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Abstract. Given a dataset, each element of which labeled by one of k labels, we construct by a very fast
algorithm, a k-category proximal support vector machine (PSVM) classifier. Proximal support vector machines
and related approaches (Fung & Mangasarian, 2001; Suykens & Vandewalle, 1999) can be interpreted as ridge
regression applied to classification problems (Evgeniou, Pontil, & Poggio, 2000). Extensive computational
results have shown the effectiveness of PSVM for two-class classification problems where the separating
plane is constructed in time that can be as little as two orders of magnitude shorter than that of conventional
support vector machines. When PSVM is applied to problems with more than two classes, the well known
one-from-the-rest approach is a natural choice in order to take advantage of its fast performance. However, there
is a drawback associated with this one-from-the-rest approach. The resulting two-class problems are often very
unbalanced, leading in some cases to poor performance. We propose balancing the k classes and a novel Newton
refinement modification to PSVM in order to deal with this problem. Computational results indicate that these
two modifications preserve the speed of PSVM while often leading to significant test set improvement over a plain
PSVM one-from-the-rest application. The modified approach is considerably faster than other one-from-the-rest
methods that use conventional SVM formulations, while still giving comparable test set correctness.
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1. Introduction

Standard support vector machines (SVMs) (Vapnik, 2000; Cherkassky & Mulier, 1998;
Bradley & Mangasarian, 2000; Burges, 1998; Mangasarian, 2000), which are powerful
tools for data classification, classify 2-category points by assigning them to one of two
disjoint halfspaces in either the original input space of the problem for linear classifiers, or
in a higher dimensional feature space for nonlinear classifiers (Vapnik, 2000; Cherkassky
& Mulier, 1998; Mangasarian, 2000). Recently (Suykens & Vandewalle, 1999; Fung &
Mangasarian, 2001) much simpler classifiers, the least squares and the proximal support
vector machine (PSVM), were implemented wherein each class of points is assigned
to the closest of two parallel planes (in input or feature space) that are pushed apart
as far as possible. This formulation, which can also be interpreted as regularized least
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squares (Tikhonov & Arsenin, 1977) or in the more general context of regularized networks
(Evgeniou, Pontil, & Poggio, 2000), leads to an extremely fast and simple algorithm for
generating a linear or nonlinear classifier that is obtained by solving a single system of
linear equations. For a comprehensive approach to the related least squares support vector
machines see (Suykens et al., 2002), where geometric and statistical interpretations as
well as the link with the Fischer discriminant analysis are given. It is the purpose of this
work to apply this simple 2-class PSVM classifier to k-category classification by using a
one-from-rest (OFR) separation for each class (Bottou et al., 1994). However, due to the
fact that the number of points belonging to one class is usually much smaller than the
number of points in the union of the remaining classes, the resulting two-class problems
are very unbalanced. PSVM fits each class with one of two distant parallel planes and
errors in both classes are penalized similarly in the objective function. Because of the
unbalanced classes, PSVM tends to fit better the the class with more data points and it
underestimates the overall error of the class with fewer data points. This often results in
a poor PSVM performance. In order to override this difficulty, we propose a balanced
modification of PSVM which weights each class equally no matter how many points are
in each class. In addition, we propose a very fast Newton refinement algorithm, which
is applicable to any SVM classification approach, and which leads to a better classifier.
Experimental results show that incorporation of these two modifications into a plain PSVM
one-from-the-rest approach, improves significantly test set correctness while maintaining its
speed.

In contrast, other one-from-the-rest and SVM k-class classifiers (Bottou et al., 1994;
Bennett & Mangasarian, 1993; Bredensteiner & Bennett, 1999) require the solution of
either a large single or k smaller quadratic or linear programs that need specialized opti-
mization codes such as CPLEX (1992). On the other hand, obtaining a linear or nonlinear
PSVM classifier as we propose here, requires nothing more sophisticated than solving k
systems of linear equations. Efficient and fast linear equation solvers are freely available
(Anderson et al., 1999) or are part of standard commercial packages such as MATLAB
(1994–2001), and can solve very large systems. We note that in Suykens and Vandewalle
(1999) and Suykens et al. (1999), multiclass least squares formulations are proposed that
explicitly require Mercer’s positive definiteness condition (Vapnik, 2000; Cherkassky &
Mulier, 1998) on the kernels used which is not needed here. Another way to avoid the need
for Mercer’s condition is to use the product of an arbitrary kernel with its transpose as
was proposed in Mangasarian (2000), Problem (8.10). In addition, the problem in Suykens
and Vandewalle (1999) is formulated as single large constrained optimization problem in
contrast to the k smaller uncoupled and unconstrained OFR approach used here. Various
multiclass schemes are investigated in Van Gestel et al. (2002) and Weston and Watkins
(1998). We also note that, in concept, PSVM can be interpreted as ridge regression (Hoerl
& Kennard, 1952) which is essentially regularized least squares (Tikhonov & Arsenin,
1977). However, ridge regression in its general form lacks the geometric justification and
interpretation of PSVM which consists of constructing two parallel planes, each proximal
to one of two classes of data points, while simultaneously pushing these plane as far apart
as possible. A ridge regression application similar to PSVM is given in Roth and Steinhage
(1999), which however uses a variation of the EM-algorithm to solve the classification
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problem, whereas we use a straightforward solution of the normal equations of regularized
least squares. Interesting numerical comparison of multiclass methods is given in Hsu and
Lin (2001).

