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Abstract

This paper presents a technical framework to assess the impact of re-sampling on the ability of a supervised learning
to correctly learn a classification problem. We use the bootstrap expression of the prediction error to identify the
optimal re-sampling proportions in binary classification experiments using artificial neural networks. Based on Bayes
decision rule and the a priori distribution of the objective data, an estimate for the optimal re-sampling proportion is
derived as well as upper and lower bounds for the exact optimal proportion. The analytical considerations to extend the
present method to cross-validation and multiple classes are also illustrated. © 2001 Elsevier Science B.V. All rights

reserved.
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1. Introduction

In supervised learning, the proportion of types
of data in the training data set has a critical im-
portance (for e.g., [9,17,18]). A neural network or
a classification tree algorithm that is trained on a
data set with 950 good and 50 bad cases, for ex-
ample, will bias its decision towards good cases, as
this would allow the algorithm to lower the overall
error (which is much more heavily influenced by
the good cases). By extracting and comparing the
features which characterise these good and bad
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cases in the training sample, we can create a pre-
dictive model. Therefore, when the representation
of good and bad cases in the training sample is
unbalanced, the model’s decisions may naturally
be biased.

In order to deal with this sort of problems as-
sociated with unbalanced data records, recent ad-
vanced data mining tools are equipped with
sophisticated sampling techniques for creating
training and test data sets (see [9,17,18]). These
techniques are usually referred to as enriched
sampling or balanced sampling; they create a
training data set with an approximately equal
number of good and bad cases. It is believed that a
balanced training sample improves the generali-
sation ability of the tool, because it helps the
identification of the characteristics of the scarce
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class. The test data set for a balanced sample,
however, is created randomly to maintain the va-
lidity of the test data set and, accordingly, to re-
flect the original distribution of the total records.
The techniques are especially effective when using
classification trees to create a predictive model,
since the tree algorithm usually does not run if the
data does not contain enough of the predicted
behaviour in the data set.

This paper addresses the effects the unbalanced
data would have on supervised learning and, in
particular, on binary classification problems. Our
approach is based on the well-known bootstrap
analysis technique [5] and on the Bayesian optimal
classifier methodology. We show that it is possible
to derive from the distribution of the objective
values in the prospective data set, upper and lower
bounds on the re-sampling proportion that would
lead to the best generalisation ability. The study
is based on an example using a neural network,
but is applicable to all methods of supervised
learning.

This paper is organised as follows. In Section 2,
we formulate the bootstrap expression of the
prediction error to base our work on sound sta-
tistical theory. Then, in Section 3, numerical ex-
periments are presented to assess empirically the
impact of re-sampling on an artificial neural net-
work’s ability to learn. In Section 4, we relate our
study to the Bayesian formalism. We identify an-
alytically the optimal proportion for a network
that meets simple and quite un-restrictive condi-
tions in Section 5. In Section 6, lower and upper
bounds for the optimal re-sampling proportion
for binary classification are derived. Sections 7
and 8 present extensions of the present method to
function mapping and to multiple classes, respec-
tively. The application to cross-validation is also
illustrated in Section 7. Conclusions are given in
Section 9.

2. Bootstrap

The bootstrap techniques (see [5]) were intro-
duced in 1979 as a computer-based method for
estimating the standard error of empirical distri-
butions. They allow estimating significant levels of

arbitrary statistics when the form of the underlying
distribution is unknown. The method enjoys the
advantage of being completely automatic and not
requiring theoretical computations or assumptions
on the original distributions. It was further ex-
tended to estimate prediction error.

There are related methods to the bootstrap to
estimate prediction errors. For example, references
for cross-validation are found in [2,19,20]. The
jackknife method is also related to bootstrapping
(see [5]). References for the AIC (Akaike infor-
mation criterion) can be found in [1], while refer-
ences for the BIC (Bayesian information criterion),
can be found in [16]. For more details, the reader is
referred to [5,10].

2.1. Definitions

o Let x; = (I,0%), i = 1,...,n, be the ith element
(pattern) of the training set x. I; is an input vec-
tor and O is the desired output as opposed to
the actual output of the network O;.

e A bootstrap sample x* has n elements generated
by sampling with replacement » times from
the original data set x. For example, if x =
{x1, Xy, X3, X4,X5}, a possible bootstrap re-sam-
pling may result in x = {x3, X3, X{, X4, X2 }.

e Having observed a random sample of size n
from a probability distribution F, the empirical
distribution function F is defined to be the dis-
crete distribution that puts probability 1/z on
each pattern x;.

