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Abstract

Many of standard classification algorithms usually as-
sume that the training examples are evenly distributed
among different classes. However, unbalanced data sets of-
ten appear in many applications. As a simple, effective cat-
egorization method, kN N is widely used, but it suffers from
biased data sets, too. In developing the Prototype of Inter-
net Information Security for Shanghai Council of Informa-
tion and Security, we detect that when training data set is bi-
ased, almost all test documents of some rare categories are
classified into common ones. To alleviate such a misfortune,
we propose a novel concept, critical point (C'P), and adapt
traditional kN N by integrating C P's approximate value,
LB or UB, training number with decision rules. Exhaus-
tive experiments illustrate that the adapted kN N achieves
significant classification performance improvement on bi-
ased corpora.

1 Introduction

With the rapid growth of Internet, more and more on-
line documents become available. Text categorization is one
of the key techniques aiming at organizing and processing
this huge collection. In the past, many machine-learning
techniques were applied to text categorization, including the
Rocchio approach, decision trees, the naive Bayes method,
neural networks, k-nearest neighbors (kN N), support vec-
tor machines, boosting [5, 6].

As a simple and efficient approach to text categorization,
kNN is widely used and obtains a better result [1, 9, 11].
The idea behind the kNN algorithm is quite straightfor-
ward. To classify a new document, the system finds the k-
nearest neighbors among the training documents and uses
the categories of the k-nearest neighbors to label the new
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document. Its performance depends greatly on two factors,
i.e., a suitable similarity function and an appropriate value
for parameter k.

Biased or skewed distribution of data set is one of chal-
lenges in text categorization [6]. It often leads to lower per-
formance [3, 4, 7, 10]. The main strategies to deal with this
problem include feature optimizations [2], modification of
traditional ones [3], and re-sampling [4], etc.

However, re-sampling usually removes training docu-
ments in larger categories, thus may lose some important
information and always sacrifices the classification perfor-
mance in some cases [7]. WAKNN proposed by [2], in
essence, is a method of feature optimization, and it has bet-
ter classification results than many other classifiers, but it
has a high computational cost.

We attempt to define decision functions according to
the number of training samples and solve the problem of
large classes overwhelming small classes. Experiments in-
dicate, when training samples keep unchanged, Macro-F1
and Micro-Recall of categorization rise dramatically.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews traditional kNN categorization and its de-
fects. Section 3 explains C'P-based kNN categorization.
Section 4 reports the test results using this method. Section
5 concludes the findings.

2 Traditional kN N Categorization

Assume that n-dimensional vector X = (x1,x2, ..., Ty)
represents a document, C; = (X}, X3,...,X}) repre-
sents a category (also known as class) containing ¢ docu-
ments. Given a training set D consisting of m categories,
C1,Cs,...,Cp,, and a new arriving document X, kNN
classifier will compute the similarity of each document in
document set D to X and search the k neighbors nearest to
X based on similarity. If there are k; documents belonging
to category C;, define 2 decision functions as follows:
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Function 1. Assume f;(X)

J(X) = argmax(£,(X)).j = Liwm (D
then X is classified into Cj, i.e., X € C;. We label the
algorithm formulated by Function (1) as Tradl.

Function 2. Assume

gi(X)=> sim(X,X])i=1,..,m
=1

g(X) =arg m;\X(gj(X)),j

1... 2)

,m

then X is classified into Cj, ie., X € C}, where
sim(X, X}) is similarity between X and training sample
X lZ The algorithm described by Function (2) is labeled as
Trad2.

However these two functions neglect distribution of
training samples. The distribution of documents among dif-
ferent classes in a training set are usually not even, so the
classifier may be biased towards larger classes (also called
common classes). For example, when using the algorithm
indicated by Function (2), many tiny similarity values will
accumulate to a relatively larger one, which may, improp-
erly, make a final decision favoring a larger class. The re-
sult is that a number of test samples in smaller classes (also
known as rare classes) are classified into larger ones mis-
takenly, thus make system performance deteriorated.

3 (CP-based kNN Categorization

In our project concerning Internet documents classifi-
cation, we find almost all documents in smaller categories
are classified into larger ones by traditional decision
functions. To overcome this defect, we redefine decision
functions by integrating the number of training documents
in each category into them. Suppose that the smallest
class has minTrainNum samples, the largest one has
mazT'rain Num samples.We shall use notations below:

SF  Shrink factor

CP Critical point

LB  Lower approximation of C'P

UB Upper approximation of C'P

N;  Size of Category j in the Training Set
Nji  Nji= (Nj)Ysli j=1,---,m

x; x; = (MinTrainNum)/*fi

Yi yi = (MaxTrainNum)'/ s

i Meanof Nj; ,j=1,---,m

o; Standard deviation of N;; ,j =1,---,m
A Ai = g—,z #0
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Function 3.

k; (minTrainNum)'/s/
()T k

f'(X) = argmax|
J
3)
where j = 1,...,m, then X is classified into C;, X € Cj.