We summarize the contents of the paper now. In Section 2 we briefly review the 2-
category proximal linear support vector machine (Fung & Mangasarian, 2001) and then
introduce our multicategory PSVM (MPSVM). MPSVM for a k-class problems consists
of solving k systems of nonsingular linear eqautions. We then give the linear MPSVM
algorithm. In Section 3 we introduce the nonlinear MPSVM with nonlinear separating
surfaces in the input space and give the corresponding nonlinear MPSVM algorithm. In
Section 2.3 we describe a simple 2-dimensional Newton refinement of the algorithms
presented in Sections 2 and 3. Section 4 contains numerical test results on six public data
sets for both the linear and nonlinear MPSVM. These tests show a speedup of as high
as 477-times, for our nonlinear MPSVM over conventional SVM, with comparable or
better test set correctness (Table 2, Segment Dataset). These tests also show that a linear
MPSVM with balancing and a Newton refinement can improve tenfold test set correctness
over a plain MPSVM from 83.3% to 97.3% (Table 1, Iris Dataset). Simple and short
MATLAB (1994–2001) codes, very similar to those of PSVM (Fung & Mangasarian,
2001), underly the proposed MPSVM algorithms. Finally, we give a 2-dimensional visual
example that demonstrates the effectiveness of our balancing and Newton refinements on
a nonlinear classifier for a 3-class dataset, and exhibit the computed classifiers in figures 5
and 6.

A word about our notation and background material. All vectors will be column vectors
unless transposed to a row vector by a prime superscript’. For a vector x in the n-dimensional
real space Rn , the plus function x+ defines a vector function of x with all negative com-
ponents of x set to zero, while the step function x∗ defines a vector function of x with all
positive components set to 1 and nonpositive components of x set to zero. The scalar (inner)
product of two vectors x and y in the n-dimensional real space Rn will be denoted by x ′y
and the 2-norm of x will be denoted by ‖x‖. For a matrix A ∈ Rm×n, Ai is the ith row of A
which is a row vector in Rn , while A· j is the jth column of A. A column vector of ones of
arbitrary dimension will be denoted by e. For A ∈ Rm×n and B ∈ Rn×k, the kernel K (A, B)
maps Rm×n × Rn×k into Rm×k . In particular, if x and y are column vectors in Rn then,
K (x ′, y) is a real number, K (x ′, A′) is a row vector in Rm and K (A, A′) is an m ×m matrix.
The base of the natural logarithm will be denoted by ε. We will make use of the following
Gaussian kernel (Vapnik, 2000; Cherkassky & Mulier, 1998; Mangasarian, 2000) that is
frequently used in the SVM literature:

K (A, B) = ε−µ‖Ai
′−B· j ‖2

, i = 1 . . . , m, j = 1 . . . , k, (1)

where A ∈ Rm×n , B ∈ Rn×k and µ is a positive constant. The identity matrix of arbitrary
dimension will be denoted by I. For a numerical function f (x) of x ∈ Rn , the gradient
∇ f (x) denotes the n × 1 vector of first partial derivatives of f, while ∂2 f (x) denotes the
generalized Hessian n × n matrix of second partial derivatives of f if they exist, else each
row of the generalized Hessian matrix is a subgradient (Polyak, 1987; Rockafellar, 1970)
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Figure 1. The proximal support vector machine classifier: The proximal planes x ′w − γ = ±1 around which
points of the sets A+ and A− cluster and which are pushed apart by the optimization problem (2).

of the corresponding row element of the gradient vector ∇ f (x) (Lee & Mangasarian, 2001;
Kanzow, Qi, & Qi, 2001).

2. The linear multicategory proximal support vector machine (MPSVM)

2.1. Two-category proximal support machine formulation

To motivate our MPSVM we begin with a brief description of the 2-category proximal
support machine formulation (Fung & Mangasarian, 2001). We consider the problem,
depicted in figure 1, of classifying m points in the n-dimensional real space Rn , represented
by the m × n matrix A, according to membership of each point Ai in the class A+ or A−
as specified by a given m × m diagonal matrix D with plus ones or minus ones along its
diagonal. For this problem, the proximal support vector machine (Fung & Mangasarian,
2001) with a linear kernel is given by the following quadratic program with parameter
ν > 0 and linear equality constraint:

min
(w,γ,y)∈Rn+1+m

ν

2
‖y‖2 + 1

2

∥∥∥∥
[
w

γ

]∥∥∥∥
2

s.t. D(Aw − eγ ) + y = e,
(2)

