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Abstract

This paper discusses issues related to Bayesian
network model learning for unbalanced binary
classification tasks.  In general, the primary focus
of current research on Bayesian network learning
systems (e.g., K2 and its variants) is on the
creation of the Bayesian network structure that fits
the database best.  It turns out that when applied
with a specific purpose in mind, such as
classification, the performance of these network
models may be very poor. We demonstrate that
Bayesian network models should be created to
meet the specific goal or purpose intended for the
model.

We first present a goal-oriented algorithm for
constructing Bayesian networks for predicting
uncollectibles in telecommunications risk-
management datasets.  Second, we argue and
demonstrate that current Bayesian network
learning methods may fail to perform satisfactorily
in real life applications since they do not learn
models tailored to a specific goal or purpose.
Third, we discuss the performance of “goal
oriented” K2 and its variant.

1  INTRODUCTION

Most current research on Bayesian network based
learning systems (e.g., K2 [Cooper and Herskovits
1992], CB [Singh and Valtorta 1995], as well as the
methods of [Heckerman, Geiger and Chickering 1994,
Lam and Bacchus 1993, Bouckaert 1993]) focuses on
the creation of Bayesian network structure that fits the
database. These models are learned to “best” fit the

data and do not take into account the specific purpose
of the creation of the models i.e., classification tasks
and classification accuracy of the resultant models.
Note that even though a given model may be “correct”
in the sense of representing the structural relationships
of the data, it need not be the best model when it comes
to using it for a specific goal of making predictions
[Cowell et. al. 1993]. We show that such methods may
not work well in real life applications where the
models should be learned for a specific goal (e.g.
classification). First, we present a goal-oriented
algorithm for constructing Bayesian networks using
datasets in telecommunications risk-management.
Second, we compare the performance of a goal oriented
Bayesian network model (based on the Advanced
Pattern Recognition & Identification system APRI)
with that of a general Bayesian network model (based
on K2) using telecommunications risk-management
datasets.  Lastly, we present a modified, goal oriented
version of K2 and compare its performance to that of
APRI.

Every year, the telecommunications industry incurs
several billion dollars in uncollectible debt.  Hence,
controlling uncollectibles is an important problem in
the industry. One of the key elements of risk
management is the ability to use large quantities of
historical data to build models for risk assessment on a
per customer or per transaction basis.

If we can identify, with high accuracy, customers who
will not pay their bills, or phone accounts for which we
cannot collect, risk management would be simple.
Instead, we can never really be certain about a
customer or an account.  That is not to say, though,
that we must be entirely uninformed.  To support risk-
management policies that reduce the level of
uncollectible debt, we need only provide an estimate of



the probability of uncollectible debt.  In fact,
unqualified black and white assessments will not be
particularly useful because of the uncertainties that
nonetheless come into play.  Instead, a probability
model could and should be devised as input to a
normative decision-support system [Ezawa 1993].
That way a variety of reasoned actions might be
considered, ranging from inaction to call disconnect.
The question to be addressed is how to feasibly develop
a useful probability model.

The datasets employed here contain customer-summary
information of 40-90 thousand records and 20-50
million bytes which can be considered very large in
machine learning research, but tiny in the
telecommunications industry.  The interesting
outcomes are the non-paying customers, comprising
just a few percent of the population.  Unequal
misclassification costs compound the difficulties.  Non-
paying customers that initially slip through undetected
will be identified within a couple of billing cycles
anyway.  As bad as that may be, the greater potential
problem is incorrectly classifying valuable paying
customers.  In today’s highly competitive
telecommunications market, dissatisfied customers
have a range of options to choose from; the
corresponding revenue might well be lost forever. The
data are described by more than 45 variables, some
discrete and some continuous.  Many of the discrete
variables have large unordered outcome sets.  The
continuous variables are not normally distributed.  And
last but not least, missing values are all too common.

