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Abstract

In this paper, we introduce weights into Pawlak rough set model to balance the class distribution of a data set and
develop a weighted rough set based method to deal with the class imbalance problem. In order to develop the weighted
rough set based method, we design first a weighted attribute reduction algorithm by introducing and extending Guiasu
weighted entropy to measure the significance of an attribute, then a weighted rule extraction algorithm by introducing
a weighted heuristic strategy into LEM2 algorithm, and finally a weighted decision algorithm by introducing several
weighted factors to evaluate extracted rules. Furthermore, in order to estimate the performance of the developed method,
we compare the weighted rough set based method with several popular methods used for class imbalance learning by con-
ducting experiments with twenty UCI data sets. Comparative studies indicate that in terms of AUC and minority class
accuracy, the weighted rough set based method is better than the re-sampling and filtering based methods, and is compa-
rable to the decision tree and SVM based methods. It is therefore concluded that the weighted rough set based method is
effective for class imbalance learning.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Class imbalance exists in a large number of real-world domains, such as fraud detection [11], medical diag-
nosis [26] and text classification [45], and is recognized as a crucial problem in machine learning and data min-
ing. Much work has been done to deal with the class imbalance problem [9,24,26,42,57-59]. Many
international workshops were dedicated to class imbalance learning, for example, AAAI’2000 — Workshop
on Learning from Imbalanced Data Sets [25], ACM SIGKDD Exploration 2004 — Special Issue on Learning
from Imbalanced Data Sets [7] and ICML’2003 — Workshop on Learning from Imbalanced Data Sets [6].

When the class distribution of a data set is highly skewed, a conventional machine learning method usually
has a poor classification accuracy for unseen samples from the minority class because it is strongly biased
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towards the majority class [32]. A recognized solution to the class imbalance problem is to balance the class
distribution of a data set at the data or algorithmic level [6,25]. At the data level, re-sampling training data is a
popular solution to the class imbalance problem, and it over-samples the minority class or under-samples the
majority class to balance the class distribution of a data set. A conventional machine learning method can be
directly used to deal with the class imbalance problem by learning from the re-sampled data set [9,24,60].
However, previous studies show that over-sampling usually increases training time and may lead to over-fit-
ting because it introduces some exact copies of samples into a training data set, while under-sampling may
degrade the performance of a resulting classifier because it usually discards some potentially useful training
samples [1]. At the algorithmic level, sample weighting is a popular solution to the class imbalance problem,
and it assigns a larger weight to the minority class to balance the class distribution of a data set. By using sam-
ple weighting, some standard machine learning methods, such as decision tree [9,52] and SVM [5,8,51], have
been improved for class imbalance learning. Compared to re-sampling training data, sample weighting can
usually be used to achieve better performance [24,26].

Rough set theory is a powerful mathematical tool introduced by Pawlak [35,36] to deal with inexact, uncer-
tain or vague information, and has attracted attention of many researchers to contribute to its development
and applications [2,3,14,28,29,33,47,61]. The main advantage of rough set theory in data analysis is that it
does not need any preliminary or additional information about data such as probability distributions in sta-
tistics, basic probability assignments in Dempster—Shafer theory, or a grade of membership in fuzzy set theory
[38-41]. In Pawlak rough set based method, all samples are considered equally important, and probability 1/n
(n 1s the size of a training data set) is assigned to each sample for computation of the accuracy of approxima-
tion, reduction of attributes and extraction of decision rules. When the class distribution of a data set is highly
skewed, the majority class can be adequately represented but the minority class may be neglected. As a result,
Pawlak rough set based method usually has a poor classification accuracy for unseen samples from the minor-
ity class. In order to improve the classification accuracy for unseen samples from the minority class, it is usu-
ally necessary for a rough set based method to introduce a priori knowledge about samples to balance the class
distribution of a data set.

In order to introduce a priori knowledge about samples into rough sets, Hu et al. [23] proposed probabi-
listic and fuzzy probabilistic rough set models, where each sample x is associated with probability p(x) instead
of 1/n. p(x) can be used to take into account a priori knowledge about samples, but it is difficult to determine
p(x). Ma et al. [31]introduced weights into the variable precision rough set model to represent the importance
of each sample, and discussed the influence of weights on attribute reduction. However, they did not establish
any learning or classification algorithm. In order to deal with the class imbalance problem using a rough set
based method, Stefanowski et al. [50] introduced removing and filtering techniques to process inconsistent
samples from the majority class in boundary regions. The removing and filtering techniques improve the per-
formance of a rough set based method in class imbalance learning, and the filtering technique performs better
than the removing technique. However, no matter which of them is used, the a priori knowledge about sam-
ples is introduced into boundary regions rather than the whole set of samples. Consequently, these techniques
can only be used to improve learning from boundary regions.

It can be seen from the reviews above that sample weighting is a good solution to the class imbalance prob-
lem, but it has not been discussed in the framework of rough sets so far. In this study, we introduce weights into
Pawlak rough set model to balance the class distribution of a data set and develop a weighted rough set based
method to deal with the class imbalance problem. By conducting systematic comparative experiments with
twenty UCI data sets, we find that the weighted rough set based method is effective for class imbalance learning.

The remainder of this paper is organized as follows. In Section 2, we present preliminary notions related to
Pawlak rough sets. In Section 3, we review Shannon entropy based uncertainty measures of knowledge. In
Section 4, we introduce weights into Pawlak rough set model to represented a priori knowledge about samples
and propose a weighted rough set model. In Section 5, we introduce and extend Guiasu weighted entropy to
measure the uncertainty of knowledge in the weighted rough set model. In Section 6, we establish some learn-
ing and classification algorithms based on the weighted rough set model. In Section 7, we discuss performance
indexes in class imbalance learning. In Section 8, we conduct systematic comparative experiments to evaluate
the performance of the weighted rough set based method in class imbalance learning. Finally, in Section 9, we
give the conclusions drawn from this study.
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2. Preliminary notions related to Pawlak rough sets

Definition 1. IS = (U, 4, V.f) is called an information system, where U = {xy,...,x;,...,X,} is a set of samples,
A={ay,...,a;,...,a,} is a set of attributes, }"is the value domain of 4, and f: Ux 4 — V' is an information
function.
Let B C A. B induces an equivalence (indiscernibility) relation on U as shown below:
IND(B) = {(x,y) € Ux U[Va € B, f(x,a) = f(v,a)}. (1)
The family of all equivalence classes of IND(B), i.e. the partition induced by B, can be denoted as
Iy =U/B={x],:x €U}, (2)

where [x;]z is the equivalence class containing x;, and all elements in [x;]z are equivalent (indiscernible) with
respect to B.

Theorem 1. Let IS = (U, A, V,f) be a given information system, B C A, and Il 4 and I g be the partitions induced
by A and B respectively. Then I1 4 is a refinement of Ip, i.e. [ x;] 4 C[x;] p for Vx; € U.

Equivalence classes are elementary sets in rough set theory, and form basic knowledge granules about U.
They are used in rough set theory to approximate any subset of U.

Definition 2. Let IS = (U,A4,V,f) be a given information system, BC 4 and X C U. The lower and upper
approximations of X with respect to B, denoted by BX and BX respectively, are defined as

{EX = U{[xillfxil, € X},

BX = U{[xily|[xil, N X # S}
Lower approximation BX is the set of all samples that can be certainly classified as belonging to X using B.

Upper approximation BX is the set of all samples that can be possibly classified as belonging to X using B.
BNp(X) = BX — BX is called the boundary region of X with respect to B. X is definable with respect to B if

BN(X) = O, otherwise X is rough with respect to B. In contrast to a definable set, any rough set has a non-empty

boundary region. In rough set theory, boundary regions are used to express the uncertainty of knowledge.
The accuracy of approximation of X with respect to B is defined as

op(X) = [BX|/|BX], 4)

where || denotes the cardinality of a set. X is definable with respect to B if az(X) = 1, otherwise X is rough with
respect to B.

3)

Definition 3. Let IS = (U, 4, V,f) be a given information system, B C 4 and a € B. a is redundant in B if U/
B = U/(B — a), otherwise a is indispensable in B. B is independent if every a € B is indispensable in B. B is a
reduct of A4 if U/B= U/A and B is independent.

