
An Effective Method To Improve kNN Text Classifier∗

Xiulan Hao1, Xiaopeng Tao1, Chenghong Zhang2 and Yunfa Hu1

1 Department of Computing and Information Technology, Fudan University
2 School of Management, Fudan University

No. 220, Handan Road, Shanghai, China, 200433
hxl2221 cn@126.com,{xptao,chzhang,yfhu}@fudan.edu.cn

Abstract

Many of standard classification algorithms usually as-
sume that the training examples are evenly distributed
among different classes. However, unbalanced data sets of-
ten appear in many applications. As a simple, effective cat-
egorization method, kNN is widely used, but it suffers from
biased data sets, too. In developing the Prototype of Inter-
net Information Security for Shanghai Council of Informa-
tion and Security, we detect that when training data set is bi-
ased, almost all test documents of some rare categories are
classified into common ones. To alleviate such a misfortune,
we propose a novel concept, critical point (CP), and adapt
traditional kNN by integrating CP ′s approximate value,
LB or UB, training number with decision rules. Exhaus-
tive experiments illustrate that the adapted kNN achieves
significant classification performance improvement on bi-
ased corpora.

1 Introduction

With the rapid growth of Internet, more and more on-
line documents become available. Text categorization is one
of the key techniques aiming at organizing and processing
this huge collection. In the past, many machine-learning
techniques were applied to text categorization, including the
Rocchio approach, decision trees, the naive Bayes method,
neural networks, k-nearest neighbors (kNN), support vec-
tor machines, boosting [5, 6].

As a simple and efficient approach to text categorization,
kNN is widely used and obtains a better result [1, 9, 11].
The idea behind the kNN algorithm is quite straightfor-
ward. To classify a new document, the system finds the k-
nearest neighbors among the training documents and uses
the categories of the k-nearest neighbors to label the new

∗This work was supported by the Natural Science Foundation of China
(NSFC) under grant No. 70471011 and No. 60473070.

document. Its performance depends greatly on two factors,
i.e., a suitable similarity function and an appropriate value
for parameter k.

Biased or skewed distribution of data set is one of chal-
lenges in text categorization [6]. It often leads to lower per-
formance [3, 4, 7, 10]. The main strategies to deal with this
problem include feature optimizations [2], modification of
traditional ones [3], and re-sampling [4], etc.

However, re-sampling usually removes training docu-
ments in larger categories, thus may lose some important
information and always sacrifices the classification perfor-
mance in some cases [7]. WAKNN proposed by [2], in
essence, is a method of feature optimization, and it has bet-
ter classification results than many other classifiers, but it
has a high computational cost.

We attempt to define decision functions according to
the number of training samples and solve the problem of
large classes overwhelming small classes. Experiments in-
dicate, when training samples keep unchanged, Macro-F1
and Micro-Recall of categorization rise dramatically.

The remainder of the paper is organized as follows: Sec-
tion 2 reviews traditional kNN categorization and its de-
fects. Section 3 explains CP -based kNN categorization.
Section 4 reports the test results using this method. Section
5 concludes the findings.

2 Traditional kNN Categorization

Assume that n-dimensional vector X = (x1, x2, ..., xn)
represents a document, Ci = (Xi

1,X
i
2, ...,X

i
q) repre-

sents a category (also known as class) containing q docu-
ments. Given a training set D consisting of m categories,
C1, C2, ..., Cm, and a new arriving document X , kNN
classifier will compute the similarity of each document in
document set D to X and search the k neighbors nearest to
X based on similarity. If there are ki documents belonging
to category Ci, define 2 decision functions as follows:

Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

0-7695-2909-7/07 $25.00 © 2007 IEEE
DOI 10.1109/SNPD.2007.296

379

Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

0-7695-2909-7/07 $25.00 © 2007 IEEE
DOI 10.1109/SNPD.2007.296

379

Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

0-7695-2909-7/07 $25.00 © 2007 IEEE
DOI 10.1109/SNPD.2007.296

379

Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

0-7695-2909-7/07 $25.00 © 2007 IEEE
DOI 10.1109/SNPD.2007.296

379

Function 1. Assume fi(X) = ki, i = 1, ...,m

f(X) = arg max
j

(fj(X)), j = 1, ...,m (1)

then X is classified into Cj , i.e., X ∈ Cj . We label the
algorithm formulated by Function (1) as Trad1.

