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Abstract

Classification of rare events has many important data
mining applications.  Boosting is a promising meta-
technique that improves the classification performance of
any weak classifier. So far, no systematic study has been
conducted to evaluate how boosting performs for the task
of mining rare classes. In this paper, we evaluate three
existing categories of boosting algorithms from the single
viewpoint of how they update the example weights in each
iteration, and discuss their possible effect on recall and pre-
cision of the rare class. We propose enhanced algorithms
in two of the categories, and justify their choice of weight
updating parameters theoretically. Using some specially
designed synthetic datasets, we compare the capability of
all the algorithms from the rare class perspective. The re-
sults support our qualitative analysis, and also indicate that
our enhancements bring an extra capability for achieving
better balance between recall and precision in mining rare
classes.

1 Introduction and Motivation

Recent surge in volumes of data and relatively much
smaller increase in the events of interest have brought crit-
ical importance to the problem of effectively mining rarely
occurring events. One example of this is the click-stream
data on the web. A popular e-commerce web site can re-
ceive millions of hits in a day, but very small proportion
among these hits are of actual interest from the revenue gen-
eration point of view. Some work has started to emerge in
building descriptive models for the rare events [1, 5]. Clas-
sification shows promise in achieving this task. In past
few years, boosting has emerged as a competitive meta-
technique that has a theoretically justified ability to improve
the performance of any weak classification algorithm. Var-
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ious different boosting algorithms have been proposed in
the literature [7, 2, 10, 4]. They have been analyzed for
their effectiveness [8], and they have been adapted to spe-
cial tasks [9]. Despite of this abundant work on boosting, no
work has dealt directly with evaluating boosting algorithms
in the context of mining rare events.

Boosting algorithms work in iterations, each time learn-
ing a weak classifier model' on a different weighted distri-
bution of training records. After each iteration, the weights
of the examples are updated. The intention is to increase the
weights of the incorrectly classified examples and decrease
the weights of the correctly classified examples. This forces
the classifier to focus more on the incorrectly classified ex-
amples in the next iteration. The algorithm stops after a pre-
specified number of iterations, or based on some measured
quality. While classifying a new example, all the models
from all the iterations vote in proportion to their accuracy;
the class with most votes wins.

The crucial step that we focus on in this paper is the
weight update mechanism in each iteration. In the binary
classification scenario, there are four kinds of examples af-
ter every iteration. From the perspective of rare class C (ver-
sus all the other classes clubbed into one class called NC),
these can be categorized as follows:

Predicted as C
True Positives (TP)
False Positives (FP)

Predicted as NC
False Negatives (FN)
True Negatives (TN)

Actually C
Actually NC

We evaluate boosting algorithms from three different cat-
egories: those making true or false decision for every exam-
ple, those choosing to abstain from making any decision on
some examples, and those that take misclassification costs
into account. One of the contributions of this paper is that,

'A weak classifier is the algorithm that, given €,6 > 0, can achieve
at least slightly better error rate, €, than random guessing (e > 1/2 — ~,
where v > 0), with a probability (1 — 4).



we bring out the differences in these algorithms with respect
to how they modify the weights on four types of examples:
TP, FP, TN, and EN. This insight allows us to qualitatively
discuss the effects of their weight modifications on the re-
call and precision of the target class?.

A classifier obtains high recall by learning better models
for distinguishing FN from TN, and high precision by bet-
ter distinguishing FP from TP. Recall and precision goals
are often conflicting; hence, attacking them simultaneously
may not work well, especially when one of the classes is
rare. Thus, it is desirable to give different treatment to FPs
and FNs. Based on this theme, we propose enhancements
to two state-of-the-art algorithms, AdaBoost [7] and SLIP-
PER [2]. We justify the weight update formulae theoreti-
cally.

The theme of applying different update factors to differ-
ent types of examples is present in the boosting algorithms
CSB1, CSB2 [10] and AdaCost [4]. These algorithms take
into account different costs of making a false positive pre-
diction versus a false negative prediction. Our study shows
that AdaCost has the capability of controlling its empha-
sis on recall, while trying to focus on precision as well.
This makes it a better algorithm in many datasets with rare
classes. However, we also show that its over-emphasis on
recall may sometimes lead to a much poorer precision.