A reduct is an independent subset of attributes that preserves the indiscernibility relation induced by full
attributes. There is usually more than one reduct for a given information system, and the intersection of all the
reducts is called the core.

Definition 4. IS = (U, 4, V,f) is called a decision table if A = CU D and C N D =(J, where C is the condition
attribute set and D is the decision attribute set.

For given decision table IS = (U, A= CUD,V.f), partition U/D forms the classification about U.
POS¢(D) = Uycy/pCX is called the positive region of classification U/D with respect to C, and is the set of all
samples that can be certainly classified as belonging to blocks of U/D using C.

The accuracy of approximation of classification U/D with respect to C is defined as

ac(D) = |POSc(D)|/ ) |CX| (5)

XeU/D

and the quality of approximation of classification U/D with respect to C is defined as
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7¢(D) = |POSc(D)|/|U], (6)

(D) is also defined as the degree of dependency of D on C. D totally depends on Cif yoD) =1, i.e. all sam-
ples in U can be uniquely classified as belonging to blocks of U/D using C, otherwise D partially depends on C.

Definition 5. Let IS = (U, A = CU D, V,f) be a given decision table, B C Cand a € B. a is redundant in B with
respect to D if yg_,(D) = yp(D), otherwise « is indispensable in B with respect to D. B is independent with
respect to D if every a € B is indispensable in B with respect to D. B is a D-relative reduct of C if yp
(D) =yAD) and B is independent with respect to D.

A relative reduct is an independent subset of condition attributes that preserves the degree of dependency of
decision attributes on full condition attributes. There is usually more than one relative reduct for a given
decision table, and the intersection of all the relative reducts is called the relative core.

3. Uncertainty measures of knowledge based on Shannon entropy

Shannon entropy has been widely used in rough set theory to measure the uncertainty of knowledge
[10,21,22,48,55,56], and these measures can be reviewed as shown below.
Let IS = (U, A, V,f) be a given information system, C C 4 and D C A. Partitions [T = {X1,..., X}, ..., Xy}

and I, =1{Y,,...,Y,,...,Y,} induced by C and D respectively can be considered two random variables in 6-
algebra. The probability distributions of IT- and I1p can be respectively denoted as
X, X X,
o) = ( ) )
pX1) - pXy) o p(X)
and
(V;P) <Y1 b > (8)
’ p(Yl) p<Yj) p(Ym) 7
where p(X;) = 'fé“ is the probability of X; and p(Y;) = ‘U‘ is the probability of Y.

Similarly, the joint probability distribution of IT1- and Ilp, i.c. the probablhty distribution of partition
I -, p jointly induced by C and D, can be denoted as
XiNY, - X;nY, - X,N7Y, )
(X],Y]) p(Xlan) p(Xl77Yn7)

lxXiny,|
19

(X ®Y;P) = ( 9)

where p(X;,Y;) =

is the joint probability of X; and Y

Definition 6. Shannon entropy of I, which is also called Shannon entropy of C, is defined as
Zp ) log p(X (10)
H(C) measures the uncertainty of partition I+ induced by C.
Definition 7. The joint entropy of Il and II p, which is also called the joint entropy of C and D, is defined as
Z Zp Y;)logp(X;, Y,). (11)
H(C, D) measures the uncertamty of partition 1~ p jointly induced by C and D.

Definition 8. The conditional entropy of I1 given I1 ., which is also called the conditional entropy of D given
C, is defined as

H(DIC) = Z Zp X,, ¥,) logp(Y,1X,) = Zp )" p(Y 1) log (Y X,), (12)
j=1
where p(Y;|X;) ‘X‘ ; T' is the conditional probability of Y; given X;.
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H(D|C) measures the uncertainty of partition IIp induced by D under the condition that partition IT
induced by C has been given.

Theorem 2. H(C,D)= H(C) + H(D|C).
Theorem 3. Let IS = (U, A, V.f) be a given information system and B C A. Then

(1) H(A4,B) = H(A);
(2) H(B|4)=0;
(3) H(A4) = H(B).

Theorem 4. Let IS = (U, A, V., f) be a given information system and a € A. a is redundant in A if H(A|A — a) = 0,
otherwise a is indispensable in A.

Theorem 5. Let IS = (U, A, V.f) be a given information system and B C A. B is a reduct of A if B satisfies

(1) H(A|B) = 0;
(2) HB|B—a)>0 for Va € B.

Theorem 6. Let IS= (U,A= CU D, V,f) be a given decision table and E C B C C. Then H(D|E) = H(D|B).

Theorem 7. Let IS= (U,A= CU D, V.f) be a given consistent decision table, BC C and a € B. a is redundant in
B with respect to D if H(D|B — a) = H(D|B), otherwise a is indispensable in B with respect to D. B is independent
with respect to D if H(D|B — a) > H(D|B) for Ya € B. B is a D-relative reduct of C if B satisfies

(1) H(D|B)= H(D|C);
(2) H(D|B — a) > H(D|B) for Ya € B.

The detailed proofs of Theorems 2-7 can be found in [55,56].
4. Weighted rough set model

In Pawlak rough set model, all samples are considered equally important. In order to introduce a priori
knowledge about samples into rough set based data analysis, we employ weights to represent the a priori
knowledge, and propose a weighted rough set model to accomplish this.

Definition 9. WIS = (U, A, W, V,f) is called a weighted information system, where U = {xy,...,x;,...,X,} isa
set of samples, 4 = {ay,...,qa;,...,a,} is a set of attributes, W= {w(x),...,w(x;),...,w(x,)} is a weight
distribution on U, V is the value domain of 4, and f: UxXx A — V is an information function.

For given weighted information system WIS = (U, 4, W, V,f), weight distribution W is used to represent a
priori knowledge about samples. The introduced weights do not change the equivalence relations in a
conventional information system, and so do not change the upper and lower approximations of arbitrary
subset X C U. However, the introduced weights change the accuracy of approximation of X.

_Deﬁnition 10. Let WIS = (U, A, W, V,f) be a given weighted information system, B C 4, X C U, and BX and
BX be the lower and upper approximations of X with respect to B respectively. The weighted accuracy of
approximation of X with respect to B is defined as

oy (X) = [BX]yy /|BX |y, (13)

where [BX|,, = 3, .z w(x;) is the weighted cardinality of BX and |BX|,, = 3" 5 w(x;) is the weighted cardi-
nality of BX. -
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Compared to the conventional accuracy of approximation, the weighted accuracy of approximation is
defined based on the weighted cardinalities of sets. By using the weighted cardinalities of sets, a priori
knowledge about samples can be calculated in the weighted accuracy of approximation. Similarly, the
weighted degree of dependency of decision attributes on condition attributes can also be defined based on the
weighted cardinalities of sets.

Definition 11. WIS = (U, A, W, V,f) is called a weighted decision table if 4 = CU D and CN D =, where C
is the condition attribute set and D is the decision attribute set.

Let POSHD) be the positive region of classification U/D with respect to C. The weighted accuracy of
approximation of classification U/D with respect to C is defined as

%c (D) = [POSc(D)|y, Z |CX 1y, (14)

XeU/D
and the weighted quality of approximation of classification U/D with respect to C is defined as
ve (D) = |POSc(D)]yy /Ul (15)

7¢ (D) is also defined as the weighted degree of dependency of D on C. D totally depends on C if y/ (D) =1,
otherwise D partially depends on C.

Definition 12. Let WIS = (U, A= CU D, W, V.f) be a given weighted decision table, BC C and a € B. a is
redundant in B with respect to D if y) (D) =y} (D), otherwise « is indispensable in B with respect to D. B
is independent with respect to D if every a € B is indispensable in B with respect to D. B is a D-relative reduct
of Cif y; (D) =y} (D) and B is independent with respect to D.

5. Guiasu weighted entropy based uncertainty measures of knowledge

Shannon entropy can be used in Pawlak rough set model to measure the uncertainty of knowledge, but can
not be used to take into account a priori knowledge about samples. Guiasu introduced weights into Shannon
entropy to represent the a priori knowledge and proposed weighted entropy to deal with this problem [15].
However, he did not propose the weighted conditional and joint entropies. In this section, we introduce
and extend Guiasu weighted entropy to measure the uncertainty of knowledge in the weighted rough set
model.