* A plug-in estimate of a parameter 0 = ¢(F) is de-
fined to be 0 = #(F). In other words, we estimate
the function 0 = ¢(F') of the probability distribu-
tion F'by the same function of the empirical distri-
bution F, 6 = ¢(F). For example, if we consider
the mean of the desired values, it is defined as
0=Ep(0%) =L 3" 0% In the same manner,
the plug-in estimate of the mean is

~ 1 &
o (0d — & dy

= £ (0) = Y (00"

In the above example, Ex(0%) =1 377 0¢, and

its  plug-in  estimate is: E ;(Od) =1

3000 =1(208 + 0 + 0§ + 03).
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e Suppose, we train the artificial neural network
on the patterns contained in x, producing a pre-
dicted value O, for the input I =1,. We write:
0y = fx(Iy), where O, is the output of the net-
work trained with the set x and presented with
the input I,.

e Q[04,0] denotes the measure of error between
the desired output O¢ and the prediction O. In
the case of classification, a common measure
of error is Q[0%,0] = 0 if 0! = O and 1 other-
wise.

2.2. Prediction error

Let (Iy,08) denote a new observation (i.e., a
new pattern) from F, the complete population of
patterns. The prediction error for fy(Iy) is defined
by
err(x, F) = E{Q[0%, ()]}, (1)
where the notation Er denotes the expectation
over a new observation.

On the other hand, the plug-in estimate of
err(x, F) is given as

errx F

where fy-(I;) is the predicted value at I = I, based
on the network trained with the bootstrap data set
X",

We could use err(x*, F') as an estimate of the
prediction error, but it involves only a single
bootstrap sample, and hence is prone to be biased.
Instead, we focus on the average prediction error.
The approximation to the prediction error is an
average on B bootstrap samples and n observed
patterns

E~ lerr(x

5 1?‘)] = %Z ZQ[O?U{X*”(I:)}/”

If the distribution F is known and finite, n ob-
served patterns are replaced by the complete

population, and so the prediction error of the
network trained on bootstrap samples is given by

Erlerr(x*, F)| =

In our bootstrap experiments, we will estimate
the average prediction error for various re-sam-
pling schemes of the data set.

3. Numerical experiments

To assess the effects of re-sampling on the
learning ability of a given network, we need to set
up an experiment where the complete sample space
is finite, known, and small so that the training is
fast and easy. Moreover, the distribution function
must be unbalanced so that the effects of re-sam-
pling can be assessed. The symmetry detection
problem for a six-bit code (defined in Section 3.1)
meet these requirements.

3.1. Patterns

Each pattern is composed of six inputs, ar-
ranged as a vector, and one output.

3.1.1. Inputs

All elements in the input can take values in
{0,1} only:

,  where a,8,7,0,¢,¢ € {0,1}. (5)

» oA ™ R

The pattern is said to be symmetric if it has the
form

= ™ R

, where «,§,7 € {0,1} (6)

R ™|~
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and it is said to be asymmetric otherwise. There
are 2° = 64 different vectors in the complete sam-
ple space, and 23 = 8 symmetric vectors; hence
there are 64 — 8 = 56 asymmetric vectors.

3.1.2. Outputs

If the input vector of the pattern is symmetric,
the output is 1; otherwise it is 0.

The symmetry detection is a rather difficult
problem since the nearest neighbours with Ham-
ming distance 1 to a symmetric vector are all
asymmetric. Most of the supervised learning
techniques are not effective to recognise patterns
by using six-dimensional hyper-planes.

3.2. Network architecture and training algorithms

We take a feed-forward neural network with
one hidden layer, which has a varying number of
hidden units (3-10). To train this neural network,
we use back-propagation [8] and conjugate gradi-
ent algorithms (see [14,15]). A stochastic-noise
based algorithm proposed by the second author
was also experimented (see [11-13]). The results
did not differ significantly and were quite inde-
pendent from the architecture and the learning
algorithms [4]. We present in this paper the results
for a network with six hidden neurons trained by
conjugate gradient algorithm.

3.3. Re-sampling scheme

The proportion of symmetric vectors is 8/64.
The re-sampling scheme will systematically modify
this proportion to create different training sets on
which the network learning ability is assessed. The
scheme takes the following steps:

1. Decide on a proportion (for example, 40/64).
2. Take randomly with replacement 64 vectors
such that the proportion decided in step 1 is re-

spected. For example, if the proportion is 40/64,

pick randomly 40 vectors from the set of sym-

metric vectors, and 24 (= 64 — 40) among the
asymmetric vectors.

A second experiment is also undertaken where
we apply duplicated bootstrapping: Instead of re-

sampling a set of 64 vectors, we take 128
(= 64 x 2) vectors.

3.4. Experiment

We re-sample the sample space in order to as-
sess the network learning ability. The experiment
runs as follows:

1. the numerator of the proportion ranges from 4
to 60 by step of 4;

2. for each proportion, we construct B = 100
bootstrap re-sampling sets;

3. for each of these sets, the network learns the
weight of the neural connections. Each network
should converge on the bootstrap training set;

4. for each network, we compute the prediction
error on the original sample set as expressed
in Eq. (4):

Erlerr(x*, F)] Z% Z i O[0!, fro (1)) /n,

with B = 100 and » = 100.