Some learning methods simply cannot hope to process
this much data or more in a timely manner because
they  process it many times over before converging to a
solution [Baldi and Chauvin 1991].  Efficient decision
tree learners that use recursive partitioning [Quinlan
1993] often have difficulty with discrete variables such
as countries or city names and their large unordered
outcome sets.  In addition, their pruning mechanisms
are easily thwarted by widely disparate class
proportions.  Under these conditions they often return a
single node tied to the majority class rather than a
meaningful tree structure.  Even though we enriched
our datasets by selecting a subpopulation more likely to
be uncollectible, now 9 to 12% uncollectible instead of
just a few percent uncollectible, these systems still have
trouble characterizing the minority class.  Lastly, state-
of-the-art inductive learners offer little support for
problem domains with unequal misclassification costs.
To our knowledge, none has considered
misclassification costs that vary from example to
example the way they do in this domain.  At the
moment, appropriate treatment of unequal

misclassification costs is an open research area [Catlett
1995, Pazzani et al 1994].  All of this is merely to
illustrate the kinds of difficulties this data poses to
learning systems in general, whether they are
regression systems, nearest-neighbor systems, neural
networks, etc.

One of the systems described in this paper is the
Advanced Pattern Recognition and Identification
(APRI) system, a Bayesian supervised machine-
learning system.  Comparisons between APRI and
standard methods such as discriminant analysis and
recursive tree builders can be found elsewhere [Ezawa
and Schuermann 1995a,b]. Comparison of the
performance of several conditionally-independent
probabilistic models to the performance of
conditionally-dependent models constructed by APRI
using large call-detail datasets of 4-6 million records
and 600-800 million bytes can be found in [Ezawa and
Norton 1995].

2  THE BAYESIAN NETWORK
APPROACH

Theoretically, the Bayesian Classifier [Fukunaga
1990] provides optimal classification performance.  As
a practical matter, however, its implementation is
infeasible.  Recent advances in evidence propagation
algorithms [Shachter 1990, Lauritzen and
Spiegelhalter 1988, Pearl 1988, Jensen et al 1990,
Ezawa 1994] and computer hardware allow us to
approximate the ideal Bayesian classifier by using
Bayesian network models [Cheeseman 1988, Cooper
and Herskovits 1992, Buntine and Smyth 1993,
Langley and Sage 1994, Singh and Valtorta 1995].
This section describes Bayesian networks in general,
the APRI learning algorithm, and a number of
alternative approaches for learning Bayesian network
models.

2.1  THE “GOAL ORIENTED” BAYESIAN
NETWORK

The classification problem can be addressed using the
joint probability P(π, X) of classes or populations π and
the variables X that describe the data.1 In particular, an
observation X can be classified as an instance of class

                                                       
1 Bold-faced capital letters will be used to denote vectors of features or
attributes, such as entire observations.  Individual features or attributes
will be identified by subscripted capital letters.  Particular values of an
individual feature will be identified by further subscripting the
corresponding lower-case letters.



π

X1 X2 Xq

π if π is most probable according to the conditional
probability distribution P(π | X).  Assessing P(π | X)
directly is often infeasible due to data and storage
limitations.  The conditional probability of the
attributes given the classes, P(X | π), and the
unconditional probability of the classes, P(π), are often
assessed instead by analyzing a preclassified training
data set.  With those probabilities in hand, Bayes’ rule
then yields the desired conditional probability P(π | X).

Merely representing P(π, X) can be difficult with a
large number of variables, if the distribution does not
have a convenient structure.  Bayesian Networks can be
used to encode a wide variety of probabilistic
information about probability distributions by factoring
them into attribute level relationships.  In a Bayesian
network, a variable’s parents can be thought of as its
causes.  Hence the factorization of P(π, X) is easy to
provide.  For the network depicted in Figure 1, that
factorization is as follows:

P(π, X) = P(π) × P(X1 | π) × P(X2 | π)

 × P(X3 | X2, π ) × …

Figure 1:  A Bayesian Network Model

The variables in this particular “Goal Oriented”
Bayesian network have a common parent, namely the
class node π.  This is not true of all Bayesian networks.
Instead, it is a feature of networks learned by APRI
that helps them address the classification problem at
hand.  Besides the convenient decomposition of P(π,
X), Bayesian network models have a number of useful
cognitive and computational properties that are
described elsewhere [Pearl 1988].  One of the
advantages that Bayesian networks provide is a
graphical representation of the independence in a
dataset.  In Figure 1, for example, variable X1 becomes
independent of the other variables, once the true
classification π is known.