Definition 13. Let X and Y be two subsets of U, p(X), p(Y) and p(X U Y) be the probabilities of, and XU Y
respectively, and w(X), w(Y) and w(X U Y) be the weights of, and X' U Y respectively. If XN Y=, w(X U Y)
is defined as

wX)p(X) + wl¥)p(Y)

wXUY)= PXUT)

(16)

Definition 14. Let X and Y be two subsets of U, and w(X) and w(Y) be the weights of X and Y respectively. The
conditional weight of Y given X, denoted by w(Y|X), is defined as
wXNY)

wX)
For given weighted information system WIS = (U, A, W, V.f), let 1,={X,,...,X,,...,X,} be the partition
induced by 4. The weighted probability distribution of IT 4 can be denoted as

w(Y[X) = (17)

X, X X,
X;Pw) = | pX1) - pX) - pX.) |, (18)
w(Xy) - owlX) o ow(X,)

where p(X;) is the probability of X; and w(X;) is the weight of X,
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Definition 15. Guiasu weighted entropy of I1 4, which is also called Guiasu weighted entropy of A4, is defined as

Hy(4) = =Y w(X;)p(X;) logp(X)). (19)

i=1

Theorem 8. If w(X)) = w(X5) = --- = w(X,) = w, then Hy(A) = wH(A), i.e. Guiasu weighted entropy degenerates
to Shannon entropy.

Theorem 9. If p(X;) = 0, w(X);) > 0 for Vi € I, whereas p(X;) > 0, w(X)) = 0 for Vj € J, where IU J = {1,2,,...,n}
and INJ =, then Hy(A)=0

Theorem 9 means that if some subsets of samples are interesting for applications but do not occur, whereas
the others occur but are not interesting, then Guiasu weighted entropy is zero, i.e. no interesting information is
obtained.

Based on the definition of Guiasu weighted entropy, the weighed conditional and joint entropies can be
respectively proposed as shown below.

Definition 16. Let WIS = (U,4A = CU D, W, V,f) be a given weighted decision table, [T = {X1,..., X},..., X,}
be the partition induced by C, IIp={Y,,...,Y,...,Y,} be the partition induced by D, and

s L)

X, X, X, Y, Y; Yo
X;psw)= | pX1) - pXi) -+ pXy) | and (Y;PsW)= | p(Y1) -+ p(Y;) - p(Yw) | be
wX1) e owlXG) e w(X) w(Y1) o ow(Y) e w(Y)

the weighted probability distributions of IT- and I, respectively. The weighted conditional entropy of I,
given Il ¢, which is also called the weighted conditional entropy of D given C, is defined as

n m

r(DIC) = =3 3w )plin Y, log (T 1)

:_Z Z (Y;1X0)p(Y;1X:) log p(Y|X). (20)

J=1

Definition 17. Let WIS = (U,4A = CU D, W, V,f) be a given weighted decision table, [T = {X1,..., X},..., X,;}
be the partition induced by C, Ip={Yy,...,Y,...,Y,} be the partition induced by D, and

s £

X, . ¢ X, Y, Y, Y,
;P w)=| pXy) - pXy) -+ pX,) | and (Y;P;W)=| p(Y1) - p(Y;) -+ p(Y.) | be
wXi) - owlX) e w(X) w¥i) o ow(Yy) o w(Ya)

the weighted probability distributions of IT- and I, respectively. The weighted joint entropy of I1- and
I p, which is also called the weighted joint entropy of C and D, is defined as

- i zm:W(Xi NY;)p(X;NY;)logp(X;NY)). (21)

Theorem 10. Let HyAC) be Guiasu weighted entropy of C, HyAD|C) be the weighted conditional entropy of D
given C, and Hyy (C, D) be the weighted joint entropy of C and D. Then Hy (C,D)= Hy{C) + HyAD|C).

Proof. According to Definition 17,

ZZ X:NY))p(X;NY;)logp(X;NY))
=—ZZ (XN Y)pX;NY;)log(p(X:)p(Y,X1))
:—Zlong,- ZW(X,-mY X;nY) ZZ (X;NY,)p(X,NY;)logp(Y,X)).
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We have [J_,(X;NY;) =X; and N, (X;NY;) = &. Thus, according to Definition 13, 77 w(X;NY;)

lj=1

p(X;NY,;) =wX,)pX;). Then Hy{C,D) = Hy{C) + Hy(D|C) holds. This finishes the proof. [

Theorems 3-7 also hold for Guiasu weighted entropy. They can be proved in a similar way.
6. Learning and classification based on weighted rough sets
6.1. Weighted attribute reduction

Attribute reduction is an important problem which can be solved using rough set theory, and a number of
algorithms have been established for attribute reduction [3,28,29,33,47]. However, the conventional attribute
reduction algorithms can not be used to take into account a priori knowledge about samples. Based on Guiasu
weighted entropy, we define the weighted significance of an attribute and design a heuristic weighted attribute
reduction algorithm to take into account the a priori knowledge.

Definition 18. Let WIS = (U, A= CUD,W,V,f) be a given weighted decision table and B C C. Based on
Guiasu weighted entropy, the weighted significance of attribute @ € C — B on the basis of B with respect to D
is defined as

SIGy(a, B,D) = Hy(D|B) — Hy(D|B U {a}). (22)

Based on the weighted significance of an attribute, a heuristic weighted attribute reduction algorithm is
designed as Algorithm 1. Algorithm 1 starts with an empty attribute set, and iteratively selects an attribute
with the maximum weighted significance until the weighted significance of the remaining attributes is below
threshold e.

Algorithm 1. Weighted attribute reduction algorithm
Input: Weighted decision table WIS = (U, A = CU D, W, V,f) and threshold e.
Output: D-relative reduct B of C.

1.  begin

2 compute Hy(D|C);

3 B— I

4. while B C C do

5. begin

6 for cacha e C— B do

7 compute SGFyAa, B, D);

8 select a such that SGFy{a, B, D) is maximum;

9. B «— BU{a};

10. if Hy(D|B) — Hy{D|C) < ¢ then exit the loop;

11. end

12. for each a € B

13. if Hy(D|B — {a}) — Hy{D|C) < ¢ then B — B — {a};
14. return B;

15. end

6.2. Weighted rule extraction

Nowadays, there are many known rule extraction algorithms inspired by rough set theory
[16,19,20,27,34,46,49,53,54], and LEM2 algorithm proposed by Grzymala-Busse [16] is one of the most widely
used algorithms for real-world applications. However, these algorithms can not be used to take into account a
priori knowledge about samples. Based on LEM2 algorithm, we design a weighted rule extraction algorithm to
deal with this problem.
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The following are some preliminary descriptions about LEM2 algorithm.

In order to reduce rule extraction from inconsistent samples to that from consistent samples, a family of
generalized decisions, denoted by D, is first defined on a given decision table. A generalized decision is either
a single decision or a joint decision. According to D, all the samples in the decision table are then partitioned
into a family of disjoint subsets, denoted by Y. Each element of Y is either the lower approximation of a deci-
sion class, which corresponds to a single decision of D, or one of the disjoint subsets of the boundary region of
a decision class, which corresponds to a joint decision of D. Suppose that there are three decision classes Y7,
Y, and Y; in the decision table and B is a subset of condition attributes. The boundary region of Y; with
respect to B consists of three disjoint subsets, i.e. BN3(Y,) = (BY, NBY, — BY3)U (BY, NBY; — BY,)U
(BY, N BY, NBY3). By using the generalized decisions, the inconsistent samples in terms of the original deci-
sions are expressed as the consistent samples in terms of the generalized decisions. Finally, for each K € Y, a
heuristic strategy is used in LEM2 algorithm to extract a minimum set of rules. _

Let WIS=(U,A=CUD,W,V.f) be a given weighted decision table, Dg be a generalized decision, K € ¥
be the subset of samples that corresponds to Dy, C be an elementary condition (condition attribute-value pair)
that has an expression (a,v), whereac Candv e V,, ®=c; A--- A¢;A -+ A ¢, be the conjunction of ¢ ele-
mentary conditions, [@] be the cover of @, i.e. the subset of samples that satisfy all elementary conditions of @,
[@]; = [®] N K be the positive cover of @ on K, and [@], = [®] N (U — K) be the negative cover of ® on K.
Then a rule, denoted by r, is described as

if @ then Dy, (23)

where @ is called the condition part of r, satisfying [®]; # I, and Dy is called the decision part of r. If Dy is a
single decision, r is called a certain rule. Otherwise, if Dy is a joint decision, r is called a possible rule.