This experiment allows us to address the fol-
lowing issue: if we know the true population F of
the patterns, how should we sample in order to
optimise the empirical learning of neural net-
works (and supervised learning algorithms) in
general?

3.5. Results

The results are presented graphically in Figs. 1
and 2 for cases with re-sampling 64 and 128 vec-
tors, respectively (see Section 3.3). The vertical axis
denotes the mean number of misclassified patterns
when the network that learned the training set was
tested on the complete sample space. If the error is
0, it means that the network ability to generalise is
perfect. The standard deviation of this error is also
presented as a box surrounding the mean. The
horizontal axis denotes the proportion of sym-
metric vectors in the training set; for example,
when the abscissa is 48, 64 patterns of the training
set consists of 48 symmetric and 16 asymmetric
vectors, respectively.
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Test Set Error of Network Trained on 64 Random Patterns
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Fig. 1. Misclassification error for 64 patterns.
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Fig. 2. Misclassification error for 128 patterns.

In Fig. 1 the classification error attains a min-
imum — corresponding to a maximum in general-
isation ability — around values for the proportion
between 12/64 and 20/64. The same observation
repeats when we re-sample 128 vectors in Fig. 2. In

that case, the optimal proportion seems to lie be-
tween 24/128 and 40/128. Clearly the optimal
proportion is neither the original distribution in
the sample space nor the 50-50% proportion
often applied in practice for binary classification
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problems. Rather, it lies somewhere between these training set varies. This certainly has an impact on
two values. the network performance on the sample space. We

One might remark that when re-sampling with have plotted in Figs. 3 and 4, the mean number of
replacement, the number of different patterns in the different patterns for each re-sampling proportion.
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Fig. 3. Mean number of different patterns for 64 patterns.
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Fig. 4. Mean number of different patterns for 128 patterns.



G. Dupret, M. Koda | European Journal of Operational Research 134 (2001) 141-156 147

We observe that this mean number is higher
when the original proportions are respected. We
may conjecture that even though there are fewer
different patterns to learn from, the network still
performs better where the proportion is optimal.
This indicates the importance of identifying the
optimal proportion when training a network.

4. Bayesian classifier

This and subsequent sections are organised as
follows: first we relate our study to the Bayesian
formalism. Next we propose a minimum require-
ment on the network’s ability to learn in the con-
text of binary classification. Then we derive
analytically the optimal re-sampling proportion.
Lastly, an extension to multiple classes is pre-
sented.

4.1. Bayes decision rule

Bayesian decision theory is a fundamental sta-
tistical approach to the problem of pattern classi-
fication. It shows that for every pattern
classification problem, there is an optimal classifier
that will, on a statistical basis, correctly determine
the class of unknown patterns a higher percentage
of the time than will any other classifier. This
classifier is known as the Bayes classifier. This
approach is based on the assumption that the de-
cision problem is posed in probabilistic terms, and
that all of the relevant probability values are
known. Since we do not usually have this detailed
level of knowledge, most classifiers have sub-
optimal performance. Notice that, although a
Bayes classifier has optimal performance, it may
not be perfect. The performance of a Bayes clas-
sifier is determined by how much overlap exists
between the classes (see [3,7]).

Given a new sample, represented by the vector
x of its characteristics, the problem is to use the
available information to classify it optimally fol-
lowing some criteria. (In the numerical experiment
of Section 3, x corresponds to the input vector.)

The state of nature is defined as the class to
which a new sample really belongs. Let

Q={w,...,o.; be the finite set of ¢ states of
nature, and D = {oy,...,0,} be the finite set of d
possible actions, i.e., the decision of classifying the
new pattern to a given class. Let A(«;|w;) be the
loss incurred for taking action o; when the state of
nature is ;. Let the feature vector x be a d-com-
ponent vector-valued random variable, and let
p(x|w;) be the probability density function for x
conditioned on the state w; being the state of na-
ture. Finally, let P(w;) be the a priori probability
that nature is in state ;. Then, it is well known
that the a posteriori probability P(w;|x) can be
computed from p(x|w;) by Bayes rule

p(x | w)P(w))

where
p(x) = 3" p(x | ) P(). (®)

=1

Suppose that we observe a particular x and that
we contemplate taking action o;. If the true state of
nature is w;, a loss A(o; | @;) will then be incurred.
Since P(w; | x) is the probability that the true state
of nature is w;, the expected loss of action o; is

c

R(o; | x) = Zi(% | w;)P(w; | X). )

J=1

In decision-theoretic terminology, an expected
loss is called a risk, and R(«;|x) is known as the
conditional risk. Whenever we encounter a partic-
ular observation x, we can minimise our expected
loss by selecting the action that minimises the
conditional risk. We shall now show that this is
actually the optimal Bayes decision procedure.