Function 4. Assume

gi(X) =3 sim(X,X}),i=1,..
=1

9;(X) " (minTrainNum)'/*f
(Nj)M/s1 k

,m

¢ (X) = argmax|
J
4)

where j = 1, ..., m, then X is classified into C;, X € Cj.

Function 3, 4 are modifications of Function 1, 2 respec-
tively. For convenience, we label the algorithm represented
by Function (4) as SF' = sf;, where sf; is the value of sf.
For example, if sf takes 2.0, we denote it by SF = 2.0.
The cosine value of two vectors is used to measure the simi-
larity between the two documents, although other similarity
measures are possible.

Perhaps due to relatively simple of exponential func-
tions, our decision functions happen to have the similar
components as [7]. But we focus on to find an optimal ex-
ponent according to the distribution of training data set. To
distinct from [7], we shall call an exponent as a shrink fac-
tor below. From Function 3 or Function 4, we can infer,

e when sf is smaller, decision functions tend to favor
smaller classes;

e when sf is larger, decision functions tend to prefer
larger classes;

e when sf — oo, decision functions degenerate to tradi-
tional ones.

We conjecture there must be a definite value of s f that bal-
ance larger classes and smaller classes and have the opti-
mal discriminative power. We call this value of sf as criti-
cal point. Because standard deviation of a data set reflects
its distribution, we shall use it to find C'P. For an unbal-
anced data set, when N;; = N;, x; is smaller than o;.
But when exponent operation is exerted on each N}, that is,
Nj; = (Nj)l/sfi,sfi > 1, at a definite sf;, x; will equal
to o;. We can empirically prove this sf; is the CP to be
found. Though there must be such a sf; satisfied z; = o,
it is hard to calculate it precisely. We can use a secondary
optimal value to replace it. Let’s see what happens when
x;=0;. Two special cases:

(1)Except y;, all other Nj; have the same values as z;, i.e.,
there are m — 1 x;s and one y;. In this case,



m—1) X z; +y; m—1+4+X\)z;
PNUE TS LR
m m
_ )2 )2
012\/(m 1) X (w — pi)?® + (yi — i) — 2 (6
m—1
Hence,
Ai=1+m/V2=140.707m (7)

(2)Except z;, all other IV;; have the same values as y;,
i.e., there are m — 1 ygs and one x;.

(m—1)xy; +x;  [Ni(m—1)4 1]z,

i = = )
m m
1 )2 )2
m—1
Hence,

m?2 0.707m
=1 — =14 — 10
=l oy S e (0

In practice, rarely happen these 2 situations. But we can
estimate \; by Function 7 and Function 10 when z;=0;.
That is,

0.70Tm
14+ ———= <\ <140.707 11
Vm—1" m an
Starting from (g—‘;)l/sfo — Mo, where \g = 1+ %’

0 MazTrainNum, xg MinTrainNum, we
can compute the approximate value of C'P from s f, more
quickly. Because Ag is the lower boundary of \;, value of
s fo may larger than C'P and we begin by decreasing s f.
The evaluation process is shown in Algorithm 1. When clas-
sification, we can choose one of approximate values of C'P
as shrink factor, i.e., UB or LB.

Algorithm 1: Calculate C P
INPUT m,N;(j=1,---,m)
OUTPUT CP,LB,UB

I: Ao = 14 &100m

2: yo =arg max (Nj),zo=arg min (Nj)
j=1,---,m j=1,--,m

3: if Ao > yo/xo then

4: LB=UB=CP =1 {Dataiseven}

5: return

6: end if

7. sfo =logx, (yo/%0) » sfi = floor(sfo * 10)/10.0

8: repeat

9: xT; = (xo)l/sfi
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for j = 1tomdo
Nji = (N;)/sti
end for
/+Calculating standard deviation of (N1, ...
0; = stdev(Nj1,. .., Njm)
sfi=sfi —0.5
until z; < o;
:sfi=sfi+0.5
. while z; < o; do
sfi=sfi +0.1, z; = (zo)'/5Fi
for j = 1tomdo
Nj; = (Nj)l/sfi
end for
o; = stdev(Nj1,. ..
end while
: CP =sf;, LB= floor(CP+0.5)
. if floor(CP) # LB then
LB=LB—-0.5
. end if
: UB=LB+0.5
: return

ijm)