We validate our qualitative study of weight update ef-
fects using some synthetic datasets specially designed for
studying rare classes. We show that our proposed enhance-
ments outperform their respective predecessors in achieving
better recall-precision balance, and that they have the abil-
ity to even outperform the most competitive cost-sensitive
algorithm, AdaCost, in some situations.

2 Boosting Algorithms that Do Not Abstain

In this section, we describe algorithms that make a true
or false decision on every example.

The popular AdaBoost [7] learning algorithm is de-
scribed in Figure 1. The weak model, h;, must have an
accuracy > 50%, in order to increase weights of FP and
FN decisions and decrease weights of TP and TN decisions,
after each iteration. Note that the same update factor is used
for all four types. The a; value is chosen to minimize the
sum of all the weights, Z;, before the beginning of (¢ + 1)*¢
iteration, which is shown to minimize an upper bound on
the training error. Also note that, a;, voting power of h, is
monotonic with the accuracy of h;.

2Qverall accuracy is not a good metric for evaluating rare class perfor-
mance. Instead a balance between recall and precision, to be defined later,
is desired.
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Given: Training Set, T : {(z;,y:)},i=1---N;
z; € X,y; € {—1,1}; and number of trials, M.
Initialize weights Dy () = 1/N.
fort=1---M

i. Learn weak model, k¢, using D;.

ii. Compute importance weight, ay:

1+'I‘t
1—7‘,:

N .
. 1
e = ZDt(z)ht(zi)yi; o = Eln

i=1

() o

iii. Update Weights:

Di11(3) = (Di(iexp(—auyihi(z:)) [ Z:,  (2)
where Z; is chosen such that Y~ Dy (i) = 1.
endfor
Final Model:
M
H(z) = sign (Z cuiu(x)) 3)
t=1

Figure 1. AdaBoost Algorithm 7]

2.1 Our Proposed Enhancement (RareBoost-1)

We propose an enhancement to AdaBoost, as described
in Figure 2. The key observation to make is that we
are giving a different treatment to positive and negative
predictions. If each model makes every prediction (C
or NC) with an accuracy of greater than 50%; i.e., if
TP, > FP, and TN; > FN;, then the algorithm will
decrease (resp. increase) the weights of correct (resp.
incorrect) predictions.

Proof for the choice of of and o}':

We essentially modify the proof given in [7]. By recursively
expanding the weight update rules 8 and 9, and using
equation 10, the weights at the end of iteration M are

Z apyshy(z:) +

t:he(z:i)20

D7) N_l—ll—z—t(ezp(‘(

S aryih(x)))
t:he(z:)<0

exp(—yig(z:))
N Ht Zy

Following [7], training error can be minimized by greedily
minimizing Z;, which is the sum of weights after iteration
t. Zy = ZP + ZP can in turn be minimized by minimizing
each of its constituent terms. Using notation u; = y;h(z;),



we have Zf = 37, ..y 50 De(i)ezp(—afu;), and Z7 =
2k, (z0)<0 Pt(i)ezp(—af'u;). We now derive expressions
for af by minimizing Z?. Derivation for af is symmetric.
Using the same linear upper bound as given in [7],

> i) (5 cant-a) +

ihy(z:)>0

z; <

and minimizing it by differentiating it w.r.t. of, yields

Lin (1+Zi:ht(z;)20 Dt(i)y;ht(zi)>
2 " 4)

Z-’:M(:;)ZO D (i)yihe(zi)

Ly (IR =FP
2 1-TP.+FP;

However, this is not a unique solution. It is just one possible

solution for o} obtained by minimizing the tightest linear

upper bound. Here is another possible solution for a?:

-1 TR
=zln (FP,)-

This choice of a} 2 simplifies the qualitative analysis that we
present later. In fact, for the range of hy = {—1,+1}; i.e.,
by ignoring confidence-rating of a decision, we can show
that use of a?” achieves smaller value of Z? than use of
afl. Using afZ, we obtain thz = 2+/TP, FP;,since u; =
—1 or + 1. Similarly, using afl, we obtain

VIT2FR, | ., VET2TP,
Vs +2TP, "VS+2FR,
where § = (1-TP,— FP;) > 0. The following expression
can be easily derived using formulae for ZP' and ZP°.
2
B >0
VG +2TP)0 + 2 FP)

1
o

p2
e

Pl P2 _
zZ; - Z{" =

where

B=(/6TP,+2TP, FP, — /8 FP, + 2TP, FP,)
'y

2 -
Thus, ZP? < ZP'. Figure 2 uses of = of”.