Stated formally, our problem is to find a
Bayes decision rule assuming P(w;) that mini-
mises the overall risk. A decision rule is a func-
tion o(x) that informs us which action to take
for every possible observation. To be more spe-
cific, for every x the decision function o(x) as-
sumes one of the values oy,...,0y. The overall
risk R is the expected loss associated with a gi-
ven decision rule. Since R(¢;|x) is the condi-
tional risk associated with action o;, and since
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the decision rule specifies the action, the overall
risk is given by

R= /SR(oc(x) | x)p(x)dx, (10)

where dx denotes the d-dimensional volume ele-
ment, and the integral extends over the entire
feature space S. Clearly, if a(x) is chosen so that
R(a(x) | x) is as small as possible for every x, then
the overall risk is minimised. This justifies the
following statement of the Bayes decision rule: To
minimise the overall risk, compute the conditional
risk expressed by Eq. (9) fori =1,...,d and select
the action o; for which R(o;|x) is minimum. (Note
that if more than one action minimises R(a; |x), it
does not matter which of these actions is taken,
and any convenient tie-breaking rule can be used.)
The resulting minimum overall risk is called the
Bayes risk, and it is the best performance that can
be achieved.

4.2. Binary classification

In the case of binary classification, the set of
possible actions D reduces to D = {0y, }. Re-
naming the costs and benefits (i.e., negative costs)
of classification to be

/I(O{i | wj) = Cij7 lv]: 1727 (11)

the expected losses (or benefits) associated with the
different actions «; are written

R(o | x) = Z;h(ai|wj)P(w/|X)

~.
Il

|
N

cij Pw; | X). (12)

~.
||

After substitution of Eq. (12) into Eq. (10), the
overall risk can be written

R= / > R | x)p(x) dx
= /Z ZCU P(wj ‘ X)p(X) dx. (13)

In this expression, the decision of the networks
is reflected by the term P(w;|x), while p(x)dx
depends on the data set on which the network
will be used. We will see that if we make basic
assumptions on P(w;|x) (i.e., the network beha-
viour in front of a new sample), we can deduce a
re-sampling scheme that minimises the overall
risk.

5. Minimum assumption on supervised learning

The sample space on which the network will be
used is denoted by .%. It is partitioned into two
subsets, ./ and 4 corresponding to the first and
second classes, respectively. We will need the fol-
lowing definitions.

e Let g, be the proportion of samples of class .o/
in the whole sample space &; ie.,
9. = [, p(x)dx/ [, p(x)dx. If we define g, simi-
larly, we have ¢, + ¢, = 1.

e The training set contains m different patterns,
out of which a patterns belong to class .«/ and
b to class # (m = a+ b). The subset of class
o/ presented to the network is .o7,. We define
similarly %,.

e ¢, 1s the cost of misclassifying a pattern from
class 4, and ¢, the cost of misclassifying a pat-
tern from .o/. Similarly, ¢,, and ¢, are the (neg-
ative) costs of classifying correctly.

5.1. Minimum assumption

When the network has been presented with a
patterns of class .o/ and b patterns of 4, it is as-
sumed to behave as follows:

1. Classify correctly the m = a + b patterns that
are presented during the training phase.

2. Classify a pattern it has never seen with a prob-
ability a/m to class .o/ and with a probability
b/m to class 4.

Note that here the conditional probabilities
P(a,|x) =a/m and P(x,|X) =b/m, do not de-
pend on X. Because a real network extracts in-
formation from its input, it is expected to perform
better than the classifier defined here. In this
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sense, this classifier’s performance can be under-
stood as a lower limit on supervised learning
ability.

5.2. Optimal proportion

The minimum assumptions in Section 5.1 allow
us to rewrite the cost function of Eq. (13).

R= / 33 e Ploy [ N)p(x)dx.

= / a4 (Caq + Cpa)p(x) dx
A\t

m

b
4 / D (ews + ear)p(x)dx,

p\a, M
= O!Ca/ p(x)dx+ (1 — oc)cb/ p(x)dx
A B\ By

(14)

where o = a/m, ¢, = Cau + Cpa» and ¢y = cpp + Cap-
The sample space .# on which the network
will be applied is generally available under the
form of a (hopefully) representative finite test set.
Calling A and B the total number of samples in

classes .7 and 4, respectively, and N their total,
we have

/ p(x)dx =4 —a =g,N — am, (15)

A\,

/ p(x)dx =B —b=¢q,N — (1 —a)m. (16)
B\B,

Then, Eq. (14) becomes

R = c,o(q,N —am) + cp(1 — o)
X (gpN — (1 — a)m). (17)
To determine the proportion of patterns that

minimises the cost function, we differentiate
Eq. (17) with respect to o:

OR
— = 2am(c, + ¢p) + cpqpN — caquN

Ou
—m(c, + cp). (18)