Experiments and Evaluations
4.1 Datasets

To verify the validity of our decision functions, we test
on 2 Chinese DataSets. Both are compiled by our re-
search group and are collections of news and papers. News
is mainly downloaded from http://www.sina.com.cn and
http://www.chinadaily.com.cn, and papers mainly come
from http://www.edu.cnki.net. DataSet! is composed of
13796 documents. As can be seen in Table 1, C34-
Economy takes 18.1% of training set while C29-Transport,
only takes 0.8%. The ratio of maximum samples and mini-
mum samples is 21.8, thus distribution of DataSet1 is very
skewed. DataSet2 consists of 2420 documents; the ratio of
maximum samples and minimum samples is 10.375.

Besides, Reuter and TDT2 employed by [7] can be used
directly to prove our methods.

4.2 Evaluation Measures

The category assignments of a binary classifier can be
evaluated using a contingency table (Table 2) for each cate-

gory. .
Table 2. A contingency table

Yes is correct | No is correct
Assigned Yes a b
Assigned No c d

Conventional performance measures are defined and com-
puted from these contingency tables. These measures are
recall (r ), precision (p), fallout ( f ), accuracy (Acc), error
(Err) and F1:

e r=a/(a+c),if a+ c > 0, otherwise undefined;

e p=a/(a+b),ifa+ b> 0, otherwise undefined;

o f=0b/(b+d),if b+ d > 0, otherwise undefined;



Table 1. Statistical Information of Training samples in DataSet1 and DataSet2

DataSet1

Name of Class No. of samples | Percentage || Name of Class No. of samples | Percentage
C3-Art 530 5.8 C5-Education 669 7.3
C7-History 622 6.8 C11-Space 502 5.5
C19-Computer 1070 11.6 || C29-Transport 76 0.8
C31-Environment 784 8.5 C32-Agriculture 988 10.7
C34-Economy 1663 18.1 C37-Military 99 1.1
C38-Politics 1329 14.4 || C39-Sports 866 9.4
DataSet2

ART 103 6.381 SPACE 80 4.956
C15-ENERGY 41 2.54 || COMPUTER 40 2.478
MINE 40 2.478 || TRANSPORT 77 4.77
ENVIRONMENT 69 4275 || AGRICULTURE 58 3.593
MEDICAL 69 4.275 || ECONOMY 151 9.355
EDUCATION 72 4.46 || MILITARY 104 6.443
POLITICS 415 25.712 || SPORTS 234 14.498
HISTORY 61 3.779

e Acc= (a+d)/n,wheren=a+b+c+d>0;
e Err=(b+c)/n,wheren =a+b+c+d>0;
o F1=2rp/(r+p);

Macro-averaging and micro-averaging are two meth-
ods for evaluating performance average across categories.
Micro-average is considered a per-document average while
macro-average is a per-category average [9]. Assume there
are C' categories, then

e Macro— F1 = (ZCEC F1.)/|C|
e Macro — Recall = (ZCGC re)/|C|

e Macro — Precision = (ZCGC pe)/|C|
e Micro — Recall = (ZCEC a)/(ZcEC a+ Z(;EC c)

4.3 Experimental Results

We only perform experiments on DataSetl and
DataSet2. As to Reuter and TDT?2, we cite results of [7]
directly. To compare with [7], we choose 10,000 features
and use Information Gain as feature selection. We split each
dataset into three approximately equal parts, then use two
parts for training and the remaining third for test. We con-
duct the training-test procedure three times and use the av-
erage of the three performances as final result. This is so-
called three-fold cross validation. We test at discrete points
k = 5,...,100 respectively. Note that we use the mean of
20 test points as comparison values. Because Function 3
vs. Function 1 has the similar conclusions as Function 4 vs.
Function 2, we only provide the experimental results of the
latter. Using Algorithm 1, we can obtain the CP, LB, UB
of the 4 DataSets respectively, as listed in Table 3.

4.3.1 Macro-Recall

Form Figure 1, we can reach the same conclusion as [7] that
the larger the shrink factor, the lower the Macro-Recall on
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Table 3. Parameters of the 4 DataSets
CP LB UB

Name of DataSet
DataSet1 2.1 2.0 2.5
DataSet2 1.5 1.5 2.0
Reuter 3.7 3.5 4.0
TDT2 3.7 3.5 4.0
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Figure 1. Macro-Recall on DataSet2

DataSet2. Macro-Recall on DataSetl has the similar con-
clusion, for page limitations, we omit it.