3 Boosting Algorithms that Abstain

In this section, we describe boosting algorithms using
base classifiers that abstain from making any decision on
some training examples. SLIPPER [2] is one such algo-
rithm. It focuses on building single-rule model for only one
of the classes in all the iterations. If a good model cannot be
built, it uses default model for that iteration, which predicts
everything to be of that class. In case of rare classes, its

)
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-Given: T, M.

Initialize weights D, (i) = 1/N.
fort=1---M
i. Learn weak model, h;, using D;.

ii. Compute importance weight for positive predictions,

o
TP = Y Di(hi(zs);
i:hy (2:)>0,y:>0
FPt = Z Dt(l)ht(.’L‘,)

ithe () >0,y:<0

of =1/2In (TP,/FP,) (6)

iii. Compute importance weight for negative predictions,

ap:
TN; = > Dulihu(zi);
ithe (2:)<0,y: <0
FNy= > Dy(ih(z;)

ithe (2:)<0,y;>0

ol =1/2In(TN,/FN,)

o

iv. Update weights: For positive predictions (hs(z;) > 0),
Di41(i) = Dy(d)exp(—alyihe(x:))/ Ze,  (8)
For negative predictions (h(z;) < 0),
D11 (i) = De(i)exp(—aiyibu(zi))[Z:,  (9)
where Z; is chosen such that )~ D, (2) = 1.
endfor
Final Model:
H(z) = sgn(g(z)),
where
gz)=| D ofh(@)+ > ofh(z)| (10

t:hy(z)>0 t:hi(z)<0

Figure 2. RareBoost-1 Algorithm: The difference
from AdaBoost is the use of different importance
weights for positive and negative predictions



primary ability to achieve better recall stems from its use of
default model. We explain later in section 5 as to why this
is not a good strategy.

Our enhancement of SLIPPER, called RareBoost-2, is
described in Figure 3. The primary difference is that we
build models for both the classes in every iteration and do
not use default model?.

Due 1o space constraints, we refer reader to [6] for the
derivation of the choice of ay. It follows the guideline in
SLIPPER’s paper [2]. The key idea is again to choose a;
to minimize Z; in every iteration, to minimize the training
error. The choice between C’s and NC’s model is made
based on whichever minimizes the corresponding Z; value.

4 Cost-Sensitive Boosting Algorithms

The algorithms described so far use the same weight
update factor for true and false predictions of a given
kind. RareBoost-1 and RareBoost-2 enhance AdaBoost and
SLIPPER to use different factors across positive and neg-
ative predictions. However, most generally, one can use
different factors for each type: TP, FP, TN, and FN. Cost-
sensitive algorithms take a step towards this. The AdaCost
algorithm [4] modifies AdaBoost’s weight update equa-
tion 2 to

Diy1(3) = (De(i)exp(—aryihi(T:)Bsgn(he (wi)yi) )/ Zt-

where a; 1/2 In((1 + r)/(1 — 7)) and 7¢
Z,— Dt(i)exp(—yiht(zi)ﬂsgn(hg(z;)y;))- The AdaCost pa-
per proves a general guideline for choosing the multiply-
ing factors S, and f_, that 0 < 4 < - < 1. We
have chosen their recommended setting of Srp = 0.5 —
0.5 cost(TP)/f = 0.5, Bry = 0.5 — 0.5 cost(TN)/f =
0.5, Brp = 0.5 + 0.5 cost(FP)/f = 0.5(f + 1)/,
Brn = 0.5+ 0.5 cost(FN)/f = 1.0. f is an input pa-
rameter®. (3, and B_ satisfy the required constraints, for
f > 1. Using these values, the expanded weight update
formulae look like