Function 2. Assume

gi(X) =
ki∑

l=1

sim(X,Xi
l),i = 1, ...,m

g(X) = arg max
j

(gj(X)), j = 1, ...,m (2)

then X is classified into Cj , i.e., X ∈ Cj , where
sim(X,Xi

l) is similarity between X and training sample
Xi

l . The algorithm described by Function (2) is labeled as
Trad2.

However these two functions neglect distribution of
training samples. The distribution of documents among dif-
ferent classes in a training set are usually not even, so the
classifier may be biased towards larger classes (also called
common classes). For example, when using the algorithm
indicated by Function (2), many tiny similarity values will
accumulate to a relatively larger one, which may, improp-
erly, make a final decision favoring a larger class. The re-
sult is that a number of test samples in smaller classes (also
known as rare classes) are classified into larger ones mis-
takenly, thus make system performance deteriorated.

3 CP -based kNN Categorization

In our project concerning Internet documents classifi-
cation, we find almost all documents in smaller categories
are classified into larger ones by traditional decision
functions. To overcome this defect, we redefine decision
functions by integrating the number of training documents
in each category into them. Suppose that the smallest
class has minTrainNum samples, the largest one has
maxTrainNum samples.We shall use notations below:

SF Shrink factor
CP Critical point
LB Lower approximation of CP
UB Upper approximation of CP
Nj Size of Category j in the Training Set
Nji Nji = (Nj)1/sfi , j = 1, · · · ,m
xi xi = (MinTrainNum)1/sfi

yi yi = (MaxTrainNum)1/sfi

µi Mean of Nji , j = 1, · · · ,m
σi Standard deviation of Nji , j = 1, · · · ,m
λi λi = yi

xi
, i �= 0

Function 3.

f ′(X) = arg max
j

[
kj

(Nj)1/sf
× (minTrainNum)1/sf

k
]

(3)
where j = 1, ...,m, then X is classified into Cj , X ∈ Cj .

Function 4. Assume

gi(X) =
ki∑

l=1

sim(X,Xi
l), i = 1, ...,m

g′(X) = arg max
j

[
gj(X)

(Nj)1/sf
× (minTrainNum)1/sf

k
]

(4)

where j = 1, ...,m, then X is classified into Cj , X ∈ Cj .

Function 3, 4 are modifications of Function 1, 2 respec-
tively. For convenience, we label the algorithm represented
by Function (4) as SF = sfi, where sfi is the value of sf .
For example, if sf takes 2.0, we denote it by SF = 2.0.
The cosine value of two vectors is used to measure the simi-
larity between the two documents, although other similarity
measures are possible.

Perhaps due to relatively simple of exponential func-
tions, our decision functions happen to have the similar
components as [7]. But we focus on to find an optimal ex-
ponent according to the distribution of training data set. To
distinct from [7], we shall call an exponent as a shrink fac-
tor below. From Function 3 or Function 4, we can infer,

• when sf is smaller, decision functions tend to favor
smaller classes;

• when sf is larger, decision functions tend to prefer
larger classes;

• when sf → ∞, decision functions degenerate to tradi-
tional ones.

We conjecture there must be a definite value of sf that bal-
ance larger classes and smaller classes and have the opti-
mal discriminative power. We call this value of sf as criti-
cal point. Because standard deviation of a data set reflects
its distribution, we shall use it to find CP . For an unbal-
anced data set, when Nji = Nj , xi is smaller than σi.
But when exponent operation is exerted on each Nj , that is,
Nji = (Nj)1/sfi , sfi > 1, at a definite sfi, xi will equal
to σi. We can empirically prove this sfi is the CP to be
found. Though there must be such a sfi satisfied xi = σi,
it is hard to calculate it precisely. We can use a secondary
optimal value to replace it. Let’s see what happens when
xi=σi. Two special cases:
(1)Except yi, all other Nji have the same values as xi, i.e.,
there are m − 1 x′

is and one yi. In this case,

380380380380

µi =
(m − 1) × xi + yi

m
=

(m − 1 + λi)xi

m
(5)

σi =

√
(m − 1) × (xi − µi)2 + (yi − µi)2

m − 1
= xi (6)

Hence,

λi = 1 + m/
√

2 .= 1 + 0.707m (7)

(2)Except xi, all other Nji have the same values as yi,
i.e., there are m − 1 y′

is and one xi.

