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Abstract. The problem of evolving binary classification models under
increasingly unbalanced data sets is approached by proposing a strategy
consisting of two components: Sub-sampling and ‘robust’ fitness func-
tion design. In particular, recent work in the wider machine learning
literature has recognized that maintaining the original distribution of
exemplars during training is often not appropriate for designing classi-
fiers that are robust to degenerate classifier behavior. To this end we
propose a ‘Simple Active Learning Heuristic’ (SALH) in which a subset
of exemplars is sampled with uniform probability under a class balance
enforcing rule for fitness evaluation. In addition, an efficient estimator
for the Area Under the Curve (AUC) performance metric is assumed in
the form of a modified Wilcoxon-Mann-Whitney (WMW) statistic. Per-
formance is evaluated in terms of six representative UCI data sets and
benchmarked against: canonical GP, SALH based GP, SALH and the
modified WMW statistic, and deterministic classifiers (Naive Bayes and
C4.5). The resulting SALH-WMW model is demonstrated to be both
efficient and effective at providing solutions maximizing performance as-
sessed in terms of AUC.

1 Introduction

Genetic Programming (GP) provides many unique opportunities for posing so-
lutions to the basic Machine Learning design questions of representation, cost
function, and credit assignment. In this work we are specifically interested in
the topic of cost function design under the classification domain of supervised
learning. Classically, an equally weighted cost function is assumed, such as ‘hits’
[11] or sum square error [2]. Such a design choice might be natural under bal-
anced binary classification problems where each class carries an equal risk, but
is questionable in the wider context of real world data sets that are frequently
unbalanced. At the very least, as the class distribution becomes increasingly un-
balanced, the likelihood of evolving degenerate classifier behavior will increase
[6], [19]. Addressing the class imbalance problem has at least two related per-
spectives: identification of an appropriate cost (fitness) function, and sampling
the original distribution of training exemplars such that the learning algorithm
adapts under a different distribution than the original data set.
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In the case of sampling algorithms, several paradigms have appeared, includ-
ing: (1) boosting and bagging algorithms that tend to result in multiple individ-
uals being built relative to static resampling of the original training data, and;
(2) active learning or sub-sampling algorithms that may identify a sub-sample of
exemplars from the larger training data set at each training cycle. The later case
is of interest in this work. In particular we begin with the observation made from
Weiss and Provost (under decision tree induction) [20]; that is, robust classifiers
may be built relative to the post training performance metric of Area Under the
Curve (AUC) if sub-samples are built stochastically using a uniform sampling
heuristic that simultaneously enforces class balance in the sub-sample.

In this work we assume the balanced stochastic sub-sampling model as our
base line model for scaling GP to larger (and therefore more interesting) data
sets than would typically be the case without a hardware speedup; hereafter
denoted the Simple Active Learning Heuristic (SALH). Next we investigate the
utility of a fitness function capable of approximating the properties of the AUC
metric. Specifically, AUC represents a rank based performance metric that ex-
plicitly measures performance in terms of two typically ‘conflicting’ performance
goals at multiple performance points. As such, the model is encouraged to, for ex-
ample, maximize recall while simultaneously minimizing false positive rate, thus
explicitly penalizing degenerate behaviors that might dominate models trained
from unbalanced distributions of exemplars. One drawback associated with the
wider utility of AUC as a cost function in Machine Learning has been the com-
putational cost of first estimating the Receiver Operating Characteristic (ROC)
curve and then deriving the associated AUC. Naturally, by assuming a sub-
sampling model we decouple the evolutionary cycle from the original dimension
of the data set. However, even under such conditions a significant overhead still
exists in the inner loop if we attempt to estimate the AUC directly. The final
component of the model investigated in this work is therefore to make use of the
Wilcoxon-Mann-Whitney (WMW) statistic where this provides a direct estima-
tor for the AUC metric [9], [21]. To this end, we detail modifications necessary
to focus the ensuing GP classifiers, such that ‘robust’ performance under the
WMW metric was generalized to corresponding behavior under test conditions.

The proposed model of WMW fitness function estimated over exemplar sub-
sets identified under SALH, is benchmarked over six unbalanced data sets from
the UCI repository [16]. Comparisons are made against both deterministic clas-
sifiers (C4.5 and Naive Bayes), canonical GP, and GP under SALH (both of
the latter assume ‘hits’ based fitness). The WMW model is the most success-
ful in maximizing the area under the curve performance statistic on test data,
bettering C4.5 on five of the six data sets, and significantly better than either
alternative GP paradigm.