Dy1(3) D,(i)exp(~0.5 arhy(x;) ), for TP, TN
Dy (2)exp(0.5 aphy(z:)(f + 1)/ f ), for FP

Dy (i)exp(ashs(x;) ), for FN

Two other variations [10] of cost-sensitive algo-
rithms are CSBI, that does not use any «; factor (or

3 Algorithm of Fig. 3 can be made equivalent to SLIPPER by replacing
model for NC (resp. C) with a default model predicting all examples as
C (resp. NC), when the focus is on class C (resp. NC). The values T N;
and F'N; (resp. T'Py and F P;) will be replaced by Zi:yi>0 Dy(2) and

Zi:y,-<0 Dy (i) (resp. Zi:yi<0 D¢(7) and Zi:y,—>0 D:(2)

4The cost of true predictions (positive and negative) is assumed to
be cost(TP) = cost(TN) = 0, cost of false positives is fixed at
cost(FP) = 1, and cost of false negative is cost(FN) = f.
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Given: T, M.
Initialize weights Dy (i) = 1/N.
fort=1---M
i. Learn weak model for y; = +1 (class C) examples,
hF' :z; — {+1,0}, using D,.
Learn weak model for y; = —1 (class NC) examples,
hit:z; — {-1,0}, using D;.
Evaluate C’s model and NC’s model:

ii.

iii.

TPt = Z Dt(’L),
iy >0,h ) (2:)>0

FP, = > D, (i)
i:y,-<0,h;H(z,-)>0

TN, = > Dy (3);
iy <0,k (2:)<0

FN,; = > Dy (i)

i:y;>0,h:1(z¢)<0
iv. Choose Model and Compute importance weight, ay:
if((1—(TP,— FP,)?) < (1— (T Ny — FN;)?) ) then,
Choose C’s Model, by setting h; = h;*:

at:05ln(TPt/FPt) (]1)
else Choose NC’s Model by setting h; = h; 1
ap = =0.5In (TNy/FNy) (12)

endif
v. Update Weights:

Di41(i) = De(D)exp(~cuyi)/ Ze; he(z:) # 0, (13)
where Z; is chosen such that Y~ D, 1 (z) = 1.

endfor
Final Model:

)

t:z satisfies h,

H(z) = sign oy

Figure 3. RareBoost-2 Algorithm: The difference
from SLIPPER algorithm is the choice between C’s
model and NC’s model, and absence of Default
Model



i 1), CSB2, that uses same a; as computed by
AdaBoost. The weight update formula for CSBI is
Dt+1(i) = (Dt(i)csgn(hg(m.‘)y.-)ezp(_yiht(wi))/zty
and that for CSB2 is Dy1(3)
(De(0)Csgn(hy (z:)y:) €TP(—yihe(2:)) /2. The  pa-
rameters C; and C_ are defined as C;, = 1, and
C_ = cost(y;, hi(x;). Using the same cost matrix as that
for AdaCost, this is equivalent to Crp = 1, Cry = 1,
CFP = l,and CFN = f

5 Comparing All Algorithms

In this section, we analyze all the described algorithms
from the perspective of how they update the weights on four
types of examples: TP, FP, FN, and FN. To simplify analy-
sis, we assume, without loss of generality, that each model
generates binary decision; i.e., we ignore confidence-rating
of a prediction. It is in general difficult to assess how the
weight of a given training example will change over all the
iterations, because of the cumulative effect, and one exam-
ple may switch its role among TP and FN or FP and TN
from iteration to iteration. Using the fact that all the algo-
rithms treat all examples of one kind equally (i.e. one TP
is treated same as other TP) in an iteration, we decide to
infer the effect by observing how aggregate weights of all
example types change from iteration t to ¢t + 1. Table |
summarizes the effect for all algorithms.

Here is a brief reasoning of why the weight update fac-
tors are important. All algorithms try to concentrate on FP
and FN examples by boosting their weights, and suppress-
ing weights of TP and TN. In the next iteration, a model
geared towards learning C will try to capture more FN and
less FP examples. So the model tries to convert more FN’s
into TP’s, thus increasing recall. However, if the weights
of TN are reduced significantly (as compared to FN’s), C’s
model may capture some of TN’s, thus losing precision.
Similarly, a model geared for NC will try to capture more
FP and as little of FN as possible, thus trying to convert
more FP’s into TN’s, thus improving precision. However, it
might capture more TP’s if weight on the TP’s is reduced to
low levels, thus losing recalil.