Performances of rare categories are accordance with
Macro-Recall, we omit those figures. That recall of smaller
categories achieve best results when sf = 1.0 justifies our
suggestion that the smaller is s f, the more kNN classifier
favors rare categories.

4.3.2 Precision

In most cases, precisions have the same conclusions as
[7],that is, the larger the shrink factor, the higher the Macro-
Precision, and Macro-Precision reaches the peak when
kNN classifier works with traditional decision function.
On DataSet2, Macro-Precision complies to this rule com-
pletely. But the rule doesn’t fit DataSet1 well.
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Figure 3. Macro-Precision on DataSet1

As indicated in Figure 2, when kN N classifier runs with
traditional decision function on DataSetl, its precision fluc-
tuates fiercely: at some k’s, it reaches the peak of 100%, and
at some k’s, it hits a low of 0. The fluctuation of precision of
rare categories, in reverse, will affect the Macro-Precision,
as shown in Figure 3. Therefore, when rare categories ex-
ists, precision will not be an appropriate measure.

4.3.3 F1 Measure

As can be seen from Figure 4, when sf = 2.0, F1 reaches
a peak of 78.662%. At the same time, Trad2 hits a low
of 72.463%. That is, sf = 2.0 beats Trad2 by 6.2% on
DataSetl. Note that 2.0 is the value of LB of DataSetl.
The performance remain stable when 15 < £ < 30.

Again, F1 of Trad2 declines to 68.716%, which is the
worst score on DataSet2. When sf = 1.5, F1 obtains its
best score on DataSet2, 76.476%, about 7.8% higher than
Trad2. Note that 1.5 is the value of LB of DataSet2. When
k > 20, F1 scores drop sharply.

According to [7], when exponent takes 4.0, their algo-
rithm NW K NN achieves the best results on Reuter and
TDT2 and beats KNN by 10% on TDT2. Again 4.0 is just
the value of U B on these two datasets.
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As to rare categories, F1 measures are improved dramati-
cally. The worst score of rare categories in DataSet2 is C37-
Military, when s f < U B, all F1 scores climb to above 50%,
which is an acceptable value[6]. See Figure 6, for more de-
tail. Similar conclusion can be reached on DataSet].

4.3.4 Micro-Recall

As indicated by 7, on DataSet2, except sf = 1.0, all scores
under Function 4 are higher than Trad2. Therefore, our de-
cision function is excellent by micro-average measure. Note
Micro-Recall falls steeply when & > 25. There are the same
findings on DataSet1.

4.3.5 Overall Evaluation

From experimental results, we can see that when sf > LB,
all curves have the similar tendency to traditional ones and
when sf < LB, the curves exhibit another trend. This
fact justifies our assumption that when s f is smaller, deci-
sion functions tend to favor smaller classes; and when sf is
larger, decision functions tend to prefer larger classes.

e LBorUB?
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Figure 7. Micro Recalls on DataSet2
On all four corpus, F1 measure reaches its peak at sf = LB or

sf = UB. We recommend to choose LB for 2 reasons. Firstly,
when sf < LB, all measures are less insensitive to k. Secondly,
Macro-Recall and recall of rare categories tend to have better scores
at LB than at U B.

Selection of k

Though [8] argued that the performance reached peak when k& = 30
and when k was between 30 and 200, scores remained constant,
our results do not conform to this claim. Due to different datasets
and decision functions, our classifier remains stable when k varies
between 15 and 25. When k£ > 30, all tend to decline. The fact ver-
ifies that many tiny similarity values will accumulate to a relatively
large one, which may, improperly, make a final decision favoring
a larger category. Notice when £ < 10, Trad2 works well. This,
too, explains that when k is bigger, more noise data will be added to
decision functions.

5 Conclusion

When distribution of training samples is biased, our
kNN classifier improves recall dramatically and alleviates
the misfortune that almost all test documents in smaller
classes are judged as some larger classes.

To our knowledge, [3] also combines training numbers
with their decision functions. But when selecting top & for
different categories, they introduced a parameter o which
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should be dealt with deliberately. Our decision function is
more simple and decided by distribution of training docu-
ments completely.

Our main contributions are,

e Propose a novel concept, Critical Point (C'P), and give

an algorithm to evaluate the value of C'P according to
distribution of training samples;

Integrate C'P’s approximate value, LB or UB, and
number of training samples with traditional decision
rules;

Verify its validity by exhaustive experiments on 4 cor-
pus. Note that results on Reuter and TDT2 are quoted
from [7].
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