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ABSTRACT
Selective sampling is a form of active learning which can re-
duce the cost of training by only drawing informative data
points into the training set. This selected training set is ex-
pected to contain more information for modeling compared
to random sampling, thus making modeling faster and more
accurate. We introduce a novel approach to selective sam-
pling, which is derived from the Estimation-Exploration Al-
gorithm (EEA). The EEA is a coevolutionary algorithm that
uses model disagreement to determine the significance of a
training datum, and evolves a set of models only on the
selected data. The algorithm in this paper trains a popu-
lation of Artificial Neural Networks (ANN) on the training
set, and uses their disagreement to seek new data for the
training set. A medical data set called the National Trauma
Data Bank (NTDB) is used to test the algorithm. Experi-
ments show that the algorithm outperforms the equivalent
algorithm using randomly-selected data and sampling evenly
from each class. Finally, the selected training data reveals
which features most affect outcome, allowing for both im-
proved modeling and understanding of the processes that
gave rise to the data.

Categories and Subject Descriptors
I.2.6 [Learning]: Knowledge acquisition

General Terms
Algorithms

Keywords
sampling, active learning, coevolution, EEA

1. INTRODUCTION
Each year 1.4 million Americans sustain traumatic brain

injury (TBI) [15]. While this leads to 50,000 deaths and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-130-9/08/07 ...$5.00.

235,000 hospitalizations, the outcomes are far from uniform.
Accurately predicting outcomes from head injury is a signif-
icant clinical challenge, and has implications that extend
from treatment decisions to family counseling [20]. Factors
reported to affect the prognosis in severe traumatic brain
injury are myriad and include, for example, Glasgow Coma
Scale (GCS) score, age, pupillary response and size, hypoxia,
hyperthermia, and high intracranial pressure [12].The com-
plex interactions of multiple variables contribute to the diffi-
culty in providing accurate prognosis early in TBI. Recently,
developments in data mining have made it possible to build
models from such large data sets with non-uniform outcome
distributions.

Classification is a technique for building prediction mod-
els from known data with both input and label information
[30][24]. In many real world applications, determining the
label for a given data point is sometimes expensive because
it requires human experts’ time. For a very large data set,
further difficulties arise because even when labels are easy
to obtain, it is sometimes infeasible to use all data points
for modeling. Choosing a small subset of data points for
labeling and then modeling therefore is of great interest.

Selective sampling is an active learning technique that se-
lects only the informative data points for labeling, and then
uses them for creating classification models. This technique
renders the modeling task faster and less expensive while
retaining accuracy. Many selective sampling methods have
been reported. Uncertainty sampling [16] chooses the data
points for which a classifier is least confident. Query by
committee [28] selects the data points that cause maximal
disagreement among a set of candidate models. [22] trains
different classifiers on different views (disjoint subsets of fea-
tures that can be used for learning), and uses disagreement
among classifiers to select data. [13] uses variation in la-
bel assignments (of unlabeled data) between the classifier
trained on the known training set and the classifiers train-
ing on the set with a single unlabeled object added with all
possible labels.

The target data set is a medical data set called the Na-
tional Trauma Data Bank (NTDB). NTDB is established by
the American College of Surgeons (ACS)1 as a public service
for the trauma care community. It is a very large (over 1
million data points) and highly unbalanced data set in terms
of mortality. The characterization of this data set has made
some previous selective sampling methods difficult to apply.
[22] requires multiple views for training purposes which re-

1Information and resources related to NTDB can be found
at http://www.facs.org/trauma/ntdb.html



quires information that is not available from NTDB. [13]
needs to scan the whole unlabeled data set once for each
chosen data point. For such a large data set as NTDB,
this is prohibitively time consuming. Uncertainty sampling
needs to scan the data set each time a new data point is
added to find the least confident data. It also requires a
legitimate confidence measure for the classifier, which is not
always easy to determine. Query by committee suggests an
interesting way to choose data points, but the method to
develop diversified yet accurate models and disagreement-
causing tests is left open. The estimation-exploration al-
gorithm[1] is a general algorithm that builds on query by
committee: it actively requests the data points it wants and
uses them for modeling. What distinguishes it from query
by committee is that an evolutionary algorithm is used to
optimize models, and another evolutionary algorithm is used
to evolve tests to induce model disagreement. It has proven
successful in evolutionary robotics [4], grammatical inference
[2] and nonlinear systems modeling [3].