where e is a vector of ones. As depicted in figure 1, [w

γ
] is normal to the proximal planes:

x ′w − 1 · γ = +1,

x ′w + 1 · γ = −1,
(3)
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which are proximal to points belonging to the sets A+ and A− respectively. The error
variable y in (2) is a measure of the distance from the plane x ′w − 1 · γ = +1 of points of
class A+ points and from the plane x ′w − 1 · γ = −1 of points of class A−. Consequently,
the plane:

x ′w − 1 · γ = 0, (4)

midway between and parallel to the proximal planes (3), is a separating plane that approx-
imately separates A+ from A− as depicted in figure 1. The separation is only approximate,
here and in general, because no plane can separate all points of A+ from those of A−
when their convex hulls intersect. The second term in the quadratic objective function of
(2), which is twice the reciprocal of the square of the 2-norm distance 2

‖[ w

γ
]‖ between the

two proximal planes of (3) (see figure 1), maximizes this distance, often called the “mar-
gin”. Maximizing the margin enhances the generalization capability of a support vector
machine (Vapnik, 2000; Cherkassky & Mulier, 1998). The approximate separating plane
(4) as depicted in figure 1, acts as a linear classifier as follows:

x ′w − γ



>0, then x ∈ A+,

<0, then x ∈ A−,

=0, then x ∈ A + or x ∈ A−
(5)

We note that the PSVM formulation (2) can be also interpreted as a regularized least
squares solution (Tikhonov & Arsenin, 1977) of the system of linear equations D(Aw −
eγ ) = e, that is finding an approximate solution (w, γ ) to D(Aw − eγ ) = e, with least
2-norm. PSVM can also be considered as a very special case of regularization networks
(Evgeniou, Pontil, & Poggio, 2000).

Substituting for y in terms of w and γ from the linear constraint in the objective function
of (2) gives the unconstrained minimization problem:

min
(w,γ )∈Rn+1

ν

2
‖D(Aw − eγ ) − e‖2 + 1

2

∥∥∥∥
[
w

γ

]∥∥∥∥
2

, (6)

Setting the gradient with respect to w and γ to zero and noting that D2 = I gives the
necessary and sufficient optimality conditions for (6):

ν A′(Aw − eγ − De) + w = 0,

νe′(−Aw + eγ + De) + γ = 0.
(7)

2.2. PSVM modification for unbalanced classes

In order to improve PSVM performance when one of classes has many more data points
than the other one, which is usually the case in the two-class subproblems that the OFR



82 G. M. FUNG AND O. L. MANGASARIAN

approach generates, we propose the following simple balancing approach. A similar bal-
ancing approach was proposed in Furey et al. (2000).

Let m1 and m2 be the number of points in classes 1 and −1 respectively. We first define
an m × m diagonal matrix N as follows:

Nii =




1

m1
, if dii = 1,

1

m2
, if dii = −1.

(8)

We then formulate the following balanced PSVM problem:

min
(w,γ )∈Rn+1

ν

2
(D(Aw − eγ ) − e)′N (D(Aw − eγ ) − e) + 1

2

∥∥∥∥
[
w

γ

]∥∥∥∥
2

. (9)

Setting the gradient with respect to w and γ equal to zero and noting that D2 = I
and DN D = N we obtain the following necessary and sufficient optimality conditions
for (9):

ν A′N (Aw − eγ − De) + w = 0,

νe′N (−Aw + eγ + De) + γ = 0.
(10)

We describe now a computational enhancement to PSVM which is also applicable to
other SVM classifiers as well.

2.3. Newton refinement

The simple computational refinement that we have implemented, and which is applicable
to any type of SVM classifier, consists of taking a solution obtained by either a linear
or nonlinear classifier, say for simplicity a solution [ w̄

γ̄
] to the PSVM problem (6), which

generates a separating plane x ′w̄ − 1 · γ̄ = 0 as shown in figure 1. The idea here is to move
this plane parallel to itself in such a way to improve the separation of the two sets A+ and
A−. One way to measure such improvement is by counting the number of misclassified
points as was done in Chen and Mangasarian (1996). A simpler way is to slightly alter the
objective function of (6) so that the first term is zero if all the points are correctly classified
by the separating plane. This is easily achieved by setting nonnegative components of
D(Aw − eγ ) − e, which correspond to correctly classified points, equal to zero, that is:
(−D(Aw − eγ ) + e)+ = 0, where as defined in the Introduction, (z)+ = max{0, z}. Thus
the minimization problem (6) becomes:

min
(w,γ )∈Rn+1

ν

2
‖((−D(Aw − eγ ) + e)+‖2 + 1

2

∥∥∥∥
[
w

γ

]∥∥∥∥
2

, (11)

which is the optimization problem underlying the smooth support vector machine algorithm
(Lee & Mangasarian, 2001). Since we are only interested in merely refining our solution
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while maximizing the margin [ w̄