2.2  APRI

The Advanced Pattern Recognition & Identification
(APRI) system developed at AT&T Bell Laboratories is
a Bayesian network-based supervised machine learning
system that constructs graphical probability models
like the one just described, using the entropy-based
concept of mutual information to perform dependency
selection [Cover and Thomas 1991].  It uses mutual
information thresholds, first to select a set of variables
and then to select a set of dependencies among the
chosen variables.  We settled on this approach to
reduce training time with special emphasis on repeated
reading of the training data.  APRI is extremely
efficient in this regard, never reading the training data
more than five times.

APRI constructs graphical probability models in a four-
step process. Three inputs are required: a database of
training cases and two parameters, Τπx and Txx, each
ranging between zero and one.  Tπx  governs variable
selection (or equivalently, selection of links between
the class node and the variable nodes).  Txx governs
selection of variable-to-variable links.

In the first step, APRI parses the input database and
characterizes its variables.  If the class variable is
continuous, APRI first defines the class outcomes
either by discretization or kernel density estimation.
APRI then scans the database to identify the outcome
sets for each variable.  For continuous variables it
either estimates the kernel density or uses information-
based discretization.

In the second step, APRI chooses the variables for the
final model.  It computes the mutual information
between the class node and the individual variables,
then ranks the variables accordingly.  Mutual
information is related to the statistical concept of
entropy:

H(X) =  - P(X P(Xi
i

i) log )∑

The entropy of a variable can be thought of as a
measure of the a priori uncertainty over its outcome.
Mutual information is a symmetric function that can be
defined directly in terms of probabilities:

I(XI; XJ) = ∑ ∑
i

Ii Jj
j

Ii Jj

Ii Jj

P(x  ,  x ) log 
P(x  ,  x )

P(x ) P(x )

or in terms of entropy and conditional entropy:

I(XI; XJ) = H(XI) - H(XI | XJ)

X3



The high-level idea is that the mutual information
between XI and XJ measures the reduction in
uncertainty of XI due to knowledge of XJ.  It is zero if
XI and XJ are statistically independent.  Its largest
value, H(XI), is attained if XI is a function of XJ.  In a
classification problem, a variable satisfying I(X; π) =
I(π; X) = H(π) would be very useful indeed.  In fact, in
that case the value of X uniquely determines the value
of π.

Without loss of generality, let the indices from 1 to K
provide the mutual-information ranking of the initial
variables, so that I(π; X1)  ≥  I(π; X2)  ≥  I(π; X3) and
so on.  APRI selects the smallest number of variables J
out of the entire pool of K variables, such that:

 I( ; X ) T I( ; X )j x k
k 1

K

j 1

J

π ππ≥ ∑∑
==

In other words, the parameter Tπx establishes a mutual
information threshold for choosing relevant variables.
A value of 1 indicates that all the variables should be
incorporated in the model.  Lesser values indicate that
the least informative variables should be excluded.  In
APRI’s final graphical model, the class node becomes
the parent of each of the selected variables.

The third step is akin to the second one, save that it
identifies relationships between variables.  In
particular, it computes the conditional mutual
information I(Xi ; Xj | π) between pairs of the J
previously identified variables, where i j≠ .  These
candidate links are rank ordered.  The highest ranked
are then selected until the cumulative value is just Txx

times the total conditional mutual information.
Directionality of these links is based on the mutual
information variable ranking determined in the second
step, with higher ranked variables pointing towards
lower ranked ones.

In the fourth and final step, APRI estimates P(π) and
P(Xi | C(Xi)) using frequency counts, where C(Xi)
represents the parents or causes of Xi, including the
class node π.