Definition 19. r is discriminant if its condition part @ =c; A--- A¢; A -+ Acy 1S

(1) consistent: [@], = &;
(2) minimal: @ is no longer consistent if arbitrary elementary condition ¢; is removed from @.

Definition 20. A set of rules, denoted by R, is called a minimum set of rules if it describes generalized decision
Dy in the following ways:

(1) every rule r € R is discriminant;
(2) UrerlP] = K;
(3) there does not exist any rule r € R such that R — {r} satisfies conditions (1) and (2).

LEM2 algorithm has been widely used to extract a minimum set of rules from samples. In order to intro-
duce a priori knowledge about samples into LEM2 algorithm, we design a weighted rule extraction algorithm
as Algorithm 2.

Algorithm 2. Weighted rule extraction algorithm
Input: K € Y.
Output: Set R of rules.

1.  begin

2 G+— K, R—

3 while G # J do

4 begin

5. ¢ — I,

6 &g — {c[c]N G # DY

7 while (& = &) or (not([®] C K)) do

8 begin

9 select ¢ € g such that |[c] N G|y is maximum. if ties occur, select ¢ with the smallest |[c]| . if
further ties occur, select the first ¢ from the list;
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10. b — dU {c};

11. G—[c]NG;

12. &g — {c[e]lN G # T}

13. (DG<— ‘DG— (p,

14. end

15. for each ¢ € @ do

16. if [@ — {c}]C K then ® — & — {c};
17. create rule r based on @;

18. R+~ RU{r};

19. G — K — U,eg[r];

20. end

21. for each r € R do

22. if User_1[S]= K then R — R — {r};
23. end

6.3. Weighted rule evaluation and weighted decision

Pawlak introduced the factors of strength, certainty and cover to evaluate extracted rules [37]. However, the
factors can not be used to take into account a priori knowledge about samples. In this section, we propose
several weighted factors to evaluate extracted rules, and design a weighted decision algorithm to classify an
unseen sample.

Definition 21. Let WIS = (U,A=CU D, w,V, /) be a given weighted decision table, r be a decision rule
extracted from the weighted decision table, Dx = {di,...,d;,...,d,} be the decision part of r, [r] be the cover
of r, [Dx] be the cover of Dy, and [r]] = [r] N [d] be the positive cover of r on d, where d € Dg. Then the factor
of weighted strength of r is defined as

tae (1) = [l /1ULy (24)
the factor of weighted cover of r is defined as

o (r) = 1711/ 11Dkl (25)
and the factor of weighted certainty of r to d is defined as

Heer(r,d) = |13 L /117 - (26)

Extracted rules can be used to classify an unseen sample by matching the description of the sample to the con-
dition part of each rule. This may lead to three possible cases:

(1) the sample matches exactly one rule;
(2) the sample matches more than one rule;
(3) the sample does not match any of the rules.

In case (1), if the matched rule is a certain one, it is clear that the class of the sample can be predicted using
the decision of the matched rule. However, if the matched rule is a possible one, the classification is ambigu-
ous. Similar difficulties occur in case (2). Case (3) must be also handled.

We predict the class of the sample using the most frequent class of training samples if the sample does not
match any of the rules, and design a weighted decision algorithm as shown below to deal with the remaining
cases.

Definition 22. Suppose that the sample matches rules ry,...,r;,...,r,, and decisions dy,...,d,...,d, are
suggested. The factor of weighted strength of decision d; is defined as
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e (d)) = Zﬂgzr(r” d;) e, (1:)- (27)
ri

Based on the factor of weighted strength of a decision, a weighted decision algorithm can be designed to
classify the sample. The class of the sample can be predicted using decision d; that maximizes ulj.(d;).

7. Performance indexes in class imbalance learning

The most straightforward way to evaluate the performance of a classifier is based on the confusion matrix
analysis. Table 1 shows a confusion matrix for a two-class problem with positive and negative class values. In
our study, the minority class is defined as the positive class and the majority class is defined as the negative
class. From such a matrix it is possible to extract a number of widely used metrics to measure the performance

of a classifier, such as error rate, defined as Err = st and overall accuracy, defined as Acc =
TP+TN 1
e iNEs — | — EIT

However, the use of such measures may lead to misleading conclusions when the class distribution of a data
set is highly skewed. Overall accuracy and error rate are particularly suspicious performance measures because
they are strongly biased towards the majority class. For instance, it is straightforward to create a classifier with
an overall accuracy of 99% or an error rate of 1% in a domain where the proportion of the majority class cor-
responds to 99% of all samples, by simply predicting every new sample as belonging to the majority class.

Another fact against the use of overall accuracy and error rate is that these measures consider different clas-
sification errors to be equally important. However, highly imbalanced problems generally have highly non-
uniform error costs that often favor the minority class of primary interest. For instance, diagnosing a sick
patient as healthy may be a fatal error, while diagnosing a healthy patient as sick is usually considered a much
less serious error since this mistake can be corrected in future exams.

Finally, overall accuracy and error rate change as the class distribution of a data set changes even if the
fundamental performance of a classifier does not change, because these measures use values from both lines
of the confusion matrix.

It would be more interesting if we use a performance metric to disassociate the errors or hits that occur in
each class. It is possible to derive four performance metrics from Table 1 to measure the classification perfor-
mance on the positive and negative classes independently:

(1) True positive rate (minority class accuracy): TP, = TP/(TP + FN) is the percentage of positive sam-
ples correctly classified as belonging to the positive class;

(2) True negative rate (majority class accuracy): TN, = TN/(TN + FP) is the percentage of negative sam-
ples correctly classified as belonging to the negative class;

(3) False positive rate: FP,,.. = FP/(FP + TN) is the percentage of negative samples misclassified as belong-
ing to the positive class;

(4) False negative rate: FN, . = FN/(FN + TP) is the percentage of positive samples misclassified as
belonging to the negative class.

The four performance measures have the advantage of being independent of class costs and a priori prob-
abilities. The aim of a classifier is to minimize false positive and negative rates, or similarly to maximize true
negative and positive rates. Unfortunately, there is usually a tradeoff between FP,, and FN,,, or similarly
between TN, and TP,,... ROC (receiver operating characteristic) graphs can be used to analyze the relation-
ship between FP,, and FN,,, or similarly between TN, and TP, [12,43]. ROC graphs are consistent for

Table 1
Confusion matrix for a two-class problem

Positive prediction Negative prediction
Positive class True positive (TP) False negative (FN)

Negative class False positive (FP) True negative (TN)
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a given problem even if the distribution of positive and negative samples is highly skewed. The area under the
ROC curve (AUC) represents the expected performance as a single scalar. Furthermore, AUC has a known
statistical meaning: it is equivalent to the Wilconxon test of ranks, and is also equivalent to several other sta-
tistical measures for evaluating classification and ranking models [17].

In our study, we employ minority class accuracy, majority class accuracy, overall accuracy and AUC as the
performance indexes to evaluate the performance of a learning method in class imbalance learning. For a
multi-class problem, the minimum class accuracy is defined as the minority class accuracy, the maximum
class accuracy is defined as the majority class accuracy, and the AUC is computed using the method proposed
in [18].

8. Experimental evaluation

In order to evaluate the performance of the weighted rough set based method in class imbalance learning,
systematic comparative experiments are conducted in this section. The methods employed for the comparison
comprise eight rough set based methods, two decision tree based methods and six SVM based methods. All the
methods are described and configured as shown below:

(a) Eight rough set based methods (RS is the conventional method, and the others are the methods for class
imbalance learning).