γ̄
] of (6), we replace w by λw̄ in (11) and obtain our

refinement problem:

min
(λ,γ )∈Rn+1

f (λ, γ ) = ν

2
‖((−D(λAw̄ − eγ ) + e)+‖2 + 1

2

∥∥∥∥
[
λw̄

γ

]∥∥∥∥
2

. (12)

This is a simple strongly convex problem in the 2-dimensional space of (λ, γ ), that is
its objective function has a positive definite generalized Hessian (Hiriart-Urruty, Strodiot,
& Nguyen, 1984; Mangasarian, 1994) which can be very quickly minimized by a fast
Newton method. The quadratic convergence and effectiveness of a Newton method for
such a problem has been established in Lee and Mangasarian (2001) for the full problem
(11) in the n +1 dimensional space (w, γ ). We briefly describe the approach proposed here
for minimizing (12) now. We first need the expressions for the gradient and generalized
Hessian matrix (Facchinei, 1995; Hiriart-Urruty, Strodiot, & Nguyen, 1984) of f (λ, γ ) as
follows. We first define:

d(λ, γ ) = (−D(λAw̄ − eγ ) + e), (13)

then the 2 × 1 gradient and the 2 × 2 generalized Hessian matrix of f (λ, γ ) are given by:

∇ f (λ, γ ) =
[−νw̄′ A′ D(d(λ, γ ))+ + ‖w̄‖2λ

νe′ D(d(λ, γ ))+ + γ

]
, (14)

and,

∂2 f (λ, γ ) =
[

νw̄′ A′E Aw̄ + ‖w̄‖2 −νw̄′ A′Ee

−νe′ E Aw̄ νe′Ee + 1

]
, (15)

where E is the diagonal matrix:

E = Ddiag((d(λ, γ ))∗)D = diag((d(λ, γ ))∗), (16)

and the (·)∗ is the step function defined in the Introduction and which is taken here as a
specific subgradient (Rockafellar, 1970; Polyak, 1987) of the plus function (·)+ and is used
to generate the generalized Hessian matrix in the same manner as in Lee and Mangasarian
(2001) and Kanzow, Qi, and Qi (2001).

A key difference between PSVM and SVM, is that with PSVM the conventional concept
of support vectors (the data points corresponding to the positive multipliers) does not hold
(Fung & Mangasarian, 2001). However, it is interesting to note that after this refinement is
applied to the PSVM solution, the concept of support vectors applies to the new solution.
If the pair (λ∗, γ ∗) is the solution obtained by (12), then the corresponding dual multipliers
associated with this problems are given by Lee and Mangasarian (2001):

u = (−D(λ∗ Aw̄ − eγ ∗) + e)+. (17)
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Then, the support vectors for the problem (12) are the data points of A corresponding to
positive components of u.

The Newton refinement procedure can then be summarized as follows, where the iteration
maximum of 30 and the tolerance of ≤ 10−3 are empirically arrived at.

Algorithm 1 Newton Refinement. Given a solution [ w̄

γ̄
] to the PSVM 2-class problem

(6) refine it as follows:
(i) Start with λ0 = 1 and γ 0 = γ̄ .

(ii) Iterate (iii) until either j = 30 or:

∥∥∥∥
[
λ j

γ j

]
−

[
λ j+1

γ j+1

]∥∥∥∥ ≤ 10−3, (18)

in which case [w

γ
] = [ λ j+1w̄

γ j+1 ] is the refined solution to (6).

(iii) Calculate the new iterates:

[
λ j+1

γ j+1

]
=

[
λ j

γ j

]
− ∇2 f (λ j , γ j )−1∇ f (λ j , γ j ). (19)

With obvious modifications this algorithm can be applied to refine a solution [ ū
γ̄

] of the
nonlinear PSVM (25) as well.

In order to illustrate the proposed modifications we generated a small unbalanced artifi-
cial two-dimensional two-class dataset. The dataset consist of 100 points, 85 of which are in
class A+ and 15 points in class A−. When the problem is solved using plain PSVM (6), the
influence of the 85 points in class A+ prevails over that of the much smaller set of data points
in A−. As a result, 14 out of 15 points in class A− are misclassified. The total training set cor-
rectness is 86%, with only 6.6% correctness for the smaller class A− and 100% correctness
for the larger class A+. The resulting separating plane is shown in figure 2. When a balanced
PSVM (9) is used we can see an improvement over the plain PSVM, in the sense that a
separating plane is obtained that correctly classifies all the points in class A−. However due
to the significant difference in the cardinality of the two classes and the distribution of their
points, a subset of 16 points in class A+ is now misclassified. The total training set correct-
ness is 84%, with 100% correctness for A− points and 81.2% correctness for A+ points.
The resulting separating plane is shown in figure 3. If now in addition to balancing, the
Newton refinement is also applied, we obtain a separating plane that misclassifies only two
points. The total training set correctness is 98%. The resulting separating plane is shown in
figure 4.
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Figure 2. An unbalanced dataset consisting of 100 points, 85 of which in class A+ represented by hollow circles,
and 15 points of which in class A− represented by hollow diamonds. The separating plane is obtained by using
a plain PSVM (6). The class A− is practically ignored by the solution. The total training set correctness is 86%
with 6.6% correctness for A− and 100% correctness for A+.