2.3  ALTERNATIVE METHODS

A number of other authors have developed algorithms
that search for graphical probability models by
computing joint probabilities P(Bs, D), where Bs is a
Bayesian network structure and D a dataset  [Cooper
and Herskovits 1992, Heckerman et al 1994, Singh and
Valtorta 1995].  These algorithms use evaluation
functions that rank individual elements in the space of
all Bayesian network structures.  Their greedy search

strategies use the probability metric to evaluate the
networks that result from every possible incremental
change to the current network, then apply the best of
the changes and iterate.  K2 is one such program
[Cooper and Herskovits 1992].  This element-by-
element approach was not adopted for our projects
because it is impractical for use with massive datasets.

Programs like K2 face a potential, possibly serious,
run-time problem. While K2 (and its variants) poses no
problems for domains where the size of the database is
small enough for the entire data to be read into
memory,  the number of times the algorithm reads the
data may become a critical factor (as far as the
efficiency of the process is concerned) for databases
that are very large and have to be read from secondary
storage, whenever required. If a dataset is too large to
hold in memory, it must be read at least once for each
arc in the final graphical model.  For K2, it appears
that the dataset would have to be read O(n(u+1)) times
to create a model, where n is a number of nodes and u
the maximum number of parents per node.  With 33
variables and allowing just 2 parents per node, K2
might need to read the dataset 99 times.  If the training
data consists of several million records and perhaps
hundreds of millions of bytes of data, as in the typical
application in the telecommunication’s risk-
management, reading and re-reading the data becomes
the limiting factor. APRI is very efficient in this
regard, reading the database just four or five times
during model creation, for any n and u :  once in the
first step for discrete classes or twice for continuous
classes, then once in each of the three remaining steps.

We verified the performance of K2 by implementing a
modified version of K2 under APRI system
environment using account summary datasets from two
different periods.

2.3.1  The K2 Algorithm:

We implemented K2 to replace APRI’s second and
third steps of feature selections of the model creation.
Our implementation of  K2 uses the first step of APRI
for input data processing, and use the fourth (final)
step to compute probabilities.  The algorithm puts all
the necessary information in memory, and uses APRI’s
variable rank order (i.e., mutual information ranking)
to set the order of variables for the model creation.  We
also experimented with CB [Singh and Valtorta 1995]
for the second and third steps.  Use of sub-modules of
APRI was needed, since K2 does not provide facilities



to handle continuous variables, nor the ability to
classify test datasets.

The K2 algorithm attempts to select the network which
maximizes the network’s posterior probability,  P(Bs,
D). However, since it is computationally infeasible to
search for the most probable network by exhaustively
enumerating all possible Belief network structures (the
number of possible networks exponential in the
number of network nodes), the algorithm reduces the
search space by requiring a total ordering on the
features from which the network will be constructed.
Then, given an ordering n1, n2, ..., nm of the m
attributes, the algorithm allows a node ni to have
parents only from the set of nodes n1,...,ni-1 that
precede it in the ordering. The algorithm takes each
successive attribute in the ordering, adds it as a node ni

in the network, and creates parents for ni in a greedy
fashion: rather than evaluate all subsets of network
nodes n1,...,ni-1 as parent nodes, K2 selects as a parent
node the single node in n1,...,ni-1  which most increases
the posterior probability of the resultant network
structure. New parent nodes are added incrementally to
ni as long as doing so increases the posterior
probability of the network given the data.

The CB algorithm [Singh and Valtorta 1995] uses
conditional independence tests to generate a “good”
node ordering from the data, and then uses the K2
algorithm to generate the Bayesian network from the
database using this node ordering. In particular, CB
starts with the complete, undirected graph on all
variables.  It first deletes edges between adjacent nodes
that are unconditionally independent (conditional
independence tests of order 0). When the edges in the
resultant graph are oriented, a total ordering on the
variables is obtained. This ordering is then used in the
K2 algorithm to construct the corresponding network.
The algorithm then repeats this process by removing
edges (from the undirected graph obtained in the
previous iteration) between adjacent nodes that are
conditionally independent given one node (conditional
independence test of order 1). It keeps constructing
networks for increasing orders of conditional
independence tests as long as the predictive accuracy of
the resultant network increases.