2 Related Work

As indicated in the introduction we approach the problem of designing a ‘ro-
bust’ classifier using two inter-related concepts: establishing a suitable training
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exemplar sampling algorithm, and establishing an appropriate cost (fitness) func-
tion. Within the context of Genetic Programming in particular, several works
have proposed approaches to the training exemplar sub-sampling problem. The
work of Gathercole and Ross in particular demonstrated that not all exemplars
are equally relevant to the training task at any point in time [8]. Two heuristics,
denoted exemplar ‘age’ and ‘difficulty’ were used to bias the selection of exem-
plars to appear in the current fitness evaluation (training epoch). Such a model
provides a considerable speedup relative to fitness evaluation over all training
exemplars and was demonstrated to result in individuals performing no worse.
Recent research has considered the utility of competitive coevolutionary mod-
els as the basis for an alternative model of active learning. In particular the
host-parasite model of Hillis demonstrated that such a model could provide the
basis for biasing the selection of a subset of training exemplars at fitness eval-
uation [10]. The host-parasite model does however suffer from the problem of
establishing the relevant problem dependent ‘virulence factor’ to ensure that the
exemplars selected (parasite) do not dominate the ability of the learners (host)
[3], [15]. More recently, the competitive coevolutionary model for rewarding the
ability of exemplars to ‘distinguish’ between learners under a Pareto model of
coevolution has received a lot of interest [7], [17], [5]. Attempts to make use of the
Pareto competitive coevolutionary paradigm under the GP classification domain
have utilized a two population model, with one population representing the sub-
set of training exemplars on which fitness evaluation is conducted, and a second
population in which classifiers are evolved. Under such an architecture, Pareto
competitive frameworks to date concentrate on establishing archiving strate-
gies that posses desirable properties (such as monotonic progress) [4]. However,
the indexing of exemplars by the ‘point’ population does not hold any implicit
structure to guide the definition of appropriate variation operators. As such the
most successful Pareto Competitive models, under the GP classification domain,
have relied on the uniform selection of exemplar indexes and a class balancing
heuristic to create the point population [13].

With respect to the utility of performance metrics that explicitly reward the
evolution of ‘robust’ as opposed to naive classifier behaviors, many authors have
considered cost functions which make use of fixed penalty functions [19], [18].
Adaptive cost functions have also been proposed, for example Eggermont et al.
developed a scheme for periodically re-weighting the error associated with train-
ing exemplars during training [6]. This is naturally related to the ‘difficulty’
heuristic devised by Gathercole, but without attempting to use this as an ex-
emplar selection bias under an active learning paradigm. Langdon and Buxton
considers the problem of AUC optimization given two previous classifiers with
different ROC profiles [12]. However, the problem addressed is naturally distinct
from designing the initial classifiers such that ROC profiles are suitably distinct.

The two themes central to the method adopted in this work result from the
findings of Weiss and Provost on training decision tree induction classifiers under
unbalanced data sets [20], and a successful attempt at constructing an AUC type
cost function for training a neural network classifier on a very unbalanced data
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set [21]. In the case of Weiss and Provost, a systematic study is performed on the
impact of training subset class balance under the C4.5 algorithm. A clear sta-
tistically significant preference was demonstrated for uniform exemplar selection
while enforcing equal representation of major and minor classes. Such a heuristic
was central to establishing effective operation of point population sampling algo-
rithms for Pareto competitive coevolution of classifiers, and in some cases may
out perform this model [14]. The work of Yan et al., began by formally demon-
strating that minimizing metrics such as mean square error or cross-entropy is
not sufficient for maximizing AUC [21]. They then make use of the WMW esti-
mator for AUC and derive an alternative, back-propagation compatible version
of the metric, thus enabling them to train a multi-layer perceptron to maximize
the AUC performance metric directly, and demonstrate the utility of such an
algorithm under a very unbalanced ‘churn’ prediction problem.

3 Methodology

The basic goal of this work is to provide a generic model for the evolution
of GP classifiers under unbalanced data sets through a combined approach of
class balanced stochastic sub-sampling and a modified WMW cost function. The
combined approach is necessary to: (1) actively bias the distribution of exemplars
over which learning is conducted; (2) establish a ‘robust’ cost function, and; (3)
address the computational cost of fitness evaluation. In the following we will
define the sub-sampling based active learning model of GP classification, and
WMW cost function and associated modification for the case of GP.