To extend this formulation to k classes, all we need is to redefine the following for
separating class r from the rest:

A =

 A1

...
Ak


 , A+ = Ar , A− =




A1

...
Ar−1

Ar+1

...
Ak




, r ∈ {1, . . . , k}, (20)

where, Ar ∈ Rmr ×n represents the mr points in class r. We then define for m = m1+· · ·+mk

the m × m diagonal matrix D of ±1 as follows:

Dii =1 for Ai ∈ Ar ,

Dii = −1 for Ai �∈ Ar ,

r ∈ {1, . . . , k}.
(21)

We note that since the multicategory classification problem, A− has many more rows
than A+, a normalization is usually carried out by dividing the error vector yi by mr for
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Figure 3. Linear classifier improvement by balancing is demonstrated on the same dataset of figure 2. The
separating plane is obtained by using a balanced PSVM (9). Even though the class A− is correctly classified in
its entirety, the overall performance is still rather unsatisfactory due to significant difference in the distribution of
points in each of the classes. Total training set correctness is 84%.

Ai ∈ Ar and by (m − mr ) for Ai /∈ Ar . Here, mr is the number of points in class r which
is represented by the matrix Ar ∈ Rmr ×n .

Once the k minimization problems (6) are solved (with A and D defined as in (20)
and (21)) by solving the linear system of equations (10), k unique separating planes are
generated:

x ′wr − γ r = 0, r = 1, . . . , k. (22)

A given new point x ∈ Rn is assigned to class s, depending on which of the k halfspaces
generated by the k planes (22) it lies deepest in, that is:

x ′ws − γ s = max
r=1,...,k

x ′wr − γ r . (23)

For concreteness we explicitly state our multicategory PSVM algorithm.

Algorithm 2 Linear Multicategory Proximal SVM. Given m data points in Rn, each
belonging to one of k classes and represented by k matrices Ar of order mr × n,
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Figure 4. Very significant linear classifier improvement as a consequence of balancing and the use of the Newton
refinement is demonstrated on the same dataset of figures 2 and 3. The separating plane is obtained using both
modifications to PSVM: balancing and Newton refinement. The total training set correctness is now 98% compared
to 86% for plain PSVM and 84% for balanced PSVM.

r = 1, . . . , k, with m1 + · · · + mk = m, we generate the linear classifier (23) as
follows:

(i) Solve k independent nonsingular systems of (n + 1) linear equations (10) in (n + 1)
unknowns, with A and D defined as in (20) and (21), for some positive value of ν.
(Typically ν is chosen by means of a tuning set.)

(ii) Apply the Newton Refinement 1 to each solution (w̄r , γ̄ r ) , (r = 1 . . . k) obtained on
step (i) to get the refined solutions (wr , γ r ).

(iii) The point x belongs to class s as determined by the criterion (23).

We extend now the above results to nonlinear proximal support vector machines that
result in nonlinear proximal surfaces instead of planes in the input space.

3. Nonlinear proximal support vector machines

To obtain our nonlinear proximal classifier we modify our proximal minimization problem
(6) as in Mangasarian (2000) and Fung and Mangasarian (2001) by first replacing the primal
variable w by its dual equivalent, w = A′ Du, and modifying the last term of the objective
function to be the norm of the new dual variable u and γ . This is based on the duality theory
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underlying support vector machines described in Mangasarian (2000). We obtain then the
following problem:

min
(u,γ )∈Rm+1

ν

2
‖D(AA′ Du − eγ ) − e‖2 + 1

2

∥∥∥∥
[

u

γ

]∥∥∥∥
2

. (24)

If we now replace the linear kernel AA′ by a nonlinear kernel K (A, A′), as defined in the
Introduction, we obtain:

min
(u,γ )∈Rm+1

ν

2
‖D(K (A, A′)Du − eγ ) − e‖2 + 1

2

∥∥∥∥
[

u

γ

]∥∥∥∥
2

. (25)

As in the linear kernel case, we extend the above two category case to k categories by
redefining A and D as in (20) and (21) to obtain k minimization problems. Setting the
gradient with respect to u and γ to zero and noting again that D2 = I gives the following
necessary and sufficient optimality conditions for (25):

νD(K (A, A′)′K (A, A′)Du − eγ − De) + u = 0,

νe′(−K (A, A′)Du + eγ + De) + γ = 0.
(26)

Once the k minimization problems (25) are solved (with A and D defined as in (20) and
(21)) by solving the k independent linear systems of equations (26), k unique proximal
surfaces are generated:

K (x ′, A′)Dur − γ r = 0, r = 1, . . . , k. (27)

A given new point x ∈ Rn is assigned to class s depending on which of the k nonlinear
halfspaces generated by the k surfaces (27) it lies deepest in, that is:

K (x ′, A′)Dus − γ s = max
r=1,...,k

K (x ′, A′)Dur − γ r . (28)

For concreteness we explicitly state our multicategory nonlinear PSVM algorithm.