(1) WRS: the weighted rough set based method. Algorithm 1 is employed to perform weighted attribute
reduction, Algorithm 2 is employed to perform weighted rule extraction, the weighted factors given
in Definition 21 are employed to evaluate extracted rules and the weighted decision algorithm based
on the weighted factors is employed to classify an unseen sample. An inverse class probability weight
is assigned to each sample for class imbalance learning. Suppose that there are ny,...,n,...,n; sam-
ples in decision classes Yi,...,7Y;..., Y, respectively. Then the inverse class probability weight of
each sample from decision class Y;is 1/n;.

(2) RS: Pawlak rough set based method. RS can be considered WRS with equal weighting. Instead of an
inverse class probability weight, an equal weight is assigned to each sample.

(3) WAR: WRS only with weighted attribute reduction. An inverse class probability weight is assigned
to each sample for weighted attribute reduction, while an equal weight is assigned to each sample for
weighted rule extraction and weighted decision.

(4) WRE: WRS only with weighted rule extraction and weighted decision. An inverse class probability
weight is assigned to each sample for weighted rule extraction and weighted decision, while an equal
weight is assigned to each sample for weighted attribute reduction.

(5) FILTER: the filtering method proposed by Stefanowski et al. [S0]. The inconsistent samples from the
majority class in boundary regions are relabeled as belonging to the minority class, and then RS is
used to perform learning and classification.

(6) OS: the random over-sampling method. The ith class is randomly over-sampled until the size of the
ith class is equal to the size of the maximum class, and then RS is used to perform learning and clas-
sification. The random over-sampling method is used because it is simple and is competitive with
other complicated over-sampling methods in performance [1].

(7) US: the random under-sampling method. The ith class is randomly under-sampled until the size of
the ith class is equal to the size of the minimum class, and then RS is used to perform learning
and classification.

(8) MS: the random middle-sampling method. The ith class is randomly over-sampled or under-sampled
until the size of the ith class is equal to the mean size of the maximum and minimum classes, and then
RS is used to perform learning and classification.

(b) Two decision tree based methods (C4.5 is the conventional method, and C4.5_CS is the method for class
imbalance learning).

(1) C4.5: C4.5 decision tree proposed by Quinlan [44].

(2) C4.5_CS: cost-sensitive (weighted) C4.5 decision tree proposed by Ting [52]. An inverse class prob-
ability weight is assigned to each sample for class imbalance learning.
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(c) Six SVM based methods (SVM_R1, SVM_R 100 and SVM_L100 are the conventional methods, and the

others are the methods for class imbalance learning).

(1) SVM_R1: SVM with Rbf kernel function and parameter C = 1.

(2) WSVM_R1: weighted SVM [5] with Rbf kernel function and parameter C = 1. An inverse class prob-
ability weight is assigned to each class for class imbalance learning.

(3) SVM_R100: SVM with Rbf kernel function and parameter C = 100.

(4) WSVM_R100: weighted SVM with Rbf kernel function and parameter C = 100. An inverse class
probability weight is assigned to each class for class imbalance learning.

(5) SVM_L100: SVM with linear kernel function and parameter C = 100.

(6) WSVM_L100: weighted SVM with linear kernel function and parameter C = 100. An inverse class
probability weight is assigned to each class for class imbalance learning.

Twenty UCI data sets [4], which consist of 10 two-class data sets and 10 multi-class data sets, are used in
our experiments. All the data sets are described in Table 2. It can be seen from Table 2 that the class distri-
bution of each data set is skewed. Concretely, the ratio of the majority class to the minority class in size ranges
from 1.25 to 3.84 for the two-class data sets, and the ratio of the maximum class to the minimum class in size
ranges from 1.48 to 85.5 for the multi-class data sets. Moreover, the size of the minimum class is below 10 for
most multi-class data sets.

The comparative experiments are performed using 10-fold cross validation. The missing values in each data
set are filled with mean values for continuous attributes and majority values for nominal attributes. Moreover,
all the continuous attributes are discretized using the recursive minimal entropy partitioning method proposed
by Fayyad and Irani [13,30] when a rough set based method is used.

The minority class accuracy, majority class accuracy, overall accuracy and AUC achieved by each method
on each data set are listed in Tables 3-10. It can be seen from the experimental results that almost all the meth-
ods for class imbalance learning improve minority class accuracy and AUC, and decrease majority class accu-
racy and overall accuracy compared to the conventional methods. Class imbalance learning aims at improving
minority class accuracy but not decreasing majority class accuracy too much. AUC can be used to analyze the
relationship between minority class accuracy and majority class accuracy. Therefore, we employ AUC as
the primary performance index and minority class accuracy as the secondary performance index to evaluate
the performance of each method in class imbalance learning.

Three strategies, i.e. weighting, re-sampling and filtering, are used in the rough set based methods for class
imbalance learning. Almost all the methods based on these strategies improve AUC and minority class accu-
racy compared to Pawlak rough set based method. This means that all the strategies are effective for class
imbalance learning. The detailed analysis of each strategy is given as shown below:

(1) The methods based on the strategy of weighting comprise WRS, WAR and WRE. In terms of AUC, WRS
has an average increase of 0.0332, WAR 0.011 and WRE 0.0191 compared to RS. In terms of minority
class accuracy, WRS has an average increase of 0.1376, WAR 0.0092 and WRE 0.0931 compared to RS.
It can be seen that WRS achieves the best performance. Moreover, WRE achieves better performance
than WAR, and this means that weighted rule extraction and weighted decision have greater influence
on the performance of the weighted rough set based method than weighted attribute reduction.

(2) The methods based on the strategy of re-sampling comprise OS, MS and US. In terms of AUC, OS
achieves the best performance and US achieves the worst performance, while in terms of minority class
accuracy, MS achieves the best performance and US achieves the worst performance. This may be
explained by the fact that US usually discards some potentially useful training samples, and so the per-
formance of a resulting classifier is usually degraded [1]. Moreover, compared to WRS, OS has an aver-
age decrease of 0.0222 in terms of AUC and MS has an average decrease of 0.0525 in terms of minority
class accuracy. This means that WRS is better than the re-sampling based methods.

(3) As the method based on the strategy of filtering, FILTER can not be used to remarkably improve AUC
and minority class accuracy compared to RS. This may be explained by the fact that FILTER introduces
a priori knowledge about samples into boundary regions rather than the whole set of samples, and so it
can only be used to improve learning from boundary regions.
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Among the rough set based methods for class imbalance learning, WRS achieves the best performance.
Moreover, among the three strategies for class imbalance learning, weighting is the best, and filtering is the
worst.

The decision tree based methods achieve satisfactory performance in class imbalance learning. Compared
to RS, C4.5 has an average increase of 0.0323 in terms of AUC and 0.0981 in terms of minority class accuracy.
By sample weighting, compared to C4.5, C4.5_CS has an average increase of 0.0055 in terms of AUC and
0.0086 in terms of minority class accuracy. It can be seen from the comparison between C4.5 and C4.5_CS

Table 2
Description of data sets (C: Continuous, N: Nominal)
Data set Size Attribute Class Class distribution