Therefore, we have

OR ,
P 0 <= 2a'm(c, + c») + cpqsN — caquN
—m(c,+¢) =0
1 N Cada — Cpqp
= o= =) 19
x 2 2m ( c,+cp (19)

This " minimises R because the second deriv-
ative is always positive:

o*R

% = 2m(ca + Cb) > 0. (20)

The resulting optimal proportions are:

1 N (qsCh — qaca)

l—of = —+-— 21
x 2+2m c,+ ¢y (21)
. 1N (quca — qscp)
= — 22
x 2+2m c,+ ¢y (22)

Because ¢, + g, = 1, we can eliminate g, from
Eq. (22):

1 N Cp
=4 — -—— . 2
” 2+2m(qa ca+cb> (23)

5.3. Natural conditions on o

In the above analysis, the derivatives have been
calculated without taking into account the fol-
lowing natural conditions on o.

1. o is a proportion and, therefore, we have

0<a<l. (24)

2. There cannot be more patterns of a class in the
training set than there are in the sample space,
ie.,

mau<Ng,, m(l—o)<N(l—gq,).

This can be rewritten as
1= (N/m)(1 - q.) Sa<N/mq,. (25)

If Eq. (23) gives a solution outside of the fea-
sible region defined by Eqgs. (24) and (25), the
minimum in that range will be the « which is
closest from the solution of Eq. (23). The reason is
that the second derivative in Eq. (20) is always
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positive, there is no local minima and R increases
with the distance from the minimum point. Dif-
ferent cases may arise; they are analysed in the
subsequent development.

Consider the value of «* given in Eq. (23). We
have 4 cases.

Case 1. If 1 — (N/m)(1 — q,) <0 and o* < 0, then
o must be set to 0.

Case 2. If 1—(N/m)(1—-q,) >0 and
o <1—(N/m)(1—gq,), then o* must be set to
L= (N/m)(1 = qa).

Case 3.1If (N/m)q, < 1 and o* > (N/m)q,, then o*
must be set to (N/m)q,.

Case 4. If (N/m)gq, > 1 and o* > 1, then o* must
be set to 1.

In all other cases, «* remains to its original
value given in Eq. (23). We can state these rules
as follows. We first compute from Eq. (23) the
optimal number of patterns in each class. If there
are not enough patterns in one of the classes,
then include in the training set all the patterns of
this class, and complete the set with the other
class to obtain a total of m patterns. A typical
solution is presented in Fig. 5, where the slopes
are indicated along the corresponding line seg-
ments.

The distribution of samples between the two
classes need not be the same in the available
training set and the prospective set to which the
network will be actually used. In terms of the
practical rule, this can be restated as follows. First
compute the optimal number of patterns in each
class, using g, and ¢, as a priori frequencies in the
prospective set. If one of the classes does not
contain enough samples to satisfy the optimal
proportion, then complete the training set with
patterns of the other class.

6. Bounds for the optimal proportion

The classifier defined in Section 5 corresponds
to a minimum assumption on learning ability. It is

1.0

N/m
0.8

0.6

0.4 N/2m

0.2

N/m

Ya

Fig. 5. Optimal o as a function of g,.

expected to perform poorly because it takes into
account only the distribution of outputs observed
during the training phase, and ignores the input
vector x. Actually, a real network will better
classify the patterns and we can relax the minimum
assumptions of Section 5 as follows:

1. Classify correctly the m = a + b patterns that
were presented during the training phase.

2. Classify incorrectly a pattern it has never seen
with a probability o/ =« —y, to class &/ and
with a probability f =1 — « — 7, to class 4.
Clearly, y, and y, must be positive. Moreover,

o/ and ' being positive, it entails that y, <« and

vy <1 —o
Then, we can rewrite the expression of the cost

function in Eq. (17) as

R = c,(q.N — am)B + cp(qsN — m(1 — o))o/
= ca(qaN — oam)(1 — o —7;)
+cp(gpN —m(1 — o)) (e = 7,). (26)

The optimal proportion is the value of « that
minimises this error:

OR
a = Zam(ca + Cb) + (qubN - Caan)
- m(ca + Cb) - m(cbya - Cayb)’ (27)
Equating this expression to zero, and solving
this equation gives

o

1 N (Ca% - Cb%) CpVy — CaVp
e — d ) 28
2 + 2m (¢, +cp) 2(cq +cp) (28)
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This corresponds to Eq. (22) considering the
relative ability of the network to learn patterns
across binary classes. Because 0<7y,<o and
0<y,<1—0a, we obtain a lower bound for o*
when y,=0and y,=1—

" 1 N Cada — Cpqp Ca(l - Ocrnin)
o . = — _— -
mn D dm e, + ¢ 2(ca+cp)
N a4a —
= o & — Coa — 0G0 (29)

mne e+ 20, mooc,+ 2¢

Similarly, the upper bound of o is attained
when y, = « and y, = 0:

o oL N Ccada—arp  Coliy
max- 2 2m e+ 2(cq + ¢p)
. _ Catcy N caga—cpqp

=0

(30)

maxX e, +e, mo 2c,+cp

6.1. Natural conditions on o, and o

The same conditions on o* in Egs. (24) and (25)
also apply to o . and o . This means that o

will be the maxﬁurlljum amlgﬁg the values defined lg;
Eqgs. (24), (25), and (29). Similarly, o = will be

the minimum of 1, (N/m)q,, and the o defined in
Eq. (30).