AdaBoost vs. RareBoost-1:

AdaBoost gives equal importance to both types of false pre-
dictions. RareBoost-1 scales FP examples in proportion to
how well they are distinguished in an iteration from TP ex-
amples, and FN in the proportion of how well they are dis-
tinguished from TN. The essential effect of weight update
in AdaBoost is to stratify the sum of weights on all true
predictions against all false predictions. RareBoost-1 strat-
ifies true positives against false positives and true negatives
against false negatives. Traditional weak learners learn ef-
fective models when the class proportion is balanced. The
separate stratification of positive and negative predictions
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gives the weak learner a better chance at distinguishing each
type. Thus, we expect RareBoost-1 to achieve better recall
and precision as compared to AdaBoost.

SLIPPER vs. RareBoost-2:

In rare class context, when it is difficult to build a good
model for C, SLIPPER’s primary ability to aim for recall
comes due to its default model. From Table 1, with default
model, effect of weight update is to equalize the weights on
both classes. From our experience with rare classes in [5],
such stratification usually improves recall at the cost of pre-
cision. If good models for C cannot be found to distinguish
FP examples from TP examples, then the overall balance
may suffer. Instead, RareBoost-2, at the cost of building
models for both C and NC, specifically targets the weak
learner to model either TP vs. FP, or TN vs. FN. This may
help it achieve better performance than SLIPPER.
Cost-Sensitive vs. Cost-Insensitive Algorithms:

As shown in Table 1, unlike any of the cost-insensitive al-
gorithms, AdaCost comes close to a generic strategy of up-
dating weights of all four types of examples differently. For
values of f > 1, it increases weights on FNs more than
any other type of examples. The net effect is that the weak
learner focuses on recall in the next iteration. The FPs also
get boosted more than TPs are suppressed. This allows Ada-
Cost to focus on precision as well. But, unlike other algo-
rithms, TP and FP are not stratified (neither are TN and FN),
so increasing precision might tend to lose recall by captur-
ing more TP examples. Maybe for higher f values this loss
in recall can be regained. Usually higher recall comes at a
cost of lower precision. So, it will depend on the dataset
whether the recall focus helps®. Like AdaCost, CSBI and
CSB2 focus on FN by varying f. However, this focus is
not accompanied by focus on precision, which can result in
high recall at a loss of precision.

6 Results on Synthetic Datasets

In this section, we validate our qualitative analysis using
some specially designed synthetic datasets. Due to space
constraints, we refer reader to [6] for more detailed experi-
ment description. Briefly, we use RIPPERO [3] as the weak
learner. We evaluate the performance of each algorithm us-
ing F'1-measure® after each iteration on the test data for 100
iterations, and report the best numbers’. We report best re-
sult of the two variants of RareBoost-1 formed by using of !
and af®. For SLIPPER, we choose best result from two

SNote that unlike methods purely focusing on recall by an up-front
oversampling of rare class, AdaCost can cater to precision also.

SF)-measure is defined as 2*R*P)/(R+P), where recall R =
TP/(TP+FN) and precision P = TP/(TP+FP).

TTest data is generated using the same model as training data. So, mon-
itoring performance on it essentially is same as monitoring the generaliza-
tion ability of the algorithm. For the purposes of our experiments, test data
can be thought of as validation data.



AdaBoost

RareBoost-1

TP3+1 = TPg/’y

FPiy) =FPxy

TNiy1 =TNe/vy .

FNiy1 = FNy*y

v = et = 3/(TP¢ +TN)/(FPt + FNy)

TPt+1 = TP:/’n
FPg+1 :FP: * Y1
TNiy1 =TNe/72
FNiy1 =FNexy2

yi = et = \/TP/FP;, 72 = et = \/TN;/FN;

Effect: TP1+1 + TNep1 = FP¢+1 + FNt+1

Effect: TPg+1 = FPH.l & TNt+1 = FNH.]