2.3.2  Goal Oriented K2:

We implemented two goal oriented versions of K2
described below. First, the original K2 algorithm was
used with the additional constraint that each attribute
have the class node, “uncollectible”, as a parent. The
intuition behind this was that each attribute should
have a direct effect on the class variable in order to

make a significant impact on classification accuracy.
However, since forcing all variables in the model to
have the class variable as a parent may introduce
spurious dependencies (a variable may be conditionally
independent of the class variable given some of the
other variables), we also modified this approach to first
select a subset of the variables that provide the
maximum information about the class variable (based
on conditional mutual information [Singh and Provan
1995]), and then use K2 to construct a Bayesian
network from the selected set of variables with the
constraint that each one of these variables should have
the class node as a parent.  The key difference between
APRI and this Goal Oriented K2 is that the former
selects all field nodes in one step and all field-to-field
dependencies in one step, whereas the latter will select
one node or one arc between field nodes at a time.

K2 as well as other current Bayesian network learning
algorithms try to find the model that fits the data best,
and do not care about the predictive accuracy of the
resultant model. If, however, the Bayesian network is
to be used for prediction, then techniques which learn
Bayesian networks with this specific goal in mind
might be expected to do better. Cowell and his
colleagues [Cowell, Dawid and Spiegelhalter 1993,
Spiegelhalter, Dawid, Lauritzen and Cowell 1993]
have proposed the use of “global metrics” for
measuring the quality of a Bayesian network model in
terms of its classification accuracy. Algorithms for
learning Bayesian networks based on such metrics
should perform better than K2 and other related
algorithms when models are to be learned specifically
for classification.  We have not tested “global or local”
metrics.

3  COMPARISON OF BAYESIAN
NETWORK MODELS USING
TELECOMMUNICATIONS

     RISK-MANAGEMENT DATASETS.

In this section we first compare APRI, K2, and CB,
and then compare APRI and the Goal Oriented K2 and
CB.  The APRI model was constructed using a 95%
attribute selection threshold and 25% attribute-to-
attribute threshold (Tπx and Txx respectively).

The training set includes 68,138 collectible and 6,633
uncollectible accounts described by 21 attributes.  The
unconditional probability of being uncollectible is
9.7%.  Our final task is to predict/classify a dataset
from a subsequent period using a model created from
the first period dataset, since in the end, when this



model is applied to real world business scenarios, it
will be trained on one period and asked to perform in
another later period.  The testing sample sizes are
94,004 collectibles and 10,481 uncollectibles, yielding
an 11.1% unconditional probability of being
uncollectible.

One of the interesting features of predicting
uncollectible debt is the requirement of genuine out-of-
sample testing datasets from separate time periods.
Such testing is essential because of the inevitable lag
between model creation and model deployment.  Of
course, there is the risk that fraud or uncollectible
patterns will change in the interim.  Seasonal
variations could even interfere.  Given enough data,
these effects might be modeled.  In addition, active
network policies could also change observed patterns of
activity, although there is probably less hope of
modeling the effects of untried policies.  Despite these
potential pitfalls, subsequent-period out-of-sample
prediction will remain the real litmus test for this
application.

One of the conventional strategies for comparing
probability distributions and scoring models is ROC
analysis [Swets 1988].  ROC analysis (a shorthand for
Receiver Operating Characteristic analysis) grew out of
WWII research on signal detection as a means to help
understand the trade-off between false positives and
true positives.  In our application, the true positives are
the uncollectible accounts correctly classified as
uncollectible, while the false positives are collectible
accounts incorrectly classified as uncollectible.  Given
a classifier and a set of testing data, the numbers of
true positives and false positives can be computed
directly.  But a probability model is not a classifier, and
so the number of true positives and the number of false
positives will vary according to the model and the
probability threshold that distinguishes positive
instances from negative instances.  We used
“predicted” uncollectible-probability thresholds from
0.0 to 0.9 to generate the ROC curves given in Figure
2.  One ROC curve is preferred to another if it is above
or to the left.  That is, the more desirable curve has a
lower false positive rate for a particular true positive
rate.

3.1  APRI VS K2

Figure 2 shows the performance of APRI, conditionally
independent or “naive” Bayes, K2, and CB models.
APRI’s performance is far superior to that of K2 and
CB.  We also found K2 to be very sensitive to the
ordering of variables provided for the model creation

(K2 does not provide the ordering of variables/nodes).
The K2 model presented here uses the ordering of
nodes provided by APRI (mutual information ranking
in step 2).