Simultaneously, we must have o, <1 and
o .. > 0. This is achieved if

m Cp
—>|q,— . 31
e (31)

Below this number of samples in the training
set, we cannot expect any reduction of the cost R.
We can now restate the conditions on o* of Section
5.3: Cases 2 and 3 remain valid, but the condition
in Eq. (31) together with Eq. (23), replaces all the
other cases.

A typical situation is depicted in Fig. 6 where
the bold line represents o, whereas the bold dotted
lines correspond to o, and o,

‘min*

6.2. High risk misclassification

A very unbalanced training set (¢, < q;) is
particularly critical when the comparative cost

1.0 < s N

0.8 § 4

04 -02 00 02 04 06 08 10 12 14

Fig. 6. Optimum, minimum and maximum o as a function of
Ga-

associated with misclassification is high (¢, > ¢;).
This happens in many practical examples of dis-
ease diagnosis, car insurance (e.g., traffic accident
predictions), default predictions, credit assign-
ments, etc.

To lighten notations we define C = ¢;/(c,+
¢p) < 1. Similarly to the arguments in Section 5.3,
the discussion is divided into different cases.

1. If0< o <1—(N/m)(1—gq,), o should be set
to 1 — (N/m)(1 — q,). Substituting the expres-
sion of o* in Eq. (23), this condition becomes

1 N N
(g — 1-2 -
= 252 (g, +0). (32)

N

Since 0 < ¢, < 1 and 0 < C <« 1 entail that the
right-hand side of the last relation exceeds 1.
Therefore, this situation is impossible.

2. If (N/m)q, < oa* <1, o* is set to (N/m)q,. This
happens when

1 N

N m
z-i-%(Qa—C) > a = —>q,+C. (33)

N
Given that g, < 1 and C < 1, this last condi-
tion is easily met.

3. In all other cases, we have m/N <gq,+ C.
Moreover, we need m/N >| q, — C | following
Eq. (31) to ensure that o* € (0,1). This means
that m/N must lie on an interval of length 2C
centred on ¢,. This may be possible, but it is
highly unlikely because C < 1.

Consequently, the expression of the optimal o
becomes
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. N
o =—q,.
m

As we have N > m, this implies that the optimal
proportion corresponds to an over-representation
of the less populated class.

A re-sampling to 50-50 would happen if
m = 2Ng,.

6.3. Equal costs

When the costs are equal, the optimal propor-
tions for the minimum assumption network de-
fined in Eq. (23) simplifies to
1 N 1

N
2‘5‘@(%—%)—54-6(2%—1)- (34)

*

o =

If g, > 1/2, then o* > 1/2. When the size of the
training set m increases, the optimal proportion re-
centres the a priori distribution.

Following Eq. (28), the re-sampling proportion
of a network with a higher learning capability will
be optimal, when

1 N Y, =)

o =2 = 1)+ (35)

Comparing this result with Eq. (34), we see that
the result obtained for the minimum requirement
network is in fact valid for any network, as long as
the ability to learn both patterns is the same
(Va = 7p)-

The lower and the upper bounds for the opti-
mal proportion are

1 N
=4+ —(2q,— 1 36
toin =3+ 3 Q= 1) (36)
and

2 N
==+ —(2q,—1). 37
o =5+ 5 (20— 1) (37)

If both oy, and o,y defined in Egs. (36) and
(37) lie in the feasible region, the length of the
interval is o, — o, = 1/3. From the conditions
expressed in Egs. (24) and (25), we may conclude
that the optimal proportion lies in an interval of

length smaller than 1/3.

6.4. Symmetry detection numerical experiment

In the numerical experiments of Section 3.4,
there are 64 patterns with eight symmetric ones.
Taking costs to be equal, Eq. (23) becomes

*

1 6456-8 1 12 18
YT maxed 2w (38)
For 0 <m <24, as a < 1, the error is minimised
for « = 1. For m > 24, the proportion of asym-
metric vectors decreases. When m = 40, the opti-
mum proportion is 80% for asymmetric patterns,
and 20% for symmetric patterns. In Fig. 1, this
corresponds to a number of symmetric patterns
equal to roughly 13. The a priori proportion of
12.5% for symmetric patterns corresponds to eight
symmetric patterns in Fig. 1.

