the class
label assigned by the majority of the classifiers (this
label can be different from the original one).

Experimental evaluation

The three procedures mentioned have been evaluated with
the same datasets as in the preceding section (see Table
5), with the exception of the Glass dataset, because of
the very small size in one of its classes. Five-fold cross
validation was also employed.

Table 10 reports the results in averaged accuracy rates
and standard deviations. These results were obtained when
classifying the corresponding test sets using the 1-NN
rule, with the original (unfiltered) TS and with the TS
filtered by the three ensembles. The filtering ensembles
were built with four individual classifiers from the
machine learning and statistical pattern recognition areas:

1-NN, Fisher’s Linear Discriminant Analysis (LDA) [53],
a Decision Tree (C4.5) and a Multi-Layer Perceptron
neural model (for each dataset, the number of hidden
nodes – only one hidden layer – was set as the number
of features plus one; the stopping criteria for the learning
phase were: 30,000 as the maximum number of iterations
in the training process, or a system error less than 0.0001).

It is worth mentioning that the proposed alternative
(Ensemble filter 3) works in a manner similar to the Gen-
eralised Editing technique [47], combining elimination of
some prototypes and label change of some other training
instances. In general, it can be seen that filtering the TS
with the help of an ensemble increases the classification
accuracy. This improvement is more evident when prepro-
cessing of the TS is done with our filtering ensemble: it
outperforms the other ensembles in four of the seven data-
bases.

Similar results are obtained when the filtered TS (with
the ensemble procedures) is used for learning of the Multi-
Layer Perceptron model. These results are shown in Table
11. Filtering Ensemble 3 produces an improvement in the
accuracy of this neural network model, except for Vehicle
and Wine. As in Table 10, filtering Ensemble 2 is the less
effective of the three procedures.

The performance of the decision tree model (C4.5)
employed also improves when the TS is filtered by the
experimented procedures. Here, however, the increase
in classification accuracy is not so important. In the case
of the fourth individual component of the filtering
ensembles, LDA, pre-processing of the TS does not yield
good results – see Tables 12 and 13, respectively. It is
important to note that LDS is a parametric classification
method and, therefore, it is less sensitive to the presence
of atypical or noisy training patterns.

Concluding comments

In this paper, the use of ensembles of classifiers has not
directly focused on improving the classification accuracy.
Instead, ensembles have been considered to manage
several problems in applications in the machine learning,
data mining and pattern recognition areas: the imbalanced
TS problem, the scalability of some algorithms, and the
filtering of the training set. From the experiments
presented, it can be concluded that, in general, the use of
an ensemble of classifiers constitutes a suitable alternative
to facing these practical problems.

In the imbalanced TS problem, it has been shown that
it is possible to increase the geometrical mean (the
measure of performance) as the result of the balance
obtained in each individual component of the ensemble.
In this manner, the negative effects of the imbalance can
be avoided without replicating the minority class (that
does not add new information to the system, and produces
an increment in the computational burden of learning
algorithms such as the 1-NN rule or the Multi-Layer
Perceptron), and without discarding prototypes from the
majority class (which can result in throwing away some
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Table 10 Accuracy rate (and standard deviation) with the Nearest Neighbour classifier in the filtering experiments

Dataset After the filtering Ensemble No.

Not filtered 1 2 3

Cancer 95.6 (2.5) 96.2 (2.4) 95.9 (2.8) 96.0 (2.2)
Heart 58.2 (6.2) 61.5 (4.6) 48.2 (15.5) 62.0 (2.8)
Iris 96.0 (1.5) 96.0 (1.5) 96.0 (1.5) 97.3 (2.8)
Liver 62.3 (4.8) 65.5 (4.7) 63.5 (4.9) 64.9 (3.5)
Pima 65.9 (5.2) 71.7 (3.9) 71.0 (7.4) 73.6 (4.4)
Vehicle 64.2 (1.8) 63.9 (3.5) 64.6 (2.6) 65.4 (2.8)
Wine 72.4 (3.6) 72.1 (3.4) 72.1 (3.4) 70.0 (4.8)

Table 11 Accuracy rate (and standard deviation) with the Multi-Layer Perceptron in the filtering experiments

Dataset After the filtering Ensemble No.