1 Echocardiogram 131 6C IN 2 43/88

2 Hepatitis 155 6C 13N 2 32/123

3 Heart_s 270 6C TN 2 120/150

4 Breast 286 9N 2 85/201

5 Horse 368 7C 15N 2 136/232

6 Votes 435 16N 2 168/267

7 Credit 690 6C 9N 2 307/383

8 Breast w 699 9C 2 241/458

9 Tic 958 9N 2 332/626
10 German 1000 24C 2 300/700
11 Zoo 101 16N 7 4/5/8/10/13/20/41
12 Lymphography 148 18N 4 2/4/61/81
13 Wine 178 13C 3 48/59/71
14 Machine 209 7C 8 2/4*2/7/13/27/31/121
15 Glass 214 9C 6 9/13/17/29/70/76
16 Audiology 226 69N 24 1°5/2*7/3/4*3/6/8/9/20/22*2/48/57
17 Heart 303 6C N 5 13/35/36/55/164
18 Solar 323 10N 3 7/29/287
19 Soybean 683 35N 19 8/14/15/16/20*9/44*2/88/91*2/92
20 Anneal 898 6C 32N 5 8/40/67/99/684
Table 3
Minority class accuracy achieved by rough set based methods
Data set RS WRS WAR WRE FILTER (O uUsS MS
Echocardiogram 0.2450 0.7350 0.6100 0.6900 0.2900 0.6150 0.2850 0.5900
Hepatitis 0.6333 0.8583 0.7917 0.6500 0.6333 0.6667 0.8500 0.7250
Heart_s 0.7333 0.7500 0.7583 0.7333 0.7333 0.7333 0.7500 0.7167
Breast 0.2222 0.3514 0.2333 0.3514 0.2681 0.4097 0.5639 0.4444
Horse 0.9484 0.9412 0.9341 0.9555 0.9484 0.9555 0.9637 0.9341
Votes 0.9761 0.9761 0.9761 0.9761 0.9761 0.9699 0.9515 0.9585
Credit 0.8173 0.8308 0.8046 0.8373 0.8109 0.8176 0.8148 0.8374
Breast w 0.8958 0.9292 0.9208 0.9167 0.8917 0.9250 0.9375 0.9417
Tic 0.7766 0.8250 0.7766 0.8250 0.7887 0.7715 0.8854 0.8127
German 0.0267 0.9067 0.1133 0.8100 0.0333 0.6067 0.4500 0.6933
Zoo 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000 0.7000
Lymphography 0.3333 0.7190 0.4024 0.3333 0.3333 0.7190 0.3476 0.7024
Wine 0.8650 0.9350 0.9350 0.8900 0.8650 0.9150 0.9150 0.9350
Machine 0.6000 0.8000 0.3000 0.7000 0.6000 0.5000 0.3000 0.4000
Glass 0.6000 0.7000 0.3000 0.6000 0.6000 0.6000 0.6000 0.5000
Audiology 0.7000 0.5000 0.7000 0.7000 0.8000 0.5000 0.3000 0.6000
Heart 0 0.3000 0 0.2000 0 0.1500 0.3000 0.2500
Solar 0.0333 0.1000 0.0333 0.1000 0.0333 0.1000 0.1000 0.0667
Soybean 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Anneal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Average 0.6053 0.7429 0.6145 0.6984 0.6153 0.6827 0.6507 0.6904
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Table 4

Minority class accuracy achieved by decision tree and SVM based methods

Data set C4.5 C45_CS SVM_R1 WSVM _R1 SVM_RI100 WSVM _R100 SVM_L100 WSVM _L100
Echocardiogram  0.5050  0.4600 0.0950 0.6700 0.2150 0.2150 0.4750 0.6900
Hepatitis 0.7583  0.6917 0 0 0 0 0.6583 0.5667
Heart_s 0.8267  0.8067 0.0083 1.0000 0.0250 0.0250 0.7917 0.8667

Breast 0.3167  0.5042 0.1556 0.5681 0.4333 0.4236 0.3653 0.5569

Horse 0.9264  0.9489 0.3176 0.3538 0.3907 0.3907 0.8747 0.8896

Votes 0.9765  0.9824 0.9882 0.9824 0.9393 0.9574 0.9699 0.9816

Credit 0.8435  0.8502 0.0424 0.9514 0.0652 0.0652 - -

Breast w 0.9458  0.9128 0.9875 0.9875 0.9917 0.9917 0.9625 0.9625

Tic 0.8915  0.9307 0.7196 0.7767 0.9880 0.9880 0.5357 0.6804
German 0.4833  0.5400 0.1467 0.1967 0.2967 0.2967 0.4900 0.6133

Zoo 0.7000  0.8000 0.6000 0.3000 0.8000 0.8000 0.7000 0.8000
Lymphography 0.7500  0.7857 0.8000 0.8000 0.9000 0.8000 1.0000 0.8000

Wine 0.9100  0.9500 0.0900 1.0000 0.1300 0.1300 0.9800 0.9600
Machine 0.6846  0.6929 0.8000 0.8000 0.8000 0.8000 - -

Glass 0.6000  0.7000 0.2000 0.1000 0.7000 0.7000 0.6000 0.7000
Audiology 0.8500  0.5500 0.8000 0.8000 0.8000 0.8000 0.8000 0.8000

Heart 0.1000 0 0 0 0 0 0.1000 0.4000

Solar 0 0.1333 0.3000 0.3000 0.3000 0.5000 0.3000 0.6000
Soybean 1.0000  1.0000 1.0000 0.2000 1.0000 1.0000 1.0000 1.0000

Anneal 1.0000  1.0000 0.7000 0.2000 0.7000 0.7000 - -

Average 0.7034  0.7120 0.4375 0.5493 0.5237 0.5292 0.6825 0.7569

Table 5

Majority class accuracy achieved by rough set based methods

Data set RS WRS WAR WRE FILTER (O uUsS MS
Echocardiogram 0.8639 0.6833 0.7958 0.6236 0.8639 0.6569 0.6194 0.6125
Hepatitis 0.9006 0.9340 0.9506 0.9006 0.9256 0.8865 0.8192 0.8596
Heart_s 0.8000 0.8200 0.8267 0.8200 0.8200 0.8000 0.8067 0.8000
Breast 0.8257 0.7810 0.8257 0.7810 0.8207 0.7860 0.6319 0.7314
Horse 0.9783 0.9783 0.9783 0.9783 0.9783 0.9696 0.9565 0.9739
Votes 0.9661 0.9624 0.9624 0.9624 0.9698 0.9625 0.9437 0.9624
Credit 0.8382 0.8330 0.8304 0.8225 0.8433 0.8174 0.8226 0.8096
Breast_w 0.9672 0.9650 0.9650 0.9672 0.9672 0.9629 0.9542 0.9453
Tic 0.9137 0.8962 0.9137 0.8962 0.9314 0.9042 0.8642 0.8882
German 0.9843 0.3043 0.9400 0.4686 0.9843 0.6500 0.2886 0.5343
Zoo 1.0000 0.9000 0.9750 1.0000 1.0000 0.8750 0.8000 0.8500
Lymphography 0.9028 0.8028 0.7903 0.8903 0.8903 0.7917 0.6069 0.7417
Wine 0.9714 0.9143 0.9429 0.9571 0.9714 0.9018 0.8714 0.8732
Machine 0.8263 0.7103 0.7936 0.6179 0.8263 0.7679 0.4250 0.6519
Glass 0.6679 0.6125 0.6857 0.6000 0.6679 0.6589 0.1714 0.5482
Audiology 0.9500 0.9133 0.9133 0.9500 0.9667 0.8633 0.1800 0.6933
Heart 0.8246 0.8118 0.8728 0.7324 0.8371 0.7504 0.5188 0.6713
Solar 0.9583 0.8192 0.9548 0.8225 0.9583 0.7628 0.4080 0.7494
Soybean 0.8289 0.7956 0.7956 0.8178 0.8411 0.8056 0.6311 0.8489
Anneal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Average 0.8984 0.8219 0.8856 0.8304 0.9032 0.8287 0.6660 0.7873

that a decision tree based method is not sensitive to the class distribution of a data set. Furthermore, com-
pared to WRS, C4.5_CS has an average increase of 0.0046 in terms of AUC and an average decrease of
0.0309 in terms of minority class accuracy. This means that C4.5_CS is just a litter better than WRS in terms
of AUC, while WRS is much better than C4.5_CS in terms of minority class accuracy.
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Table 6

Majority class accuracy achieved by decision tree and SVM based methods

Data set C4.5 C45_CS SVM_R1 WSVM _R1 SVM_RI100 WSVM _R100 SVM _LI100 WSVM _L100
Echocardiogram  0.7389  0.7069 0.9528 0.5569 0.8292 0.8292 0.8306 0.7611
Hepatitis 0.9109  0.8942 1.0000 1.0000 1.0000 1.0000 0.9346 0.9263
Heart_s 0.7167  0.6833 1.0000 0 1.0000 1.0000 0.8800 0.8000

Breast 0.8707  0.6914 0.9302 0.6667 0.7069 0.7114 0.8755 0.6960

Horse 0.9913  0.9870 0.9748 0.9707 0.9489 0.9489 0.9397 0.9141

Votes 0.9738  0.9738 0.9477 0.9440 0.9664 0.9664 0.9625 0.9662

Credit 0.8668  0.8695 0.9662 0.1596 0.9557 0.9557 - -

Breast w 0.9672  0.9606 0.9454 0.9454 0.9476 0.9476 0.9716 0.9716

Tic 0.9761  0.9488 0.9984 0.8994 1.0000 1.0000 0.8499 0.7045
German 0.8457  0.7743 0.9757 0.9429 0.8829 0.8829 0.8886 0.8143