Following Egs. (36) and (37), the lower and
upper  bounds are: 1>a>0.73 and
0<1—u<0.27. In Fig. 1, this corresponds to a
number of symmetric patterns between 0 and 18.

The benefit of re-sampling can be evaluated
using Eq. (17). For m = 40 and o = ¢,, the total
mean risk is R = 5.25, while using the optimal
proportion o* = 80%, we obtain a total mean risk
of 4.8. The re-sampling to 50-50 is less advanta-
geous: R = 12. The total mean risk is guaranteed
to remain under eight because R(o;; ) = 6.48 and
R(o,.) = 8. This is reasonable because it corre-
sponds to the classification of all patterns to the
asymmetric majority class.

7. Cross-validation

The essence of neural learning is to encode an
input—output mapping into the synaptic weights
and thresholds of a multilayer perceptron. The
hope is that the network becomes well trained so
that it learns enough from the patterns in the
training set to generalise to new patterns. From
such a perspective the learning process amounts to
a choice of network parameterisation for this data
set. More specifically, we may view the network
selection problem as choosing, within a set of
candidate model architectures (parameterisations),
the “best” one according to a certain criterion.
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In this context, a standard tool in statistics
known as cross-validation provides an appealing
guiding principle (see [6,10,19,20]). First the avail-
able data set is randomly partitioned into a training
set and a test set. The training set is further parti-
tioned into two disjoint subsets: an estimation
subset used to select the model and a validation
subset used to test or validate the model.

The motivation is to validate the model on a
data set different from the one used for parameter
estimation. In this way, we may use the training set
to assess the performance of various candidate
models, and thereby choose the “best’” one. There
is, however, a distinct possibility that the model
with the best-performing parameter values may
end up over-fitting the validation subset. To guard
against this possibility, the generalisation perfor-
mance of the selected model is measured on the test
set, which is different from the validation subset.

The use of cross-validation is appealing, par-
ticularly when we have to design a large neural
network with good generalisation ability. For ex-
ample, we may use cross-validation to determine
the multilayer perceptron with optimal number of
hidden neurons, and to decide when it is best to
stop training.

This type of cross-validation is referred to as
the hold out method. There are other variants of
cross-validation that find their own uses in prac-
tice, particularly when there is a scarcity of pat-
terns. In such a situation we may use multifold
cross-validation by dividing the available set of N
examples into K subsets with K > 1 and K divisible
into N. The model is then trained on all the subsets
except one, and the validation error is measured by
testing it on the subset left out. This procedure is
repeated for a total of K trials, each time using a
different subset for validation. The performance of
the model is assessed by averaging the squared
error under validation over all the trials of the
experiment. However, there is a disadvantage to
multifold cross-validation: it may require an ex-
cessive amount of computation since the model
has to be trained K times, where 1 < K < N.

Let us examine the standard case of training a
network to map a continuous function, and test it
using the cross-validation technique. We assume
that the available data set represents fairly enough

the distribution of the sample in the prospective
set. If this is not verified, the adaptation to the
practical rule in Section 5.3 can be used.

Although the function takes continuous values,
the data set typically contains a finite number of
samples. It is possible to artificially recreate the
conditions for a binary classification by setting a
threshold e: we divide the data into two sets, one of
them containing the sample whose output value is
over the given threshold.

The optimal o for a given € is obtained from
Eq. (23). It implies that the training set must
contain a* samples of class .7, with a* defined by

m N
= 5‘*‘2(2%(6) —1). (39)

Because a similar division of the training set is
possible for a value € + £ of the threshold, we also
have

a’(e) = mo*(e)

a‘(e+h) =ma*(e+h)
- m N

=2 Qaue+ ) - 1), (40)

Consequently, the number of sample with an
output value between ¢ and e+ 4 that should be
contained in the training set, is

(o (e )~ () = 3 (aule +) —u(e)). (41)

This relation provides a simple rule to create a
training set that will lead to a network with an
optimal generalisation ability on the data set. In
particular, if we have m = N /2, the distribution in
the training set and the data set becomes identical.
This technique can be extended to cross-validation
statistics of generic regression models.

8. Optimal proportions for multiple classes

In this section, we briefly outline the argument
of Section 5 to many classes.
8.1. Notations

We assume that the sample space is composed

of J classes, each of which is denoted by I; where
j=1,...,J. We have the following definitions:
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e g;, j=1,...,J, denotes the a priori distribution
of the classes in the sample space;

e p,, j=1,...,J, denotes the distribution in the
training set;

e E(i,j) is the cost of the error associated with
misclassifying a pattern from class i to class
J5

e N is the total number of patterns in the sample
space;

e m is the number of patterns in the training
set.

From these definitions, we can easily deduce the
following:

e Ng;: the number of patterns of class /; in the
sample set;

e mp;: the number of patterns of class I; in the
training set;

e Ng; — mp;: the number of patterns of /; not in
the training set.