In this paper, the EEA is applied to NTDB as a selective
sampling method, which is called informative sampling. The
algorithm works by evolving the set of candidate models and
candidate tests in an iterative manner. In each round of the
algorithm, a data point is chosen based on the disagreement
it causes within the current set of candidate models, and
is added to the training set. Then the candidate models
are trained on the updated training set. The coevolution of
these two components often accelerates modeling. Impor-
tantly, the algorithm models large data sets with only one
scan through the data set.

Many classification algorithms have been suggested such
as decision trees [24], artificial neural networks [30] and sup-
port vector machines [6]. While the majority of them make
the assumption that the training set is evenly distributed
among classes, this is rarely true in practice. As shown in
[11], unbalanced data sets often appear in real world prob-
lems. Informative sampling is designed to rapidly model
data sets regardless of their label distribution.

Feature selection is a well-studied[5][21][31] field in ma-
chine learning. Generally, features are ranked based on their
relative influence on outcome. A popular approach is to
compare the performance of a certain algorithm by supply-
ing only one feature at a time or steadily enlarging subsets of
features. Experiments here show that informative sampling
will seek data points with important features automatically
without requiring a separate feature selection process.

The following section introduces the general EEA algo-
rithm and the actual algorithm used in this paper. Section 3
first shows the comparative results between informative sam-
pling and competing algorithms, and then the data points
that have been chosen by informative sampling are studied.
Section 4 concludes the paper.

2. METHODS
In this section, the EEA is introduced, the random and

balanced sampling methods are described, and finally the
details of the informative sampling algorithm are given.

2.1 Estimation-Exploration Algorithm
The EEA is a coevolutionary algorithm with two stages:

the estimation phase and the exploration phase (see Table

Table 1: An outline of the general Estimation-
Exploration Algorithm

1 Initialization

1) Create an initial population of candidate models.

2) Create an initial population of candidate tests

(virtual data points).

2 Exploration Phase

1) Evolve candidate tests.

2) Fitness of a test is the level of disagreement it

causes among models.

2) Fitness of a model is its performance on current

training set.

3 Estimation Phase

1) Evolve candidate models on the current training

set.

3) Data point that causes the most disagreement is

added into training set.

4 Termination

Repeat steps 2 and 3 until the population of models

achieves satisfying performace.

1). Each of the two phases has an associated evolutionary
algorithm.

The algorithm starts by initializing a population of can-
didate models and a population of candidate tests. A pop-
ulation of candidate models and a population of candidate
tests are randomly generated.

The first pass of the exploration phase begins by supplying
the generated candidate tests to the candidate models. The
fitness of one data point is the degree of disagreement among
the predictions of the models. For a two-class problem, the
best possible data point will cause half of the models to
predict that it is in one class and the other half to predict it
is in another. After a pre-specified period of test evolution,
the fittest data point is added into the training set to be
used in the estimation phase.

In the estimation phase, the candidate models are then
evolved on the training set for a certain number of genera-
tions. In each generation, the models with lower fitness are
eliminated, and the models with higher fitness are copied
and mutated to fill the population. The fitness of a model
is its performance on the current training set.

After the completion of the first pass through the estima-
tion phase, the exploration phase is run again. A group of
randomly generated candidate tests is supplied to the cur-
rent candidate models, the tests are re-evolved, and the most
fit is added to the training set. The second pass through the
estimation phase will then evolve the current models on the
updated training set.

Each round of the EEA contains one exploration phase
and one estimation phase. The algorithm continues several



rounds until certain performance criteria have been satisfied.
The two phases of the EEA can be described as the inter-

actions between two components of the algorithm: the can-
didate models and the training set. The exploration phase is
the process of updating the training set based on the state
of the current candidate models. The estimation phase is
the process of evolving the candidate models against the
training set updated by the exploration phase.

2.2 Random Sampling
Random sampling, in which each data point has the same

probability to be chosen, is a popular choice for process-
ing large data sets. It has been widely used in many fields
[29][23][26]. In this paper, random sampling is compared
against informative sampling.

2.3 Balanced Sampling
Two common methods for processing the unbalanced train-

ing sets are over-sampling the minority classes[17] and down-
sizing the majority class[14], each of which aims to select the
same number of data points from each class. This approach
is referred to as balanced sampling in this paper. Studies [11]
have shown that balanced sampling can help improve the
classification performance on certain unbalanced data sets,
and it has been used in many applications [19][18]. Though
it is a widely accepted method, there is no hard evidence
that balanced sampling is the optimal approach. Balanced
sampling is here compared against random sampling and
informative sampling.