µi =
(m − 1) × yi + xi

m
=

[λi(m − 1) + 1]xi

m
(8)

σi =

√
(m − 1) × (yi − µi)2 + (xi − µi)2

m − 1
= xi (9)

Hence,

λi = 1 +

√
m2

2(m − 1)
.= 1 +

0.707m√
m − 1

(10)

In practice, rarely happen these 2 situations. But we can
estimate λi by Function 7 and Function 10 when xi=σi.
That is,

1 +
0.707m√

m − 1
≤ λi ≤ 1 + 0.707m (11)

Starting from (y0
x0

)1/sf0 = λ0, where λ0 = 1 + 0.707m√
m−1

,
y0 = MaxTrainNum, x0 = MinTrainNum, we
can compute the approximate value of CP from sf0 more
quickly. Because λ0 is the lower boundary of λi, value of
sf0 may larger than CP and we begin by decreasing sf0.
The evaluation process is shown in Algorithm 1. When clas-
sification, we can choose one of approximate values of CP
as shrink factor, i.e. , UB or LB.

Algorithm 1: Calculate CP
INPUT m, Nj(j = 1, · · · , m)

OUTPUT CP, LB, UB

1: λ0 = 1 + 0.707m√
m−1

2: y0 = arg max
j=1,···,m

(Nj), x0 = arg min
j=1,···,m

(Nj)

3: if λ0 > y0/x0 then
4: LB = UB = CP = 1 {Data is even}
5: return
6: end if
7: sf0 = logλ0(y0/x0) , sfi = floor(sf0 ∗ 10)/10.0
8: repeat
9: xi = (x0)1/sfi

10: for j = 1 to m do
11: Nji = (Nj)

1/sfi

12: end for
13: /∗Calculating standard deviation of (Nj1, . . . , Njm) ∗/
14: σi = stdev(Nj1, . . . , Njm)
15: sfi = sfi − 0.5
16: until xi < σi

17: sfi = sfi + 0.5
18: while xi < σi do
19: sfi = sfi + 0.1, xi = (x0)1/sfi

20: for j = 1 to m do
21: Nji = (Nj)

1/sfi

22: end for
23: σi = stdev(Nj1, . . . , Njm)
24: end while
25: CP = sfi, LB = floor(CP + 0.5)
26: if floor(CP) �= LB then
27: LB = LB − 0.5
28: end if
29: UB = LB + 0.5
30: return

4 Experiments and Evaluations

4.1 Datasets

To verify the validity of our decision functions, we test
on 2 Chinese DataSets. Both are compiled by our re-
search group and are collections of news and papers. News
is mainly downloaded from http://www.sina.com.cn and
http://www.chinadaily.com.cn, and papers mainly come
from http://www.edu.cnki.net. DataSet1 is composed of
13796 documents. As can be seen in Table 1, C34-
Economy takes 18.1% of training set while C29-Transport,
only takes 0.8%. The ratio of maximum samples and mini-
mum samples is 21.8, thus distribution of DataSet1 is very
skewed. DataSet2 consists of 2420 documents; the ratio of
maximum samples and minimum samples is 10.375.

Besides, Reuter and TDT2 employed by [7] can be used
directly to prove our methods.

4.2 Evaluation Measures

The category assignments of a binary classifier can be
evaluated using a contingency table (Table 2) for each cate-
gory.