Algorithm 1 Nonlinear Multicategory Proximal SVM Given m data points in Rn, each
belonging to one of k classes and represented by k matrices Ar of order mr ×n, r = 1, . . . , k,
with m1 + · · · + mk = m, we generate the nonlinear classifier (28) as follows:

(i) Solve k independent nonsingular systems of (m + 1) linear equations (26) in (m + 1)
unknowns, with A and D defined as in (20) and (21), for some positive value of ν.
(Typically ν is chosen by means of a tuning set.)

(ii) Apply the Newton refinement algorithm 1 to each solution (ūr , γ̄ r ) , (r = 1 . . . k)
obtained on step (i) to get the refined solutions (ur , γ r ).

(iii) The point x belongs to class s as determined by the criterion (28).

When each of the k subproblems become large enough so as not to fit in memory, then the
m × m kernel K (A, A′) is replaced by the considerably smaller m × m̄ rectangular kernel
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K (A, Ā′), where Ā consists of as little as 15% of randomly chosen rows of A. This leads
to the extremely fast and effective Reduced Support Vector Machine (RSVM) algorithm
as described in Lee and Mangasarian (2001) and presented in Algorithm 2 below. The
RSVM approach can be interpreted as a random projection approach (Dasgupta, 2000).
Other related reduction approaches are given in Furey et al. (2000), Schölkopf et al. (1999),
Smola and Schölkopf (2000) and Williams and Seeger (2000).

Algorithm 2 RSVM Algorithm
(i) Choose a random subset matrix Ā ∈ Rm̄×n of the original data matrix A ∈ Rm×n.

Typically m̄ is 1% to 15% of m, and Ā consists of the union of random samples of each
class that maintain the original relative sizes of the k classes.

(ii) Solve the following modified version of the PSVM (25) where A′ only is replaced by Ā′

with corresponding D̄ ⊂ D:

min
(ū,γ )∈Rm+1

ν

2
‖D(K (A, Ā′)D̄ū − eγ ) − e‖2 + 1

2

∥∥∥∥
[

ū

γ

]∥∥∥∥
2

, (29)

which is equivalent to solving (25) with A′ only replaced by Ā′.

The separating r surface is given by (27) with A′ replaced by Ā′ as follows:

K (x ′, Ā′)D̄ūr = γ r , (30)

where (ū, γ ) ∈ Rm̄+1 is the unique solution of (29), and x ∈ Rn is a free input space
variable of a new point.

We turn now to our numerical results.

4. Numerical implementation and comparisons

All our computations were performed on the University of Wisconsin Data Mining Institute
“locop1” machine, which utilizes a 400 Mhz Pentium II and allows a maximum of 2
Gigabytes of memory for each process. This computer runs on Windows NT server 4.0,
with MATLAB 6 installed. Even though “locop1” is a multiprocessor machine, only one
processor was used for all the experiments since MATLAB (1994–2001) is a single threaded
application and does not distribute any load across processors. Our algorithms require the
solution of k square systems of linear equations, where k is the number of classes to be
classified. Each one of the linear systems of equations involved is of the size of the number
of input attributes n plus one in the linear case, and of the size of the number of data points
m plus one in the nonlinear case. When using a rectangular kernel (Lee & Mangasarian,
2001), the size of the problem can be reduced from m to m̄ with m̄ < m for the nonlinear
case.

The real life datasets used for our numerical tests are the following:

• Four publicly available datasets from the UCI Machine Learning Repository (Murphy &
Aha, 1992): Wine, Glass, Iris, Vowel, with 3, 6, 3 and 11 categories respectively.



90 G. M. FUNG AND O. L. MANGASARIAN

Table 1. OFRQP, MPSVM,B-MPSVM,BR-MPSVM linear classifier training correctness, tenfold testing cor-
rectness and running times. Execution times include tenfold training. Best results are in bold. The p-values were
calculated with respect to OFRQP for tenfold testing correctness, using a t-test with 95% confidence interval.

MPSVM B-MPSVM BR-MPSVM

Data set m × n
no. of classes

OFRQP
Train
Test

Time (Sec.)