2.4 Informative Sampling
Classifiers used in this paper are artificial neural networks

(ANN). The ANN is a standard feed-forward neural network
with three layers (input, hidden, output). The input layer
has 16 nodes, the hidden layer is set to have 8 nodes and the
output layer has one binary node (1 for fatal, and 0 for non-
fatal patient outcome). An illustration of the structure of
the ANN is given in Figure 1. For each link between nodes,
there is a weight associated with it. For each node in the
input layer, its value is its corresponding feature value from
the current data point. For each node in the hidden layer,
its value is calculated as the sum of each weight linked to it
multiplied by the weight’s corresponding input node. The
resulting sum is passed through an activation function. For
each node in the output layer, its value is calculated like the
nodes in the hidden layer, only now the input values are the
values from the hidden nodes. The behavior of the ANN can
be summarized by the following function:

o = h(
∑

j

wjk × h(
∑

i

wij × fi + θj) + θk) (1)

where o is the value of a node in the output layer, i denotes
a node in the input layer, j denotes a node in the hidden
layer, k denotes the node in the output layer, wij is the
weight from node i to j, wjk is the weight from node j to
node k, fi is the value of the ith feature of an input data
point, θj is a constant called the bias of node j, θk is the
bias of node k, and h is the sigmoid activation function.
The value of the output node is a real value between 0 and
1. In this paper, when o <= 0.5, the output of the ANN
is set to 0; otherwise, the output is 1. In this paper, an
evolutionary algorithm(EA) is used to train the ANN. [32]
showed that the combination of ANNs and EAs can lead to

Table 2: An outline of the informative sampling al-
gorithm

1 Initialization

Randomly create a population of ANNs.

2 Exploration Phase

1) Pass a portion of the data set in as candidate

tests.

2) Fitness of a test is the level of disagreement it

causes among models.

3) Data point that causes the most disagreement is

added into training set.

3 Estimation Phase

1) Apply mutation operator onto each candidate

models, an old model is replaced if its child has

a better fitness.

2) Fitness of a model is its performance on current

training set.

4 Termination

Repeat steps 2 and 3 until the population of models

achieves satisfying performace.

Figure 1: The illustration of the neural network.

better intelligent systems than any of them alone.
The algorithm starts by creating a population of 30 ANNs.

The weights of the neural networks are randomly selected
real numbers between -1 and 1. The data set is divided into
subsets of size p.

The exploration phase is run before the estimation phase
at the outset of the algorithm. The first data point to the
pth data point are supplied to the current set of candidate
models (the random 30 ANNs) sequentially. The predictions
of the 30 models on one data point are recorded, and the



difference between the number of non-fatal predictions and
fatal predictions is then calculated for that point. The data
point with the lowest such value is chosen and added into
the training set with its corresponding label.

The exploration phase is followed by the estimation phase.
At the outset of the first pass through the estimation phase,
the random ANNs are trained on the single training datum
using:

fitness =
cnf

tnf
× cf

tf
(2)

where cnf is the number of correct predictions of non-fatal
patients, tnf is the total number of non-fatal patients, cf is
the number of correct predictions of fatal patients, and tf

is the total number of fatal patients. The training is done
by applying a mutation operator on each ANN. The fitness
of the parent ANN and the child ANN is calculated. If the
child ANN is better, the parent model is replaced with it.
Otherwise, the parent is retained. One generation is evolved
each time the estimation phase is run. This process instan-
tiates a parallel hill climbing algorithm[25]. The mutation
operator takes a random weight of the ANN and changes it
to a random real value between -1 and 1. The fitness func-
tion is suggested specifically for highly unbalanced data sets.
A simple fitness function would mislead the models to only
output the majority label, regardless of the input. The fit-
ness function used here shapes the ANNs to produce correct
predictions on data from both the majority and minority
classes.

The algorithm then returns to the exploration phase. This
time, the (p + 1)th data point to the 2pth data point are
supplied to the models that were evolved in the estimation
phase. One data point is selected based on model disagree-
ment and added into the training set (which now contains
two data points). The estimation phase is run again af-
ter the exploration phase on the updated training set. One
round of the algorithm consists of a single run of the ex-
ploration phase followed by a single run of the estimation
phase. The algorithm executes several rounds until certain
preset criteria are met.

Several changes are made to the general EEA in order to
apply it as a selective sampling method for unbalanced data
sets. In previous applications [4][2][3], virtual data points
are created as candidate tests. This is legitimate for systems
for which training data can be generated on the fly, but not
for existing data sets. The solution to this is to use a portion
of the data set without their labels as candidate tests.

Table 2 is an outline of the informative sampling algo-
rithm.

3. RESULTS
The informative sampling algorithm was compared against

random sampling and balanced sampling. Two sets of com-
parisons are done: the performance comparison between
the informative sampling and the other two sampling al-
gorithms, and a comparison between training data selected
by informative sampling and random sampling.