Table 2. A contingency table
Yes is correct No is correct

Assigned Yes a b
Assigned No c d

Conventional performance measures are defined and com-
puted from these contingency tables. These measures are
recall (r), precision (p), fallout (f), accuracy (Acc), error
(Err) and F1:

• r = a/(a + c), if a + c > 0, otherwise undefined;

• p = a/(a + b), if a + b > 0, otherwise undefined;

• f = b/(b + d), if b + d > 0, otherwise undefined;

381381381381

Table 1. Statistical Information of Training samples in DataSet1 and DataSet2
DataSet1
Name of Class No. of samples Percentage Name of Class No. of samples Percentage
C3-Art 530 5.8 C5-Education 669 7.3
C7-History 622 6.8 C11-Space 502 5.5
C19-Computer 1070 11.6 C29-Transport 76 0.8
C31-Environment 784 8.5 C32-Agriculture 988 10.7
C34-Economy 1663 18.1 C37-Military 99 1.1
C38-Politics 1329 14.4 C39-Sports 866 9.4
DataSet2
ART 103 6.381 SPACE 80 4.956
C15-ENERGY 41 2.54 COMPUTER 40 2.478
MINE 40 2.478 TRANSPORT 77 4.77
ENVIRONMENT 69 4.275 AGRICULTURE 58 3.593
MEDICAL 69 4.275 ECONOMY 151 9.355
EDUCATION 72 4.46 MILITARY 104 6.443
POLITICS 415 25.712 SPORTS 234 14.498
HISTORY 61 3.779

• Acc = (a + d)/n, where n = a + b + c + d > 0;

• Err = (b + c)/n, where n = a + b + c + d > 0;

• F1 = 2rp/(r + p);

Macro-averaging and micro-averaging are two meth-
ods for evaluating performance average across categories.
Micro-average is considered a per-document average while
macro-average is a per-category average [9]. Assume there
are C categories, then

• Macro − F1 = (
∑

c∈C
F1c)/|C|

• Macro − Recall = (
∑

c∈C
rc)/|C|

• Macro − Precision = (
∑

c∈C
pc)/|C|

• Micro − Recall = (
∑

c∈C
a)/(

∑
c∈C

a +
∑

c∈C
c)

4.3 Experimental Results

We only perform experiments on DataSet1 and
DataSet2. As to Reuter and TDT2, we cite results of [7]
directly. To compare with [7], we choose 10, 000 features
and use Information Gain as feature selection. We split each
dataset into three approximately equal parts, then use two
parts for training and the remaining third for test. We con-
duct the training-test procedure three times and use the av-
erage of the three performances as final result. This is so-
called three-fold cross validation. We test at discrete points
k = 5, . . . , 100 respectively. Note that we use the mean of
20 test points as comparison values. Because Function 3
vs. Function 1 has the similar conclusions as Function 4 vs.
Function 2, we only provide the experimental results of the
latter. Using Algorithm 1, we can obtain the CP,LB,UB
of the 4 DataSets respectively, as listed in Table 3.
4.3.1 Macro-Recall

Form Figure 1 , we can reach the same conclusion as [7] that
the larger the shrink factor, the lower the Macro-Recall on

Table 3. Parameters of the 4 DataSets
Name of DataSet CP LB UB
DataSet1 2.1 2.0 2.5
DataSet2 1.5 1.5 2.0
Reuter 3.7 3.5 4.0
TDT2 3.7 3.5 4.0

50

55

60

65

70

75

80

85

5 15 25 35 45 55 65 75 85 95

Values of K

M
ac

ro
 R

ec
al

l

SF=1.0

SF=1.5

SF=2.0

SF=3.0

SF=4.0

Trad2

Figure 1. Macro-Recall on DataSet2

DataSet2. Macro-Recall on DataSet1 has the similar con-
clusion, for page limitations, we omit it.

Performances of rare categories are accordance with
Macro-Recall, we omit those figures. That recall of smaller
categories achieve best results when sf = 1.0 justifies our
suggestion that the smaller is sf , the more kNN classifier
favors rare categories.

4.3.2 Precision

In most cases, precisions have the same conclusions as
[7],that is, the larger the shrink factor, the higher the Macro-
Precision, and Macro-Precision reaches the peak when
kNN classifier works with traditional decision function.
On DataSet2, Macro-Precision complies to this rule com-
pletely. But the rule doesn’t fit DataSet1 well.