Not filtered 1 2 3

Cancer 91.7(6.9) 95.6(1.9) 93.7(2.2) 95.6(1.9)
Heart 69.3(5.8) 76.7(3.8) 70.7(7.8) 80.7(5.0)
Iris 94.0(6.4) 96.0(5.5) 95.3(5.5) 97.3(2.8)
Liver 66.1(3.0) 65.4(5.5) 61.4(4.2) 67.5(2.4)
Pima 73.9(3.5) 75.7(4.9) 70.1(8.0) 74.8(3.1)
Vehicle 93.0(5.2) 30.6(8.3) 32.7(10.3) 69.6(4.5)
Wine 98.2(4.1) 97.1(2.9) 97.1(2.9) 92.4(3.4)

Table 12 Accuracy rate (and standard deviation) with the C4.5 decision tree in the filtering experiments

Dataset After the filtering Ensemble No.

Not filtered 1 2 3

Cancer 92.4(4.2) 92.4(4.2) 92.4(4.2) 92.4(7.2)
Heart 77.4(7.0) 78.9(4.5) 66.7(19.6) 78.5(5.0)
Iris 94.7(3.0) 96.0(1.5) 94.7(3.0) 96.0(1.5)
Liver 61.4(6.8) 61.4(2.4) 65.8(1.3) 63.5(4.7)
Pima 72.8(5.2) 75.6(3.4) 75.8(2.6) 73.3(7.4)
Vehicle 72.9(3.7) 72.6(2.9) 71.4(2.9) 71.5(1.5)
Wine 90.0(2.6) 90.6(3.2) 90.0(2.6) 88.8(7.3)

Table 13 Accuracy rate (and standard deviation) with the Linear Discriminant Analysis in the filtering experiments

Dataset After the filtering Ensemble No.

Not filtered 1 2 3

Cancer 96.0(3.1) 95.9(3.4) 96.0(3.1) 95.7(3.4)
Heart 83.3(4.7) 83.3(3.2) 83.7(4.0) 82.2(3.8)
Iris 97.3(1.5) 98.0(1.8) 98.0(1.8) 97.3(2.8)
Liver 64.3(4.5) 64.3(3.3) 64.9(3.9) 63.2(4.7)
Pima 75.8(4.4) 75.6(4.1) 75.7(4.0) 74.5(4.6)
Vehicle 78.3(2.4) 77.8(1.9) 78.4(2.1) 76.2(2.6)
Wine 98.2(2.6) 98.2(2.6) 98.8(2.6) 96.5(3.8)

useful information). We intend to do research to try to
determine the contribution of the ensemble (besides the
balance obtained in each sub-sample) to the increase in
the g value.

For scalability of the editing and pruning algorithms
(and of the combination of both), it is important to note
that, in this case, classification accuracy improvement was

not the goal. A multiple classifier system has been shown
as an easy and adequate solution to obtain scalability of
these preprocessing techniques without performance
deterioration, in terms of both classification accuracy and
sample size reduction.

Employment of an ensemble for filtering the training
sample (and, consequently, to improve accuracy) is also
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a promising research line. The results in Table 10 for
filtering ensemble 3, that we introduced in the paper, com-
pare with those obtained using Wilson’s Editing (see col-
umn 2 in Table 7), a widely accepted technique for pre-
processing the training sample. Now we intend to explore
the convenience of using this filtering ensemble repeat-
edly, and combined with ensemble filtering 1, in a manner
similar to the Depuration methodology [50].

The results reported should be viewed as a first step
towards new and unconventional applications of en-
sembles of classifiers and, therefore, there is a number of
extensions and improvements to the ideas introduced. In
particular, it is important to consider other procedures to
select the individual sub-samples. It is interesting to
observe that, in the experiments reported in Sects. 3.2 and
4.2, random selection with replacement (as in bagging)
has not offered good results. Previous reports of
ensembles with 1-NN classifiers (see Sect. 2) have also
not employed bagging. In addition, more advanced
methods to combine the decisions of the components of
an ensemble (not just the simple voting schema reported
in the present paper) must be researched.