3.1 Characterization of the Data Set
As of January 2007, NTDB has over 1 million records.

Each record corresponds to an individual patient. Records
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Figure 2: The number of misclassifications compar-
ison among the three algorithms on the unfiltered
data set. Error bars indicate two units of standard
deviation.
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Figure 3: The number of misclassifications compari-
son among the three algorithms on the filtered data
set.

with missing data are removed from consideration. The re-
maining records may serve as training or testing data.

In this paper, classes correspond to discharge status (dis-
status). There are two possible classes: fatal(0) or non-
fatal(1). The features used are: f1 = age, f2 = gender, f3
= Glasgow Eye Component in ED(edeye), f4 = Glasgow
Verbal Component in ED (edverbal), f5 = Glasgow Verbal
Component in ED (edmotor), f6 = Glasgow Coma Scale
Total in ED (edgcstotal), f7 = blood pressure (fsbp), f8 =
Injury Severity Score (iss), f9 = Revised Trauma Score in
ED (edrts), f10 = TRISS Survival Probability (probofsurf),
f11 = Recalculated edrts by ACS (acs edrts), f12 = Re-
calculated probofsurf by ACS (acs ps), f13 = Glasgow Eye
Component at the Scene (sceneeye), f14 = Glasgow Verbal
Component at Scene (scenevrb), f15 = Glasgow Motor Com-
ponent at the Scene (scenemotor) and f16 = Glasgow Coma
Scale Total at the Scene (scenegcsto). Each of the features
is normalized to a real number between 0 and 1 by divid-



Table 3: The range of features.

Feature Input Range
age 0-99
gender Male or Female
edeye 1-4(integer)
edverbal 1-5(integer)
edmotor 1-6(integer)
edgcstotal 1-15(integer)
fsbp 0-300(integer)
iss 0-75(integer)
edrts 0-8(real)
probofsurf 0-1(real)
acs edrts 0-8(real)
acs ps 0-1(real)
sceneeye 1-4(integer)
scenevrb 1-5(integer)
scenemotor 1-6(integer)
scenegcsto 1-15(integer)

ing each value by the maximum value for that feature found
in the data set. Table 3 outlines the actual range of each
feature.

Experiments are conducted on both the whole NTDB (un-
filtered) and the NTDB filtered by “headct = positive” (fil-
tered). The unfiltered data set contains all patients that
had trauma, while the filtered data set only contains those
patients who suffered head trauma. NTDB is highly unbal-
anced in terms of discharge status. For the unfiltered data
set, the fatal to non-fatal ratio is about 1:20, and the ratio
for the filtered data set is about 1:6.

3.2 Performance Comparison
In order to fairly compare random and balanced sampling

with informative sampling, all three algorithms are executed
in the same manner, with the exception of the exploration
phase. For random sampling, in the exploration phase, in-
stead of choosing the data point causing the most disagree-
ment, a data point is chosen randomly out of the p data
points currently being considered. For balanced sampling,
in the exploration phase, data points with fatal and non-fatal
outcomes are randomly selected alternatively in each round,
which ensures that data points are evenly distributed.

The rest of the settings of the three algorithms remain
the same. 30 ANNs are used as the model set. 2000 data
points are randomly selected from both the unfiltered and
filtered data set as the testing sets. All algorithms run for
600 rounds. Each round consists of one estimation phase
and one exploration phase. In each pass through estimation
phase, mutation is done once. In each exploration phase,
for the unfiltered data set, p = 100 data points are fed in
sequentially, and 1 is chosen into the training set, for the fil-
tered data set, p = 30 data points are supplied sequentially,
and 1 is chosen.

Figure 2 reports the performance comparison of the three
algorithms in terms of misclassifications on the testing set
using the unfiltered data set. Each algorithm is run 30
times independently. It is shown that informative sampling
has a mean of 100.4 misclassifications out of 2000 testing
data points, compared to random sampling with a mean of
250.9 misclassifications and balanced sampling with a mean
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Figure 4: The chosen points comparison of the in-
formative sampling and the random sampling on the
unfiltered set. The detailed feature information can
be found in section 3.1.

of 289.3 misclassifications. As can be seen, informative sam-
pling achieves a marginally smaller standard deviation com-
pared to random and balanced sampling. In this particular
case, random sampling performs slightly better than sam-
pling evenly from each class. This indicates that selecting
equal numbers of data points from each class does not always
confer an advantage.