Train
Test

Time (Sec.)
p-value

Train
Test

Time (Sec.)
p-value

Train
Test

Time (Sec.)
p-value

Wine 100.0% 100.0% 99.9% 100.0%

178 × 13 96.1% 98.9% 98.9% 99.4%

3 1.39 0.02 0.02 0.11

0.20 0.80 0.10

Glass 72.9% 66.5% 68.29% 68.9%

214 × 9 67.2% 60.6% 61.6% 63.0%

6 1.80 0.02 0.03 0.14

0.19 0.28 0.35

Iris 98.7% 85.6% 86.9% 97.6%

150 × 4 98.0% 83.3% 86.7% 97.3%

3 0.73 0.02 0.02 0.11

1.2e − 6 2.0e − 4 0.66

Vowel 68.7% 54.6% 56.1% 64.5%

528 × 10 57.2% 45.5% 47.0% 57.6%

11 5.56 0.05 0.05 0.14

9.9e − 3 1.8e(−2) 0.93

Vehicle 83.3% 79.1% 81.0% 81.1%

846 × 18 79.0% 76.2% 77.4% 77.5%

4 2.88 0.11 0.11 0.34

8.8e − 2 0.33 0.30

Segment 93.0% 85.5% 90.3% 91.3%

2310 × 19 91.9% 84.8% 90.1% 90.8%

7 18.57 0.22 0.31 0.67

7.5e − 7 2.2e(−2) 0.14

• Two publicly available datasets from the Statlog Project Databases, also available from
UCI (Murphy & Aha, 1992): Vehicle and Segment, with 4 and 7 categories respectively.

Properties of each dataset such as number of points, number of features and number of
classes are given in Table 1.

4.1. Numerical experiments using linear classifiers

We compared the performances of the methods described below.
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• Linear OFRQP: One-From-Rest Quadratic Programming classifier using a standard
support vector machine formulation for each subproblem and solved using a MATLAB-
CPLEX (1992) interface. CPLEX is a state of the art software widely employed to solve
linear and quadratic programs that uses a finitely terminating pivotal method of solution.

• Linear MPSVM: Multicategory Proximal SVM One-From-Rest classifier using a Linear
Proximal support vector machine (PSVM) for each subproblem. Usually, each one-from-
rest problem is an unbalanced two-class classification problem. This means that the
number of points m− in A− is much larger than the number of points m− in A+. In order
to address this problem, we apply balancing, which is, a weight factor added to each error
term in the objective function of (6) that is inversely proportional to the number of points
in each class. We call this MPSVM modification Balanced MPSVM (B-MPSVM) and is
given in (9). In order to further improve the performance of B-PSVM, for each two-class
classification subproblem we use the Newton Refinement 1. Although the refinement step
is very simple and fast, in almost all the tested cases this refinement combined with the
balancing procedure improved test set correctness of the MPSVM by as much as 16.8%
(Table 1, Iris). We called this MPSVM modification Balanced and Refined MPSVM
(BR-MPSVM). The underlying method consists of solving a nonsingular system of
linear equations.

The value of the parameter ν in each of these methods was chosen by using a tuning set
extracted from the training set. In order to find an optimal value for ν the following tuning
procedure was employed on each fold:

• A random tuning set of the the size of 10% of the training data was chosen and separated
from the training set.

• Several SVMs were trained on the remaining 90% of the training data using values for ν

equal to 2i , where i = 0, 1, . . . , 25.
• The value of ν that gave the best SVM correctness on the tuning set was chosen.
• A final SVM was trained using the chosen value of ν and all the training data. The

resulting SVM was tested on the testing data.

The linear BR-MPSVM running time was often one order of magnitude less than the stan-
dard OFRQP time. Furthermore, there was no a significant statistical difference between
both methods as far test set correctness was concerned. This is shown by the p-values
obtained using a 95% confidence interval t-test for the tenfold test set correctness. Ex-
periments indicated that both modifications, balancing and refinement achieved significant
accuracy improvements over the plain MPSVM, while maintaining relatively fast perfor-
mances. Testing set correctness, training set correctness, CPU times and p-values are given
in Table 1.

4.2. Numerical experiments using nonlinear classifiers

For the nonlinear case, we compared again nonlinear OFRQP and nonlinear PSVM and
its modifications. In all experiments, a Gaussian kernel was used. In order to find an
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Table 2. Nonlinear OFRQP and Nonlinear BR-MPSVM training correctness, tenfold testing correctness and
running times. Execution times include tenfold training. The p-values were calculated with respect to OFRQP
for tenfold testing correctness, using a t-test with 95% confidence interval. For the Vehicle dataset, RSVM (Lee
& Mangasarian, 2001) with an 85% kernel reduction was used for the nonlinear MPSVM classifier here in order
to obtain a smaller rectangular kernel problem that would fit in memory (2310 × 350 instead of 2310 × 2310).
Similarly for the Segment dataset, RSVM with 85% kernel reduction was used to obtain a smaller rectangular
kernel (2310 × 350 instead of 2310 × 2310.)

Data set m × n
no. of classes

Nonlinear OFRQP
Train
Test

Time (Sec.)