SLIPPER-C

If C’s Model is chosen in t*" iteration,
TPt+1 = TPg/’yl
FPt+1 = FPt*’yl

TN5+1 =TN;
FNiy1 = FN,
v1 = e*t = /TP/FP;

Effect: TPi41 = FPiy1
OR
If Default Model is chosen in tt" iteration,
TPiy1 =TP/vs
FPii1 = FPrxv;
TNt+1 = TN[/'Y:}
FNiyy = FNy+ys
73 = et = \/(TP: + FP;)/(TNt + FNy)
Effect: TPiy1 + FNyy1 = TNep1 + FPigg

SLIPPER-NC
If NC’s Model is chosen in t*® jteration
TPy =TP,
FPt+1 = FPt

TNiy1 =TNe/v2

FN¢+1 :FN¢*72
Y2 = et =
Effect: TN[+1 = FNt+1

If Default Model is chosen in £t" iteration
TP£+1 = TPt/"/g

FPiy1=FPixvys

TNty1 =TNi/vs

FNty1=FNexvs

vs = et = \/(T'N¢ + FN:)/(T P + FP;)
Effect: TPiy1 + FNyy1 = TNey1 + FPiy

\/TN¢/F N

OR

RareBoost-2

If C’s Model is chosen in tt® iteration OR
TPy =TPi/m
FP 1 =FPixm

TNty =TNg
FNiy1 = FNe
Y1 = e%t = TPg/FPt

Effect: TPiy1 = FPipa

If NC’s Model is chosen in {7 jteration
TPy =TF

FPiy1=FP

TNiy1 =TNe/72
FNiy1=FNexy

Y2 = et = \/TNt/FNt

Effect: TN,H.I = FNt+]

AdaCost

CSB1 and CSB2

TPg+1 = TPt/’Y

FPiyy = FPy s y(f+0/f
TNH-] = TNQ/’Y

FNijpp = FN; %42

N = eO.Eag

TPi41 :TPQ/’Y

FP[+1 = FPt * 7y

TNiy1 =TNe/y

FNiy1 =FNex fxy

~ = el for CSBI, and v = €t for CSB2

Effect]: Increase weights of FN more than FP
Effect2: Decrease weights of TP or TN by a smaller factor than FN or FP or both

Table 1. Comparing the effect of weight updates in each of the algorithms. This analysis assumes the range of h;’s
prediction to be binary. The entities T P,, etc. are aggregate weights of examples of that type.

variants, one with focus on C and other with focus on NC.
For CSB1 and AdaCost, we use f=1, 2, and 5, and report
the best number. For f=1, CSB2 is equivalent to AdaBoost,
so we report its best result among f=2 and f=5. Last point
to note is that, we used only the binary valued models (i.e.
ignored confidence-rated predictions). This is done so as to
be consistent with our qualitative analysis assumptions?.
Datasets Without Any Attributes Correlations :

The model has three types of attributes. The records of
classes C and NC are divided into multiple subclasses. For
each attribute, Figure 4 shows the histogram distribution of
subclasses over the range of its values. Each attribute dis-

8This assumption affects all but SLIPPER and RareBoost-2, where the
confidence rating is embedded in the a; factor.
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tinguishes one subclass of C and/or one subclass of NC. For
example, C, can be distinguished by a rule capturing the
range of values in ACOM, where C, peaks.

In our experiments, the proportion of the target class C
with respect to NC was fixed at 5% in all these datasets.
We varied four peak-width parameters, defined in Figure 4.
These parameters let us control the recall and precision ob-
tainable for a dataset.