In Figure 3, each algorithm is run 30 times on the filtered
data set, which shows a similar pattern to the unfiltered case.
Informative sampling has a mean of 233.6 misclassifications,
random sampling has a mean of 407.5 misclassifications, and
unbalanced sampling has a mean of 447.2 misclassifications.
For standard deviation, informative sampling and random
sampling are similar, while balanced sampling is noticeably
worse due to its larger error bar. Random sampling per-
forms slightly better than balanced sampling in terms of
both mean and standard deviation.

3.3 Training Data Comparison
In the previous section, experiments show that informa-

tive sampling achieves a better performance in terms of mis-
classifications on the same amount of training data using the
same training method. This indicates that informative sam-
pling obtains a different set of data points for improving
classification. In this section, comparison is done between
the set of points chosen by informative sampling and random
sampling. The chosen points are taken from the experiments
described in the previous section on the unfiltered data set
using 16 features. There are a total of 30 independent runs.
In each run, 600 data points are chosen, giving a total of
18000 data points. The values of the data points are nor-
malized into real numbers between 0 and 1.

Figure 4 reports the means and standard deviations of the
values of the chosen points. It is shown that the two algo-
rithms focus on different data points. For “age”, there is no
difference. For “gender”, there is no significant difference.
For “edeye, edverbal, edmotor, edgcstotal, edrts, probof-
surf, acs edrts, acs ps, sceneeye, scenevrb, scenemotor and
scenegcsto”, informative sampling selects patients with sig-



0

200

400

600

800

1000

1200
nu

m
be

r 
of

 m
is

cl
as

si
fic

at
io

n

f1      f2      f3      f4      f5      f6      f7      f8     f9      f10     f11   f12    f13    f14    f15   f16
 

 

random

Figure 5: The performance comparison on the ran-
dom sampling algorithm among individual features.
The detailed feature information can be found in
section 3.1.

nificant lower values than random sampling. For “fsbp”, in-
formative sampling selects patients with lower blood pres-
sures. For “iss”, informative sampling selects patients with
lower severity scores. Note that the data points chosen by
the random sampling method have a similar distribution to
the entire data set.

Feature selection was then performed on the data set.
Each of the 16 features used is provided to the random sam-
pling algorithm as the only input for 30 independent runs.
This approach serves as the independent validation for the
importance of each feature.

Figure 5 reports the mean performance of random sam-
pling using each of the 16 features only. Again, the perfor-
mance is the number of misclassifications of the best model
of each round. It is shown that “age” is the least informa-
tive feature with 823.1 mean misclassifications; “gender” is
only marginally better than “age”. All other features are
relatively informative, among which “edeye” ,“edmotor” and
“edrts” are the most informative.

In Figure 4, informative sampling was shown to select data
points that have significantly different values from those se-
lected by the random sampling algorithm on all features
except “age” and “gender”. According to Figure 5, the fea-
tures that informative sampling selects are exactly the fea-
tures that are informative. Those features were identified
automatically by informative sampling, without requiring
an additional feature selection process. Therefore while se-
lecting the informative data points, informative sampling is
also performing feature selection.

4. CONCLUSIONS AND FUTURE WORK
In this paper, a modified version of the EEA is applied to

a large unbalanced medical data set as a selective sampling
algorithm, which is referred to as informative sampling. The
algorithm uses a set of artificial neural networks as candi-
date models, and unlabeled samples from the data set as
candidate tests. Through the interaction of these two com-
ponents, the algorithm selects data points that cause the
most disagreement among models. The algorithm is appli-

cable to large data sets because it only needs one scan on
the whole data set, yet training is carried out only on the
chosen training set. Experiments show that the algorithm
outperforms the random sampling and balanced sampling,
which is a widely used method when dealing with unbal-
anced data sets. Evidence is shown that the algorithm can
automatically select data points with important feature val-
ues without requiring a dedicated feature selection process.

ANNs have shown significant promise in modeling out-
comes in different types of cancer [10][27], gastrointestinal
bleeding [7], and multi-system trauma [8]. The use of ANNs
to predict outcome of head trauma was limited to a single
model, with a small sample size [9]. This paper has sug-
gested an approach for modeling on a large trauma data
set. Although the informative sampling algorithm in this
paper uses ANNs as the classification technique, it is a gen-
eral algorithm that can work with any classifier.

Future prospects of this work will include extending the al-
gorithm by making it determine algorithm parameters (such
as the structure of the neural network) automatically, gener-
alizing this algorithm by letting it work with other classifiers
and applying the algorithm to various other real world data
sets. In addition, because informative sampling takes por-
tions of the data set in for processing in a sequential manner,
it will also be applied to streaming data.
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