In our experiments K2 was a poor performer in every
instance when compared to APRI with its goal oriented
model.  Because K2 aims to model a probability
distribution and not to solve a classification problem
per se, it constructed models that did not bear, for the
most part, on the class node uncollectible.  K2 and CB
models even performed worse than the conditionally
independent model.

Figure 3 depicts the K2 model structure derived by
using APRI’s variable ordering.  Variables Xi named
after from the order of importance indicated by APRI,
i.e., π, X1, X2, .., and X21.  K2 created an elaborate
Bayesian network incorporating various variable
relationships that generally made intuitive sense.  On
the other hand, the classification node π has only the
one successor X2.  Hence, the prediction of π is solely
dependent on X2 unless the value of X2 is unknown.
Unfortunately in this dataset there were no missing
values of X2.  Hence the rest of the variables had no
impact on the classification π.
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Figure 2:  APRI vs Modified K2 ROC
Curves



Figure 3:  K2

Figure 4 shows the APRI model structure.  All the
variables retained in the model have the classification
node π as a predecessor, i.e., only variables which
impact the classification of π are retained.  Hence it is
not surprising that the APRI model out-performs K2
and its variant CB.

Figure 4:  APRI model

In terms of predicted probability of uncollectible for K2
model, none of the test data records were classified as
uncollectible with probability of 20% or higher.  Since
background probability of uncollectible was 11.1%, it
is difficult to use this probability to justify our action
against any account.

In the machine learning datasets, it has been shown
that in general K2 and its variant, CB work
competitively with other learning methods such as
C4.5 [Singh and Provan, 1995].  In the domain as
difficult as ours, it turns out that blindly applying
general Bayesian network models without any specific
goal is a futile exercise.  This lead to the further
modification of K2 with specific goal (class/prime
node).

3.2  APRI vs Goal Oriented K2

Figure 5 shows ROC curve analysis of APRI,
conditionally independent (naive Bayes), Goal
Oriented K2, and Goal Oriented CB.  APRI performs
slightly better than the rest of the models.  The
performance of the modified K2, modified  CB, and the
naive (independent) models seem equivalent.  Note
that for both K2 and CB models, all the variables
retained in the model have π as parents.  The
difference among APRI, K2, and CB models are that
they have different dependencies among the variable
retained in the model.  K2 and CB show signs of
overfitting.  Clearly in terms of classification accuracy,
their model expansion criteria of increased posterior
probability of the network given the data doesn’t seem
be appropriate here.
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Figure 5:  APRI vs Goal Oriented K2s ROC Curves

On the other hand, the results are not surprising.  In
any real-world application, all the variables are
carefully analyzed statistically and screened out (e.g.,
irrelevant or duplicating variables) before the variables
appear on the dataset.  It goes through a few filters
before it appears in the final dataset.  Hence, whether
an algorithm selects a variable one at a time or selects
several at once doesn’t seem to produce significant
differences.  With a specific goal for the creation of the
model, the performance from different methods for the
creation of Bayesian network seem to converge.

4  DISCUSSION AND SUMMARY

In this paper, we discussed issues related to Bayesian
network models in unbalanced binary classification
performance.  In general, most of the current research
on Bayesian network based learning systems (e.g., K2,
and its variants) focus on the creation of the Bayesian
network structure that fits the database best.  It turns
out that when applied to a specific purpose such as
classification, the performance of these network models
may be very poor.

We presented a goal-oriented algorithm for
constructing Bayesian networks for predicting
uncollectibles in telecommunications risk-management
datasets.  We discussed and demonstrated that the
general Bayesian network learning like K2 is not
necessarily suited for a specific purpose of

classification task using telecommunication’s risk-
management datasets.

We discussed and proposed goal oriented K2 and its
variant CB, and compared the performance with APRI.
The classification performance of goal oriented K2 and
CB improved dramatically from those of general K2
and CB. We demonstrate that the Bayesian network
model should be created to meet the specific
goal/purpose of the model in mind.
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