We are, at present, conducting experiments to cope with
the imbalance issue in multi-class problems. On the other
hand, in the case of scalability, we are doing some
research to work with multiple classifier systems when
manipulating both prototypes and attributes.
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APPENDIX I: The Modified Selective Subset (MSS)

As already stated in Sect. 4, MSS is an instance selection
technique that rests upon a modification of the Selective
Subset. In MSS, the first two definitions of the Selective
Subset are kept as in the work of Ritter et al:

a) A prototype xi is a related neighbour of another proto-
type xj, both from the same class, if xi is closer to xj

than the nearest enemy of xj.
b) The set of all related neighbours of xi is presented

by Yi.

But definition (c) is changed in the following way:

c�) The Modified Selective Subset (MSS) is defined as
that subset of TS which contains, for every xi in TS,
that element of its Yi that is the nearest to a class other
than that of xi

The main purpose of this modification is to strengthen

the condition to be fulfilled by the reduced subset so as
to attain a best approximation to the decision boundaries.
To provide better subsets of prototypes — and also to give
an efficient alternative to the Selective algorithm of Ritter
et al — a greedy algorithm is introduced to obtain selec-
tive prototypes in such a way that preference is given to
training patterns that lie close to the original (as defined
by the whole TS) 1-NN decision boundaries. The criterion
used here to measure the closeness to the boundary is the
distance to its nearest enemy or Nearest Unlike Neighbour
(NUN). The nearest enemy of xi is the training pattern xk

that has been found to be the nearest neighbour of xi when
considering only those training patterns from all classes
other than that of xi. Using this measure, it is possible to
define the best selective subset as the one that contains
the best-related neighbour for each prototype in the TS.
In this context, best means lower distance to its nearest
enemy.

The conceptual simplicity of the MSS algorithm con-
trasts with the algorithm proposed by Ritter et al. In fact,
the implementation is also much more straightforward.
There is no need to compute related neighbours or to
maintain any matrix in memory. A possible efficient
implementation of this algorithm makes use of a sorting
algorithm followed by two nested for loops, as shown in
Fig. 1.

C denotes a set of prototypes that still have to fulfil the
selective property (these prototypes do not yet have a
related neighbour in MSS). Dj refers to the distance from
xj to its nearest enemy.

Once the prototypes have been sorted, a unique pass
through the training set suffices to select the above-
defined best selective subset. This requires a quadratic
number of basic operations like checking set membership,
distance calculation or retrieval, and set updates. Al-
together, the proposed method constitutes a polinomic
way of obtaining a selective subset that is not minimal,
but usually gives better classification accuracy.

Wilson’s editing technique

The idea of the procedure of Wilson consists of discarding
prototypes that significantly deviate from the general tend-

Fig. 1 Efficient implementation of the proposed modified selective
algorithm
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ency in their class and also prototypes lying in the over-
lapping zones between classes. In this way, the processed
TS is able to classify new patterns in a close-to-optimal
way. Apart from its optimal behaviour, editing prototypes
should be almost compulsory in situations in which an
optimal (or at least fair) labelling of the training is imposs-
ible, because it relies on a very difficult or costly (usually
manual) task. By removing from the TS those training
patterns that do not coincide with the majority of their k
nearest neighbours, the Editing technique eliminates noisy
as well as close border instances, leaving smoother
decision boundaries. The algorithm has the following
steps:

1. For every xi in TS, find the k (k = 3 has been
recommended) nearest neighbours of xi among the
other prototypes, and the class associated with the
larger number of patterns among these k nearest neigh-
bours. Ties would be randomly broken whenever
they occur.

2. Edit the TS by deleting those training patterns xi,
whose identification label does not agree with the class
associated with the largest number of k nearest neigh-
bours, as determined previously.
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Originality and contribution

This paper focuses on using ensembles of classifiers for handling
some important problems present in different pattern recognition
domains. More specifically, a combination of classifiers is proposed
to manage the class imbalance problem, the scalability of some
learning algorithms, and the filtering of the training sample. These
problems are common in many current applications, such as data
mining, remote sensing, text categorisation and retrieval of multi-
media databases.

One of the main contributions of this paper is the experimental
study of various ensembles of classifiers to show their applicability
to the above-mentioned practical problems. The results presented
here demonstrate that a combination of classifiers can be a useful
tool to successfully tackle those situations. This paper can stimulate
employment of ensembles of classifiers not only as a way of
increasing classification accuracy, but also as a tool to undertake
important tasks in pattern recognition.