Nonlinear BR-MPSVM
Train
Test

Time (Sec.)
p-value

Wine 99.2% 100.0%

178 × 13 97.7% 100.0%

3 5.39 0.45

2.5e − 2

Glass 88.5% 78.09%

214 × 9 70.0% 69.1%

6 9.05 0.59

0.84

Iris 98.1% 99.5%

150 × 4 98.0% 98.7%

3 3.01 0.31

0.62

Vowel 100.0% 100.0%

528 × 10 94.3% 98.5%

11 221.34 6.62

0.67

Vehicle 89.5% 88.6%

846 × 18 80.5% 82.2%

4 148.01 1.17

0.78

Segment 99.9% 98.3%

2310 × 19 96.1% 97.0%

7 5562.31 11.65

0.16

optimal value for ν and the Gaussian kernel parameter µ, a tuning procedure similar to that
employed for the linear case was employed. Values for µ where taken equal to 2i , where
i = 5, 6, . . . , 35. Values for µ where taken equal to 2i , where i = −7,−6, . . . , 1. Since
the difference between the plain MPSVM and the modified MPSVM was not significant,
Table 2 shows comparisons between the following methods only:
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Figure 5. Example consisting of 500 data points in 2 dimensions belonging to one of three classes. Nonlinear
Gaussian kernel classifiers using MSPVM without balancing or Newton refinement generated a torus containing
mostly white diamonds, a crescent containing black x’s, and an ellipse cotaining mostly yellow circles. Since
the classes are unbalanced, most of the x class is misclassified by the algorithm and resulting in a 91.8% overall
training set correctness.

• Nonlinear OFRQP: One-From-Rest Quadratic Programming classifier using a standard
nonlinear support vector machine for each subproblem which is solved by a MATLAB-
CPLEX that uses a finitely terminating pivotal method of solution.

• Nonlinear BR-MPSVM: Balanced Refined Multicategory PSVM One-From-Rest clas-
sifier using a nonlinear PSVM including both modifications, balancing and Newton
refinement. The underlying method consists of solving a nonsingular system of linear
equations.

On the larger datasets (Vehicle, Segment) a rectangular kernel (Lee & Mangasarian,
2001) was used on both methods in order to reduce even more the computational time
while maintaining the correctness achieved by using the full kernel.

The nonlinear BP-MPSVM classifier was obtained in shorter time than the nonlinear
OFRQP classifier in all the datasets tested. Furthermore, the BR-MPSVM algorithm was
statistically better or equal to the nonlinear OFRQP on test set correctness. CPU times and
p-values are given in Table 2.

In order to show graphically for the nonlinear case that BP-MPSVM can produce sig-
nificant improvement over MPSVM, we created an artificial 2-dimensional example where
this improvement can be visually observed. The example consists of 500 data points in 2
dimensions belonging to one of three classes. Class 1 consists of 400 points, class 2 consists
of 50 points and class 3 consists of 50 points. Figure 5 depicts a nonlinear classification
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Figure 6. The same example as that of figure 5 classified by a nonlinear BR-MPSVM which uses MSPVM
plus balancing and Newton refinement. This resulted in a torus containing mostly white diamonds, another torus
containing black x’s and an ellipse containing mostly yellow circles. Overall training set correctness is 98.8%.

obtained using MSPVM without any modifications using a Gaussian kernel. Since the
classes are unbalanced, we observe that the majority of the x class is misclassified by the
algorithm leading to 91.8% training set correctness. On the other hand, figure 6 depicts
a nonlinear classification obtained by BP-MPSVM that utilizes balancing and Newton
refinement which gives a significantly improved 98.8% training set correctness.

5. Concluding remarks

We have proposed an extremely simple and fast procedure for generating linear and nonlin-
ear multicategory classifiers. The one-from-the-rest approach is based on proximity of each
class to one of two parallel planes that are pushed as far apart as possible. This procedure,
a multicategory proximal support vector machine (MPSVM) with balancing and Newton
refinement, requires nothing more sophisticated than solving k simple systems of linear
equations, for either a linear or nonlinear classifier, where k is the number of classes. In
contrast, standard one-from-the-rest support vector machine classifiers require the more
costly solution of a linear or quadratic program. For a linear classifier, all that is needed
by MPSVM is the solution of k nonsingular systems of linear equations of the order of the
input space dimension, typically of 100 or less, even if there are millions of data points to
classify. For a nonlinear classifier, a reduction method using rectangular kernels such as
Lee and Mangasarian (2001) is utilized and k linear systems of the order of as small as
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15% of the data points are solved. Our computational results demonstrate that MPSVM
classifiers obtain test set correctness comparable to that of standard one-from-the-rest SVM
classifiers at a fraction of the time, often orders of magnitude less.

We have also proposed a novel Newton refinement algorithm that can improve classifi-
cation accuracy for any two-class kernel classifier. This refinement is very fast, since it is a
minimization problem in only two variables and is easy to implement. Future research plans
include applying this refinement to other linear and nonlinear kernel-based classification
algorithms. We have also addressed the problem of unbalanced datasets, which often occurs
in one-from-rest classification approaches, by applying a very simple balanced version of
PSVM together with a Newton refinement.

A promising avenue for future research is that of incremental classification for large
scale multicategory datasets. This appears particularly promising in view of the very simple
explicit solutions and for the linear and nonlinear MPSVM classifiers that can be updated
incrementally as new data points come streaming in.

To sum up, the principal contribution of this work, is a very efficient classifier that
requires no specialized software. MPSVM can be easily incorporated into all sorts of data
mining and machine learning applications such as incremental and online learning that
require a fast, simple and effective multicategory classifier.
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