8.2. Optimal proportions

Making the minimum assumption on the
learning ability of the network given in Section 5.2,
we derive the mean error of misclassifying a pat-
tern of I; into I;:

Err,j/ = (qu — mpl)p,E(l,]) (42)
The total error associated with the class 7; is
given by

J

Err; = Y (Ng; — mp)piE(i, j), (43)

J=1

where E(i, ) is a measure of the error. The total
average error is

Err= XJ: Err; =
i=1

We have the following constrains on the p;:
1. The p; are proportions. Therefore,

DD (Ngi—mp)pE(i.j).  (44)

i=1 j=1

J
> p=1 (45)
=1
2. Proportions are always positive:
p; = 0. (46)

3. In the training set, there cannot be more pat-
terns of a class than those actually existing in
the sample space:

mp; < Ng;. (47)

We define the slack variables y; to transform the
inequality p; > 0 into a strict equality: p; — yj? =0.
Similarly, the slack variable z; transforms the in-
equality mp; <Ng; into the equality relation:
mp; — Ng, —1—212. =0.

The Lagrangian for this problem becomes

J J
L=Y " E(ij)(Ng: — mp)p;
=1 j=1
J
i(ZPI ) Zu,(pj )
1
J
— > vi(mp; — Ng; + 7). (48)
=1

To find the proportions that minimise the upper
bound for the error, we minimise Err with respect
to the p; and the Langrange multipliers 7, u;, and
v;, as follows.

8.2.1. Derivatives of the Lagrangian
1. Derivatives with respect to the proportions:

J

J
E(i,j)(Ng; — mp;
apk apk{zj_ ) (Ng: = mp))p;

i=1

l(Zp/ ) = _wm=5))

=1

~.

J
ZV/ mp; — Ng; +Z,2')}

J=1

= —mY E(kp,+ Y Ei.k)

i=1

x (Ng; — mp;) — A — y — mvy

= Z{E(ia

— A — W — mvy. (49)

k)Ng; — mp;(E(k, i) + E(i,k)) }

2. Derivatives with respect to the slack variables
Vi
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oL 0 4 5
Sl (i — %) b = 2. 50
o o { j; 1 (p) y,)} L4V (50)

3. Derivatives with respect to the slack variables z;:

oL 0 J 2
a_Zk:a—Zk —Zvj(mpj—Nq,-—l—zj) = —2vz.

j=1

(51)

8.2.2. Second-order derivatives

We first relax the second and third conditions
expressed in Egs. (46) and (47), and postpone their
treatment. Eq. (49) becomes:

oL . .
= > {E(i, k)Ng; — mpi(E(k, 1)
Pr

FE@i, k) — ). (52)

We use the case k£ = 1 to eliminate A:

J

=Y {EGi,1)Ng; — mp,(E(1,i) + E(i, 1)}.  (53)

i=1

After substitution of Eq. (53) into Eq. (52), we
obtain

s_; = D AEG k)N, = mp(E(k.i) + (. K))}

J

— > {E(i,1)Ng; —mpi(E(1,i) + E(i, 1))}

i=1

(54)

— (E(k,i) +E(i,k) — E(1,i) — E(i,1))mp;}.
(55)

The optimal proportions are, therefore, defined
by the system of J equations:

J

Z {(E(i,k) — E(i,1))Nqg; — (E(k,1)

i=1

VE(i,k) — E(1,1) — E(i,1))mp,} = 0. (56)

The second derivative with respect to pj is

oL _ 0 > —(E(k,i) + E(i, k)

Fp
— E(1,i) — E(i, 1))mp; (57)
— mp(E(1,k) + E(k, 1)) > 0. (58)

There is no local minimum, and the solutions of
Eq. (56) define the unique minimum in the sub-
space where Zj:l p; = 1. Similar to Section 5.2,
the feasible optimal solution will correspond to the
proportions closest to the solutions of Eq. (56)
which lies in the feasible region. The rest of the
arguments follows along the lines described in
Sections 5 and 6.

9. Conclusions

We presented a bootstrap approach to neural
computations. We set up numerical experiments to
assess empirically the impact of re-sampling on the
network’s ability to learn. The importance of the
sample mixture in bootstrap training was investi-
gated analytically.

In binary classification problems, it has been a
common practice to present networks to be
trained, with an equal number of patterns in each
class, irrelevant of the original distribution. The
numerical and theoretical results of this paper,
however, indicate that the learning ability of the
network is indeed enhanced by re-sampling, but
the proportion should be carefully assessed. In
particular, the 50-50% re-sampling scheme seems
to be justified when one of the classes contains
fewer patterns and the associated cost of mis-
classifying them is very high. A simple method to
estimate the optimal proportion for binary clas-
sification problems was proposed. The results
were presented in the context of neural compu-
tations, but the methods apply to most of su-
pervised learning systems, including decision
trees.
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