Zoo 1.0000  1.0000 1.0000 0.7750 1.0000 1.0000 1.0000 1.0000
Lymphography 0.7750  0.8250 0.9264 0 0.8653 0.6667 0.8514 0.4444

Wine 0.9286  0.9429 1.0000 0 1.0000 1.0000 0.9286 0.9446
Machine 0.3500  0.4000 0.9750 1.0000 0.9750 0.9750 - -

Glass 0.6446  0.7000 0.7268 0.8196 0.6946 0.8982 0.6607 0.8821
Audiology 0.8300  0.5933 0.8833 0.1000 0.9667 0.2767 0.9833 0.5867

Heart 0.8434  0.7147 1.0000 0.2000 1.0000 1.0000 0.9018 0.8107

Solar 1.0000  0.7313 0.9964 0.6000 0.9583 0.6200 1.0000 0.5372
Soybean 0.9700  0.9600 0.9789 0.2356 0.9344 0.9233 0.9567 0.9233

Anneal 1.0000  1.0000 0.9971 1.0000 0.9971 0.9971 - -

Average 0.8600  0.8179 0.9588 0.5908 0.9314 0.8800 0.9068 0.8049

Table 7

Overall accuracy achieved by rough set based methods

Data set RS WRS WAR WRE FILTER (O usS MS
Echocardiogram 0.6566 0.7038 0.7335 0.6484 0.6714 0.6484 0.5077 0.6093
Hepatitis 0.8442 0.9163 0.9167 0.8504 0.8642 0.8383 0.8242 0.8313
Heart_s 0.7704 0.7889 0.7963 0.7815 0.7815 0.7704 0.7815 0.7630
Breast 0.6470 0.6538 0.6505 0.6538 0.6573 0.6749 0.6127 0.6472
Horse 0.9672 0.9645 0.9618 0.9699 0.9672 0.9645 0.9590 0.9592
Votes 0.9702 0.9679 0.9679 0.9679 0.9725 0.9656 0.9472 0.9610
Credit 0.8290 0.8319 0.8188 0.8290 0.8290 0.8174 0.8188 0.8217
Breast_w 0.9428 0.9528 0.9499 0.9499 0.9413 0.9499 0.9485 0.9441
Tic 0.8664 0.8717 0.8664 0.8717 0.8821 0.8581 0.8716 0.8623
German 0.6970 0.4850 0.6920 0.5710 0.6990 0.6370 0.3370 0.5820
Zoo 0.9300 0.9000 0.9300 0.9300 0.9300 0.8900 0.8209 0.8600
Lymphography 0.8110 0.7771 0.7433 0.8110 0.8043 0.7438 0.4824 0.7033
Wine 0.9317 0.9327 0.9382 0.9435 0.9317 0.9098 0.9157 0.9268
Machine 0.6598 0.6652 0.6505 0.6124 0.6743 0.6790 0.4645 0.6167
Glass 0.6905 0.6255 0.6074 0.6385 0.6905 0.6223 0.4143 0.6126
Audiology 0.7524 0.6377 0.6460 0.7700 0.7700 0.6067 0.1721 0.5834
Heart 0.5149 0.5576 0.5742 0.4783 0.5578 0.4851 0.3730 0.4585
Solar 0.8641 0.7494 0.8610 0.7495 0.8641 0.7027 0.3848 0.6874
Soybean 0.8317 0.8858 0.8800 0.8259 0.8361 0.8888 0.6676 0.8814
Anneal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9922 1.0000
Average 0.8088 0.7934 0.8092 0.7926 0.8162 0.7826 0.6648 0.7656

Among the SVM based methods, all the methods with Rbf kernel function, i.e. SVM_R1, WSVM_RI1,
SVM_R100 and WSVM_R100, have low values of AUC and minority class accuracy. Sample weighting
can not help a SVM based method with Rbf kernel function remarkably improve AUC and minority class
accuracy. A big value of parameter C is helpful for improving the performance of a SVM based method,



J. Liu et al. | Information Sciences 178 (2008) 1235-1256

1251

Table 8

Overall accuracy achieved by decision tree and SVM based methods

Data set C4.5 C45_CS SVM_R1 WSVM _R1 SVM_RI100 WSVM _R100 SVM_L100 WSVM _L100
Echocardiogram  0.6637  0.6258 0.6720 0.5962 0.6275 0.6275 0.7170 0.7401
Hepatitis 0.8775  0.8513 0.7937 0.7937 0.7937 0.7937 0.8779 0.8513
Heart_s 0.7778  0.7519 0.5593 0.4444 0.5667 0.5667 0.8407 0.8296

Breast 0.7067  0.6365 0.6995 0.6367 0.6261 0.6259 0.7241 0.6546

Horse 0.9673  0.9727 0.7311 0.7419 0.7419 0.7419 0.9155 0.9048

Votes 0.9749  0.9772 0.9634 0.9588 0.9563 0.9633 0.9656 0.9725

Credit 0.8565  0.8609 0.5551 0.5116 0.5594 0.5594 - -

Breast w 0.9599  0.9442 0.9600 0.9600 0.9628 0.9628 0.9685 0.9685

Tic 0.9468  0.9425 0.9019 0.8570 0.9958 0.9958 0.7412 0.6963
German 0.7370  0.7040 0.7270 0.7190 0.7070 0.7070 0.7690 0.7540

Zoo 0.9200  0.9600 0.9400 0.7418 0.9600 0.9600 0.9500 0.9600
Lymphography 0.7767  0.7833 0.7843 0.4124 0.8305 0.7505 0.8310 0.6343

Wine 0.9376  0.9487 0.4448 0.2693 0.4784 0.4784 0.9605 0.9546
Machine 0.6748  0.6840 0.6031 0.5790 0.6031 0.5936 - -

Glass 0.6680  0.7093 0.6675 0.4210 0.7000 0.5690 0.6636 0.4857
Audiology 0.7972  0.7879 0.5010 0.1684 0.8237 0.3721 0.8372 0.5854

Heart 0.5411  0.4945 0.5412 0.2056 0.5412 0.5412 0.5908 0.5476

Solar 0.8886  0.6872 0.8855 0.5699 0.8640 0.5973 0.8886 0.5172
Soybean 0.9326  0.9312 0.9400 0.1685 0.9355 0.9487 0.9458 0.9458

Anneal 1.0000  1.0000 0.9254 0.7617 0.9599 0.8619 - -

Average 0.8302  0.8127 0.7398 0.5758 0.7617 0.7108 0.8345 0.7648

Table 9

AUC achieved by rough set based methods

Data set RS WRS WAR WRE FILTER (0N Us MS
Echocardiogram 0.5544 0.7092 0.7029 0.6568 0.5769 0.6360 0.4522 0.6013
Hepatitis 0.7670 0.8962 0.8712 0.7753 0.7795 0.7766 0.8346 0.7923
Heart_s 0.7667 0.7850 0.7925 0.7767 0.7767 0.7667 0.7783 0.7583
Breast 0.5240 0.5662 0.5295 0.5662 0.5444 0.5978 0.5979 0.5879
Horse 0.9633 0.9597 0.9562 0.9669 0.9633 0.9625 0.9601 0.9540
Votes 0.9711 0.9692 0.9692 0.9692 0.9730 0.9662 0.9476 0.9604
Credit 0.8278 0.8319 0.8175 0.8299 0.8271 0.8175 0.8187 0.8235
Breast w 0.9315 0.9471 0.9429 0.9420 0.9295 0.9439 0.9459 0.9435
Tic 0.8452 0.8606 0.8452 0.8606 0.8600 0.8378 0.8748 0.8505
German 0.5055 0.6055 0.5267 0.6393 0.5088 0.6283 0.3693 0.6138
Zoo 0.9054 0.9135 0.9264 09112 0.9054 0.9110 0.8424 0.8821
Lymphography 0.7358 0.7984 0.7109 0.7208 0.7326 0.7699 0.5583 0.7470
Wine 0.9424 0.9498 0.9528 0.9535 0.9424 0.9334 0.9383 0.9479
Machine 0.6930 0.7650 0.6812 0.7341 0.7110 0.7059 0.6326 0.7129
Glass 0.7868 0.7801 0.7063 0.7824 0.7868 0.7261 0.7014 0.7543
Audiology 0.7829 0.7272 0.7259 0.7908 0.7939 0.7060 0.5523 0.7152
Heart 0.5422 0.6165 0.5760 0.5684 0.5773 0.5544 0.5513 0.5700
Solar 0.5479 0.5381 0.5470 0.5306 0.5479 0.5324 0.4520 0.5207
Soybean 0.9076 0.9447 0.9392 0.9079 0.9064 0.9469 0.8516 0.9400
Anneal 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9904 1.0000
Average 0.7750 0.8082 0.7860 0.7941 0.7821 0.7860 0.7325 0.7838