All the algorithms perform equally well when all the
peaks are very sharp (snc1). Even when the C, and C
peaks widen (Snc2), all algorithms, except SLIPPER, are
competitive, because good models for the majority class NC
can still be learned. The reason for SLIPPER’s performance
deterioration can be attributed to its default model selection



mechanism. As the NC} peaks are made wider (snc3), all
the algorithms suffer a dramatic loss in Fj-measure. This
can be attributed to the fact that NC} is the majority sub-
class of NC, and wider W N C}, makes it difficult to remove
FPs due to it without removing TPs of C. And because of
the rarity of C and the nature of the data model, it is difficult
to learn a good model to regain true positives. RareBoost-
1 is achieving higher precision while maintaining the recall
at the level of AdaBoost. RareBoost-2 is significantly better

than SLIPPER for both recall and precision. Although Ada-

Cost is achieving the best F} -measure on the basis of boost-
ing false negatives significantly (best f is 5), in the process
it suffers from a very poor precision (lowest precision). In
fact, it can be claimed that recall and precision numbers of
RareBoost-2 are better balanced. As the NC, peaks are
made wider (snc4), the loss in Fj-measure is not as dra-
matic as in snc3, because N C,, peaks are not captured when
good signatures of C,, are learned. AdaCost again wins here
on F;-measure because of its emphasis on recall (again best
f is 5). Its precision, however, is again much worse as com-
pared to that of RareBoost-1. Here, RareBoost-1 can be
said to achieve better balance. The last dataset (snc5) has

a mixture of wide Cj peaks and wide NC, peaks. This

time AdaCost is able to capture good recall as well as good
precision (for f = 2) among all. This dataset may be repre-
senting the scenario where the cost-sensitivity is required.
Datasets With Attribute Correlations:

We use the data generating model that was first used by us
in {5]. It is described in detail therein. Briefly, it is sim-
ilar to previous model, except for the correlations among
signatures of attributes of type ACOM,. It also has some
categorical attributes of type ANC}, and AC,. We believe
that this model'is fairly general and complex. The results
on this generic model are given in Table 3. The dataset
model is kept fixed (the parameters are WC, = WCj =
WNC, = WNC, = 2.0%), and only the target class
proportion (Cfrc) in training (and test) data is varied. As
Cfrc increases, it becomes easier to achieve better recall
and precision. RareBoost-1 and RareBoost-2 outperform
AdaBoost and SLIPPER in all cases. More importantly,
the performance gap increases as Cfrc decreases. AdaCost
is the most competitive cost-sensitive technique. For 2.9%
and 5.7% datasets, it achieves its best numbers when f = 2.
For these datasets, RareBoost variants are either closer in
performance to AdaCost (2.9%) or they are better than Ada-
Cost (5.7%). For higher Cfrc values, AdaCost achieves its
best only for f = 1. RareBoost-2 beats it for 13.1% dataset.
As f increases on these datasets, AdaCost’s precision shows
significant degradation [6]. These results indicate that over-
emphasizing recall can result in a significant loss in pre-
cision. In fact, precisely in these kind of situations, cost-
insensitive algorithms and our proposed RareBoost variants
can perform better than cost-sensitive algorithms.
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7 Concluding Remarks

The outcome of our study is a critical qualitative and
empirical comparison of three representative categories of
most popular boosting variants in the context of rare classes,
and two enhanced versions of boosting algorithms that are
shown to be better especially in certain situations involv-
ing rare classes. The guideline that emerges from this is
that weight update mechanisms that resemble to those of
RareBoost variants or AdaCost are required for handling
rare classes using boosting algorithms. Further generaliza-
tion of the weight update mechanisms should aim for theo-
retically arriving at different optimal update factors for four
types of examples: true positives, false positives, true nega-
tives, and false negatives.
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ACOM_a (2 such) Three types of attributes:
ACOM_a: Distinguish one subclass of C, C_a,
NC.a NC.a NC.a and one subclass of NC, NC_a.

AC_b: Distinguish one subclass of C, C_b.
NC_rest ANC_b: Distinguish one subclass of NC, NC_b.

Four Parameters:

C_rest WC_a: width of C_a’s distribution peak in ACOM_a
WC_b: width of C_b’s distribution pcak in AC_b
WNC_a: width of NC_a’s distribution peak in ACOM_a
WNC_b: width of NC_b’s distribution peak in ANC_b

ANC_b (3 such) AC_b (2 such)
NC_b NC_b NC_b NC_b NC_b

NC_rest

NC_rest

C_rest
- C_rest

> e > e
WNC_b WC_b

Figure 4. Description of the model generating datasets with no correlations among attributes.