382382382382

0

10

20

30

40

50

60

70

80

90

100

5 15 25 35 45 55 65 75 85 95

Values of K

P
re

sc
io

n
of

 C
37

SF=1.0

SF=1.5

SF=2.0

SF=2.5

SF=3.0

SF=4.0

Trad2

Figure 2. Precision of C37 in DataSet1

72

74

76

78

80

82

84

86

88

5 15 25 35 45 55 65 75 85 95

Values of K

M
ac

ro
 P

re
ci

si
on

SF=1.0

SF=1.5

SF=2.0

SF=2.5

SF=3.0

SF=4.0

Trad2

Figure 3. Macro-Precision on DataSet1

As indicated in Figure 2, when kNN classifier runs with
traditional decision function on DataSet1, its precision fluc-
tuates fiercely: at some k’s, it reaches the peak of 100%, and
at some k’s, it hits a low of 0. The fluctuation of precision of
rare categories, in reverse, will affect the Macro-Precision,
as shown in Figure 3. Therefore, when rare categories ex-
ists, precision will not be an appropriate measure.

4.3.3 F1 Measure

As can be seen from Figure 4, when sf = 2.0, F1 reaches
a peak of 78.662%. At the same time, Trad2 hits a low
of 72.463%. That is, sf = 2.0 beats Trad2 by 6.2% on
DataSet1. Note that 2.0 is the value of LB of DataSet1.
The performance remain stable when 15 ≤ k ≤ 30.

Again, F1 of Trad2 declines to 68.716%, which is the
worst score on DataSet2. When sf = 1.5, F1 obtains its
best score on DataSet2, 76.476%, about 7.8% higher than
Trad2. Note that 1.5 is the value of LB of DataSet2. When
k > 20 , F1 scores drop sharply.

According to [7], when exponent takes 4.0, their algo-
rithm NWKNN achieves the best results on Reuter and
TDT2 and beats KNN by 10% on TDT2. Again 4.0 is just
the value of UB on these two datasets.

66

68

70

72

74

76

78

80

82

5 15 25 35 45 55 65 75 85 95

Values of K

M
ac

ro
 F

1

SF=1.0

SF=1.5

SF=2.0

SF=2.5

SF=3.0

SF=4.0

Trad2

Figure 4. Macro F1 on DataSet1

55

60

65

70

75

80

5 15 25 35 45 55 65 75 85 95

Values of K

M
ac

ro
 F

1

SF=1.0

SF=1.5

SF=2.0

SF=3.0

SF=4.0

Trad2

Figure 5. Macro F1 on DataSet2

As to rare categories, F1 measures are improved dramati-
cally. The worst score of rare categories in DataSet2 is C37-
Military, when sf < UB, all F1 scores climb to above 50%,
which is an acceptable value[6]. See Figure 6, for more de-
tail. Similar conclusion can be reached on DataSet1.

4.3.4 Micro-Recall

As indicated by 7, on DataSet2, except sf = 1.0, all scores
under Function 4 are higher than Trad2. Therefore, our de-
cision function is excellent by micro-average measure. Note
Micro-Recall falls steeply when k > 25. There are the same
findings on DataSet1.

4.3.5 Overall Evaluation

From experimental results, we can see that when sf > LB,
all curves have the similar tendency to traditional ones and
when sf ≤ LB, the curves exhibit another trend. This
fact justifies our assumption that when sf is smaller, deci-
sion functions tend to favor smaller classes; and when sf is
larger, decision functions tend to prefer larger classes.

• LB or UB?