3.1 Simple Active Learning Model

In order to decouple the cost of fitness evaluation from the size of the training
data set, an active learning model is assumed. The Dynamic Subset Selection
(DSS) model of Gathercole and Ross has been widely used in the GP domain.
However, in this work we assume a simpler model. Specifically, exemplars are
selected with uniform probability from the original training partition, such that
major and minor class provide an exemplar subset of fixed size with equal rep-
resentation of both classes. The DSS algorithm was originally compared against
subsets formed from exemplars sampled with purely uniform probability, but
without the requirement for equal class balance [8]. This may naturally result
in subsets being formed that represent major and minor classes with the same
distribution as in the entire training partition. However, as the distribution of
major to minor class increases, the likelihood of building ‘degenerate’ subsets
increases, see for example the comparison of DSS and canonical GP in [13]. The
study of Weiss and Provost establishes that such a scheme for building sub-
samples will result in optimizing for an accuracy based performance metric, but
relative to a more informative performance metric such as AUC, will result in
very low scores. Thus, this study adopts a class balance enforcing subsampling
model that selects exemplars with uniform probability from major and minor
class, until the equal class constraint is satisfied.
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Aside from the active learning model for defining a new subset of exemplars at
each generation, the GP classifier takes the form of canonical tree structured GP.
Specifically, in the case of the wrapper operator, a sigmoid is employed where
this has the desirable property of encouraging exemplars to move away from the
switching point of the class boundary.

y(x) =
2

(1 + exp(−GPout(x)))
− 1 (1)

where GPout(x) denotes the ‘raw’ scalar value returned by the root node of the
phenotype following evaluation of the program on input vector ‘x’, and y(x)
denotes class membership over the interval [-1, 1] with respect to exemplar ‘x’.
Naturally, values tending towards ‘-1’ indicate out of class and values tending
towards ‘1’ are indicative of in class membership.

3.2 Wilcoxon-Mann-Whitney Fitness Function

The area under the curve (AUC) metric expresses classifier performance in terms
of the area under the ‘receiver operating characteristic’ or ROC. Such curves
typically characterize classifier performance in terms of true positive rate versus
false positive rate [1], [9]. Unlike most widely utilized performance metrics, such
as accuracy or precision and recall, the ROC curve does not rely on a single
performance point to characterize classifier behavior. That is to say, both true
positive rate and false positive rate are estimated at multiple performance points
for each exemplar; where the performance points are derived, for example, from
cuts taken across the class membership function of (1). Needless to say, the
more thresholds utilized, the more accurate the characterization, but the more
expensive the evaluation. Specifically, estimating the ROC curve requires the re-
evaluation of true and false positive rates for a sufficient number of performance
points to provide an accurate rendition of the curve. Only with this complete
can estimate of the AUC. All of this takes place within the inner loop of GP.
Thus in this work, we do not estimate the AUC or ROC, but make use of the
Wilcoxon-Mann-Whitney (WMW) statistic, where this is already known to be
an equivalent estimator for AUC without building the ROC [9]. The WMW
statistic has the form,

WMW (I, P, N) =
|P |∑

i=0

|N |∑

j=0

C(y, Pi, Nj) (2)

where

C(y, a, b) =

{
1 if y(a) > y(b)
0 otherwise

(3)

and y(a) is the class membership returned by the wrapper operator of equation
(1) under the exemplar represented by input vector a, P is the set of all majority
class exemplars, and N is the set of all minority class exemplars. Thus, Pi(Nj)
is the ith (j th) element of P (N).
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Naturally, equation (2) conducts a series of pairwise comparisons between in
and out of class exemplars, only rewarding cases in which the class membership
function for in class exemplars exceeds that for the out of class cases as per
(3). However, when used in combination with a continuous valued (as opposed
to binary) membership operator it is also necessary to explicitly reward class
membership values that fall on the relevant side of the origin. We denote the
resulting WMW based fitness function WMWfitness, expressed as follows,

WMWfitness(y, P, N) = f(y, P ) · f(y, N) + WMW (y, P, N) (4)

where

f(y, S) =
|S|∑

i=0

{
1 if d(Si) = y(Si)
0 otherwise

(5)

and d(Si) is the desired class label of exemplar i, and I(Si) is the corresponding
binary class label suggested by the GP classifier (i.e. thresholding the wrapper
about the origin).