[DSei | [ ABsi | RBT ][ SLIP | RB-2 ][ CSBI | €SBZ | ACst ||
sncl | R || 77.04 | 77.04 || 81.13 | 7493 || 77.04 | 77.04 | 77.04
P || 94.10 | 94.19 || 95.04 | 9861 |[ 9419 | 94.19 | 94.19
F | 8476 | 83.76 || 8702 | 85.16 || 84.76 | 84.76 | 84.76
snc2 | R || 76.78 | 7678 || 69.30 | 76.78 || 76.78 | 76.78 | 7731
Dataset [ WCa [ WC | WNC, | WNC, P ][ 9541 | 9541 || 85.53 | 9541 |[ 9541 | 9541 | 95.75
:"Cl ?'2 ?"2 84: %i F{[ 85.00 | 85.00 || 7662 | 85.09 || 85.09 | 85.00 | 85.55

nci . . . X

— 52 oa 03 74 snc3 | R || 41.03 | 4116 || 35.00 | 4921 || 43.14 | 43.14 | 79.02
= s P 5 T P | 5958 | 65.00 [ 59.11 | 6237 || 6783 | 6784 | 31.73
= 55 54 . 53 F || 4859 | SI.10 || 4404 | 5501 || 52.74 | 52.74 | 62.53
sncd | R || 5475 | 5871 || 4763 | 5699 || 5268 | 38.13 | 69.53
P {[79.35 | 90.45 || 94.75 | 82.60 || 35.65 | 5180 | 7638
F|[ 6479 | 71.20 || 63.39 | 6745 || 54.10 | 43.95 | 72.79
sncs | R || 47.23 | 5158 || 43.14 | 53.06 ]| 5646 | 5567 | 63.10
P | 76.50 | 87.87 || 88.14 | 89.50 ]| 50.53 | 77.86 | 92.47

F [ 58.40 | 65.00 || 5793 | 67.33 [ 53.33 | 6492 | 75.08 ]

Table 2. Tuble on the Left: Specific Datasets Generated with model of Figure 4. Peak widths are given as a percentage
of the total range of the attribute. Table on the Right: Results on datasets with no attribute correlations. Notation:
R:recall for C (in %), P: precision for C (in %), F: F-measure (in %), ABst: AdaBoost, RB-1: RareBoost-1, SLIP:
SLIPPER, RB-2: RareBoost-2, ACst: AdaCost.

[ Circ ] ABst | RB-1 [ SLIP | RB-2 Jl CSBI | CSB2 | ACst |
29% | R ][ 50.93 ] 57.20 ][ 64.80 | 56.27 |[ 57.07 | 84.00 [ 67.20
P (| 71.27 | 8125 || 57.51 | 82.10 || 60.03 | 44.74 | 68.39
F || 3941 | 67.14 || 6094 | 66.77 || 58.51 | 5839 | 67.79
57% | R || 6320 | 6867 || 63.60 | 73.20 || 67.07 | 84.13 | 76.00
P [[780.61 | 8374 || 71.19 | 81.70 || 72.90 | 4643 | 7215
F || 7085 | 7546 || 67.018 | 77.22 || 69.86 | 59.84 | 74.03
131% | R _[[ 7653 | 77.47 ][ 70.00 | 79.73 [[ 77.07 | 88.67 | 74380
P || 80.62 | 8336 || 7859 | 86.04 || 72.70 | 58.18 | 85.65
F [ 7852 | 80.30 || 74.05 | 82.77 || 74.82 | 7026 | 79.86
231% [ R ][ 7827 | 84.40 ][ 80.80 | 80.80 J| 86.13 [ 96.13 | 85.07
P [ 83.74 | 8543 || 82.56 | 8645 || 76.81 | 68.60 | 84.39
F [ 8091 | 8491 || 81.67 | 8353 || 81.21 | 80.07 | 8473

Table 3. Results on datasets correlations between attributes. Notation: Cfrc: Proportion of the target class C in the
training dataset. R:recall for C (in %), P: precision for C (in %), F: Fy-measure (in %), ABst: AdaBoost, RB-1:
RareBoost-1, SLIP: SLIPPER, RB-2: RareBoost-2, ACst: AdaCost.
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