383383383383

10

20

30

40

50

60

70

5 15 25 35 45 55 65 75 85 95

Values of K

F
1

of
 C

37

SF=1.0

SF=1.5

SF=2.0

SF=3.0

SF=4.0

Trad2

Figure 6. F1 of C37-Military in DataSet2

68

72

76

80

84

5 15 25 35 45 55 65 75 85 95

Values of K

M
ic

ro
 R

ec
al

l

SF=1.0

SF=1.5

SF=2.0

SF=3.0

SF=4.0

Trad2

Figure 7. Micro Recalls on DataSet2

On all four corpus, F1 measure reaches its peak at sf = LB or
sf = UB. We recommend to choose LB for 2 reasons. Firstly,
when sf ≤ LB, all measures are less insensitive to k. Secondly,
Macro-Recall and recall of rare categories tend to have better scores
at LB than at UB.

• Selection of k
Though [8] argued that the performance reached peak when k = 30
and when k was between 30 and 200, scores remained constant,
our results do not conform to this claim. Due to different datasets
and decision functions, our classifier remains stable when k varies
between 15 and 25. When k > 30, all tend to decline. The fact ver-
ifies that many tiny similarity values will accumulate to a relatively
large one, which may, improperly, make a final decision favoring
a larger category. Notice when k ≤ 10, Trad2 works well. This,
too, explains that when k is bigger, more noise data will be added to
decision functions.

5 Conclusion

When distribution of training samples is biased, our
kNN classifier improves recall dramatically and alleviates
the misfortune that almost all test documents in smaller
classes are judged as some larger classes.

To our knowledge, [3] also combines training numbers
with their decision functions. But when selecting top k for
different categories, they introduced a parameter α which

should be dealt with deliberately. Our decision function is
more simple and decided by distribution of training docu-
ments completely.

Our main contributions are,

• Propose a novel concept, Critical Point (CP), and give
an algorithm to evaluate the value of CP according to
distribution of training samples;

• Integrate CP ′s approximate value, LB or UB, and
number of training samples with traditional decision
rules;

• Verify its validity by exhaustive experiments on 4 cor-
pus. Note that results on Reuter and TDT2 are quoted
from [7].

References

[1] A. Cardoso-Cachopo and A. L. Oliveira. An empirical com-
parison of text categorization methods. In Proceedings of the
10th International Symposium on String Processing and In-
formation Retrieval, pages 183–196, 2003.

[2] E.-H. S. Han, G. Karypis, and V. Kumar. Text categoriza-
tion using weight adjusted k-nearest neighbor classification.
In Proceedings of the 5th Pacific-Asia Conference on Knowl-
edge Discovery and Data Mining, pages 53–65, 2001.

[3] B. Li, Q. Lu, and S. Yu. An adaptive k-nearest neighbor text
categorization strategy. In ACM Transactions on Asian Lan-
guage Information Processing, volume 3, pages 408–421,
December 2004.

[4] R. Li and Y. Hu. Noise reduction to text categorization based
on density for knn. In the 2th International Conference
on Machine Learning and Cybernetics, Xi’an, China, Nov.
2003.

[5] F. Sebastiani. Machine learning in automated text categoriza-
tion. ACM Computing Surveys, 34(1):1–47, March 2002.

[6] J.-S. Su, B.-F. Zhang, and X. Xu. Advances in machine
learning based text categorization. Jounal of Software,
17(9):1848–1859, Sep. 2006.

[7] S. Tan. Neighbor-weighted k-nearest neighbor for un-
balanced text corpus. Expert Systems with Applications,
28(4):667–671, 2005.

[8] Y. Yang. Expert network: Effective and efficient learning
from human decisions in text categorization and retrieval.
In Proceedings of 17th Ann Int ACM SIGIR Conference on
Research and Development in Informat,on Retrieval (SIGIR
’94), pages 13–22, 1994.

[9] Y. Yang. An evaluation of statistical approaches to text cate-
gorization. Information Retrieval, (1):69–90, 1999.

[10] Y. Yang, T. Ault, T. Pierce, and C. W. Lattimer. Improving
text categorization methods for event tracking. In Proceed-
ings of the 23rd International Conference on Research and
Development in Information Retrieval, pages 65–72, 2000.

[11] Y. Yang and X. Liu. A re-examination of text categorization
methods. In Proc. of the 22nd ACM Intl Conf. on Research
and Development in Information Retrieval (SIGIR-99), pages
42–49, 1999.

384384384384