The first component of the right hand side of (4) contributes a ‘point’ for
every pair of correctly labeled exemplars; whereas the second component takes
the form of the original WMW metric. On an exemplar by exemplar basis, the
WMW contribution is satisfied first; thus, evolution will first find individuals
with good AUC properties and then normalize the pairwise dominance property
relative to the origin of the activation function, equation (1).

4 Results

4.1 Canonical GP

The empirical evaluation is conducted utilizing a common canonical tree struc-
tured model of GP [11] using the 1.1 distribution of lilgp [22], although the GP
representation itself has no impact on the algorithm proposed. The selection op-
erator takes the form of Koza’s ‘overselection’, thus the top thirty two (bottom
sixty eight) percent of the population account for eighty (twenty) percent of the
parents. Such a model naturally has a higher take-over rate than would be the
case for fitness-proportionate selection alone. The terminal set was limited to
indexing the features of the problem domain, whereas the function set took the
form of the four arithmetic operators, four higher order operators with a single
argument (sine(a), cos(a), ea,

√
a) and the standard conditional statement with

four arguments (c if a < b, d otherwise). The remaining GP parameters take the
form: Population size (800), Max tree nodes (256), Half-half initialization (2-6
node depth), Crossover (0.7), Mutation (0.3), Internal versus leaf node likelihood
(0.9/0.1). In no cases was any attempt made to optimize these values.

4.2 Data Sets

A total of six data sets were employed in the evaluation, five corresponding to
a subset of those used in the study of Weiss and Provost [20], and the sixth
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corresponding to the widely utilized BUPA liver diagnosis data set. All data sets
are available through the UCI repository [16] and have been selected on account
of the resulting varied ratio of major to minor class distributions. As per the the
Weiss and Provost study, we make the multiclass data sets binary by defining the
minor class as in class and the remaining classes as the out of class exemplars.
In each case the data set is stratified, with twenty five percent of the data set
being withheld for the purpose of establishing a test set and the remainder of
the data representing the training set. Table 1 establishes the basic properties
each data set as a whole.

Table 1. Data Set Characterization

Name Size % Minority Class # Attributes
Abalone 4,177 8.7 8

Sick Thyroid 3,163 9.3 25
Opt. Digits 5,620 9.9 64
Solar Flare 1,389 15.7 10

Adult 48,842 23.9 14
Liver 345 42 6

4.3 Evaluation

Evaluation is conducted in the form of three separate comparisons. In the first
case we compare canonical GP with the Simple Active Learning Heuristic
(SALH) of Section 3.1 over the four smaller data sets (too computationally
expensive to apply canonical GP to the Adult data set). The only difference
between the two models is the set of exemplars utilized for fitness evaluation.
Experiment two compares GP classifiers evolved using the SALH and a count
based fitness function, versus the same active learning heuristic, but with fitness
evaluated over the modified WMW metric of (4). Our last comparison compares
GP models evolved under the WMW metric with those trained under determin-
istic machine learning algorithms.

All post training evaluation will be performed in terms of test set performance
as measured by the AUC metric derived from the trapezoidal integration algo-
rithm [1]. That is to say, the AUC metric expresses the area under the curve as
estimated from the receiver operating characteristic (ROC). The ROC is con-
structed from the performance of each classifier under true positive and false
positive rates taken from twenty two points representing thresholds taken uni-
formly across the interval of the wrapper operator, equation (1). This results in
a scalar characterization of performance, with values in the range of zero (no
better than guessing) to a half (perfect classification of both minority and major
classes).

Canonical GP Versus SALH. In order to establish whether the baseline
canonical model of classification, that is fitness evaluation over the entire set of
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training exemplars, produces classifiers that are any more robust than fitness
evaluation over the balanced uniform model of subset selection, we compare
post training AUC performance over fifty runs of each model on all but the
‘Adult’ data set from Table 1. In no cases was a statistically significant difference
recorded at a Confidence interval of ninety five percent (Student T-test). Thus
no negative impact is attributed to fitness evaluation conducted over exemplar
subsets identified under SALH versus all training exemplars.