but can not enable a SVM based method with Rbf kernel function to achieve the performance better than RS
in class imbalance learning. It can therefore be concluded that the SVM based methods with Rbf kernel func-
tion are not suitable for class imbalance learning. However, our experiments indicate that the SVM based
methods with Linear kernel function are effective for class imbalance learning. Compared to RS, SVM_L100



1252 J. Liu et al. | Information Sciences 178 (2008) 1235-1256

Table 10

AUC achieved by decision tree and SVM based methods

Data set C4.5 C45_CS SVM_R1 WSVM _R1 SVM_RI100 WSVM _R100 SVM _LI100 WSVM _L100
Echocardiogram  0.6219  0.5835 0.5239 0.6135 0.5221 0.5221 0.6528 0.7256
Hepatitis 0.8346  0.7929 0.5000 0.5000 0.5000 0.5000 0.7965 0.7465
Heart_s 0.7717  0.7450 0.5042 0.5000 0.5125 0.5125 0.8358 0.8333
Breast 0.5937  0.5978 0.5429 0.6174 0.5701 0.5675 0.6204 0.6264
Horse 0.9588  0.9679 0.6462 0.6622 0.6698 0.6698 0.9072 0.9018
Votes 0.9751  0.9781 0.9680 0.9632 0.9529 0.9619 0.9662 0.9739
Credit 0.8552  0.8599 0.5043 0.5555 0.5104 0.5104 - -
Breast w 0.9565  0.9367 0.9665 0.9665 0.9696 0.9696 0.9670 0.9670
Tic 0.9338  0.9398 0.8590 0.8381 0.9940 0.9940 0.6928 0.6924
German 0.6645  0.6571 0.5612 0.5698 0.5898 0.5898 0.6893 0.7138
Zoo 0.9137  0.9600 0.9500 0.8396 0.9667 0.9667 0.9583 0.9667
Lymphography 0.7799  0.8100 0.8322 0.7333 0.8970 0.8611 0.9252 0.8407
Wine 09513 0.9607 0.5392 0.5000 0.5667 0.5667 0.9730 0.9678
Machine 0.6690 0.7128 0.6798 0.6643 0.6798 0.6762 - -
Glass 0.7895  0.8176 0.7129 0.5886 0.7897 0.7665 0.7570 0.6863
Audiology 0.8262  0.8315 0.8394 0.8107 0.9384 0.8765 0.9415 0.9100
Heart 0.5727  0.5587 0.5000 0.5062 0.5000 0.5000 0.5944 0.6192
Solar 0.5000  0.5667 0.5741 0.5750 0.5979 0.6425 0.5750 0.6176
Soybean 0.9780  0.9799 0.9713 0.5295 0.9800 0.9850 0.9822 0.9833
Anneal 1.0000  1.0000 0.8441 0.5250 0.8918 0.7807 - -
Average 0.8073  0.8128 0.7009 0.6529 0.7300 0.7210 0.8138 0.8102

has an average increase of 0.0388 in terms of AUC and 0.0772 in terms of minority class accuracy. By sample
weighting, compared to SVM_L100, WSVM_L100 has an average decrease of 0.0036 in terms of AUC and an
average increase of 0.0744 in terms of minority class accuracy. It can be seen from the comparison between
SVM_L100 and WSVM_1.100 that a SVM based method with Linear kernel function is not sensitive to the
class distribution of a data set in terms of AUC, but sample weighting can help it greatly improve minority
class accuracy. Furthermore, compared to WRS, WSVM_L100 has an average increase of 0.002 in terms
of AUC and 0.014 in terms of minority class accuracy. This means that WSVM_L100 is a little better than
WRS. However, the SVM based methods with Linear kernel function are quite time-consuming. In our exper-
iments, they can not generate experimental results on three data sets (i.e. credit, machine and anneal) in an
acceptable period of time.

It can be seen from these comparative experiments that in terms of AUC and minority class accuracy, the
weighted rough set based method is better than the re-sampling and filtering based methods, and is compara-
ble to the decision tree and SVM based methods. It can therefore be concluded that the weighted rough set
based method is effective for class imbalance learning. Furthermore, compared to a decision tree or SVM
based method, a rough set based method is much sensitive to the class distribution of a data set. When the
class distribution of a data set is highly skewed, it is necessary for a rough set based method to employ some
techniques for class imbalance learning.

In the experiments above, an inverse class probability weight is assigned to each sample for class imbalance
learning. In order to verify whether the inverse class probability weighting is the optimal solution to the class
imbalance problem, we conduct further experiments to analyze the influence of weights on the performance of
a learning method in class imbalance learning.

Definition 23. Suppose that n; and n, are the sizes of the minority and majority classes respectively, and w;
and w, are the weights of the minority and majority classes respectively. Then the probability weight function
of the minority class (the positive class) is defined as

ny X wy

PWF (+ (28)

n1XW1+1’12><W2.
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PWHF(+) increases as the weight of the minority class increases. When PWF(+) = 0.5, an inverse class prob-
ability weight is assigned to each class and the class distribution of a data set is completely balanced.

The experiments are conducted on 10 two-class data sets using the weighted rough set based method. By
changing weights w, and w, such that PWF(+) = {0.05,0.1,0.15,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.85,0.9,0.95},
we obtain the variation of performance indexes versus PWF(+) as shown in Fig. 1. It can be seen from
Fig. 1 that weights have significant influence on the performance of the weighted rough set based method
in class imbalance learning. On almost all the data sets, with the increase of PWF(+), minority class accuracy
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Fig. 1. Performance indexes versus PWF(+) on 10 two-class data sets. The vertical real line represents the case of a completely balanced
class distribution obtained using the inverse class probability weighting. The vertical dashed line represents the case of an original class
distribution. AUC is usually optimal or suboptimal in the case of a completely balanced class distribution, and this means that the inverse
class probability weighting is a simple and effective solution to the class imbalance problem.
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Fig. 1 (continued)

increases, majority class accuracy decreases, and overall accuracy and AUC first increase and then decrease.
AUC is usually optimal or suboptimal in the case of PWF(+)=0.5, and this means that the inverse class
probability weighting is a simple and effective solution to the class imbalance problem.

9. Conclusion

We introduce weights into Pawlak rough set model to balance the class distribution of a data set and
develop a weighted rough set based method to deal with the class imbalance problem. In order to estimate
the performance of the developed method, we compare the weighted rough set based method with several pop-
ular methods used for class imbalance learning by conducting experiments with twenty UCI data sets. Com-
parative studies indicate that in terms of AUC and minority class accuracy, the weighted rough set based
method is better than the re-sampling and filtering based methods, and is comparable to the decision tree
and SVM based methods. It is therefore concluded that the weighted rough set based method is effective
for class imbalance learning.

Furthermore, we also find from the experimental results that: (1) weighted rule extraction and weighted
decision have greater influence on the performance of the weighted rough set based method than weighted
attribute reduction, and this will guide us to improve the weighted rough set based method; (2) compared
to a decision tree or SVM based method, a rough set based method is much sensitive to the class distribution
of a data set, and so it is necessary for a rough set based method to employ some techniques for class imbal-
ance learning; (3) AUC is usually optimal or suboptimal in the case of a completely balanced class distribu-
tion, and so the inverse class probability weighting is a simple and effective solution to the class imbalance
problem.
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