Combining SALH with WMW Fitness. The next test establishes the sig-
nificance of introducing the WMW fitness function in combination with SALH.
In effect we how have an efficient mechanism for evolving individuals under a
‘robust’ estimator of fitness, albeit only over subsets selected stochastically un-
der the balance enforcing heuristic. Figures 1 and 2 summarize AUC returned
on each test data set as first quartile, median, and third quartile (statistic col-
lected over fifty runs). The WMW fitness function yields solutions with sta-
tistically significantly better AUC values under five of the six data sets at a
confidence of ninety nine percent, and at ninety five percent in the case of the
liver data set. The amount of variation in results returned in models trained
using the WMW based fitness function are also much lower than that under
the hits based fitness function. In short, even when the natural distribution of
the original data set tends to equal representation of both classes, the WMW
based fitness function is much more effective at directing the credit assignment
process.
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Fig. 1. SALH with WMW fitness function: Post training AUC performance under test
partition for each data set
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Fig. 2. SALH with ‘hits’ fitness function: Post training AUC performance under test
partition for each data set

Comparison with Deterministic Models. Our final test compares the test
set performance of models trained using Naive Bayes and C4.5 to those evolved
under the WMW fitness function. This immediately presents the problem of
establishing a framework for making the comparison. In particular, the deter-
ministic models are trained following a single pass through the entire training
data set, whereas evolutionary models are evolved over multiple runs. Making
multiple folds of the original partition does not alter this relationship. Each fold
would still require multiple runs of the evolutionary method. In effect GP re-
quires the initialization of “free parameters” that are distinct from the learning
parameters, whereas deterministic models such as C4.5 and Naive Bayes only
have learning parameters. Thus, we adopt the following policy in which the de-
terministic model is used to establish a performance threshold against which we
then ask what is the likelihood of the evolutionary model matching or bettering
this performance.

Figure 3 reports the likelihood of the GP classifier initializations matching or
bettering the performance of the Naive Bayes and C4.5 deterministic classifiers.
Larger bars imply more of the GP solutions matched or bettered the base line
established by the deterministic model. Conversely, no bar implies that all GP
solutions were worse than the deterministic base line. The data set that returned
no benefit from the GP model was the largest data set, Adult, where this might
be an indicator for evolving over more generations (the common training limit
of fifty generations implies that only seven percent of the Adult training data
is sampled). Both Abalone and Euthyroid, the two data sets with the largest
degree of class imbalance were most likely to result in the GP model improving
on the deterministic classifier base line. Interestingly, C4.5 found the Solar flare
data set particularly difficult, whereas Naive Bayes did not perform as well on
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the Liver data set (the most balanced data set considered). However, the Naive
Bayes classifier bettered both C4.5 and GP on the Optical Character recognition
problem. In short the GP solutions were better than the Naive Bayes classifier in
a minimum of sixty percent of the cases in four of the six data sets, and unable
to better Naive Bayes on the other two data sets. Under the performance target
set by C4.5, GP was better at least fifty percent of the time under four of the six
data sets, and returned results that were better in at least twenty five percent
of the initializations on the fifth data set.
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Fig. 3. Percent of SALH-WMW solutions matching or bettering the deterministic clas-
sifier baseline under post training AUC performance statistic evaluation of test parti-
tion

5 Conclusion

The problem of training GP classifiers under large unbalanced binary data sets
is addressed through the dual approach of training exemplar selection and ap-
propriate fitness function design. We begin by utilizing a class balance heuristic
under an active learning paradigm, for the evolution of GP classifiers. The en-
suing Simple Active Learning Heuristic is shown to perform at least as well as
canonical GP evolved over all training exemplars. The second part of our ap-
proach begins with the WMW estimator for the AUC metric. As is, this metric
rewards pairwise dominance behaviour as measured between minor and major
class exemplars. However, we are also interested in maximizing the separation
between the two sets of behaviors as mapped to ‘GPout’ and resolved in terms of
a smooth wrapper operator, a sigmoid. To this end, we introduce a second factor
into the fitness function, such that individuals that both establish the pairwise
dominance property and enforce class membership relative to the wrapper oper-
ator origin receive more reward than those establishing the dominance property
alone. Benchmarking on six data sets from the UCI repository with minor class
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representations in the range of five to forty percent of the data set demonstrates
that the proposed approach is significantly better than classifiers evolved under
the same active learning heuristic and typically better than C4.5 or Naive Bayes
under five and four of the six data sets respectively.

Future work will continue to investigate the significance of fitness functions in
GP classifier design. In particular, recent work in machine learning has demon-
strated a bias between classes of cost function and classifier operation. We antici-
pate there being equivalent relationships between function set design and classes
of fitness function.
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