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Abstract. Emerging patterns (EPs) are itemsets whose supports change
significantly from one dataset to another; they were recently proposed
to capture multi-attribute contrasts between data classes, or trends over
time. In this paper we propose a new classifier, CAEP, using the follow-
ing main ideas based on EPs: (i) Each EP can sharply differentiate the
class membership of a (possibly small) fraction of instances containing
the EP, due to the big difference between its supports in the opposing
classes; we define the differentiating power of the EP in terms of the
supports and their ratio, on instances containing the EP. (ii) For each
instance t, by aggregating the differentiating power of a fixed, automat-
ically selected set of EPs, a score is obtained for each class. The scores
for all classes are normalized and the largest score determines t’s class.
CAEP is suitable for many applications, even those with large volumes
of high (e.g. 45) dimensional data; it does not depend on dimension re-
duction on data; and it is usually equally accurate on all classes even
if their populations are unbalanced. Experiments show that CAEP has
consistent good predictive accuracy, and it almost always outperforms
C4.5 and CBA. By using efficient, border-based algorithms (developed
elsewhere) to discover EPs, CAEP scales up on data volume and dimen-
sionality. Observing that accuracy on the whole dataset is too coarse
description of classifiers, we also used a more accurate measure, sensi-
tivity and precision, to better characterize the performance of classifiers.
CAEP is also very good under this measure.

1 Introduction

Classification is an important problem in data mining and machine learning,
aimed at building a classifier from training instances for predicting the classes
of new instances. Recently, datasets are becoming increasingly larger in both
volume and dimensionality (number of attributes); a new challenge is the ability
to efficiently build highly accurate classifiers from such datasets. In this paper
we propose a new classifier, CAEP (Classification by Aggregating Emerging
Patterns), which is suitable for many applications, even those with large volumes

S. Arikawa, K. Furukawa (Eds.): DS’99, LNAI 1721, pp. 30–42, 1999.
c© Springer-Verlag Berlin Heidelberg 1999



CAEP: Classification by Aggregating Emerging Patterns 31

of high dimensional data. The classifier is highly accurate, and is usually equally
accurate on all classes even if their populations are unbalanced. These advantages
are achieved without dimension reduction on data.

CAEP is based on the following two main new ideas:

(i) We use a new type of knowledge, the emerging patterns (EPs), recently
proposed in [3], to build CAEP. Roughly speaking, EPs are those itemsets whose
supports (i.e. frequencies) increase significantly from one class of data to another.
For example, the itemset {odor=none, stalk-surface-below-ring = smooth, ring-
number=one} in the Mushroom dataset [10] is a typical EP, whose support
increases from 0.2% in the poisonous class to 57.6% in the edible class, at a
growth rate of 288 (= 57.6%

0.2% ). For us, an item is a simple test on an attribute,
and an EP is a multi-attribute test. Each EP can have very strong power for dif-
ferentiating the class membership of some instances: if a new instance s contains
the above EP, then with odds of 99.6% we can claim that s belongs to the edible
class. In general, the differentiating power of an EP is roughly proportional to
the growth rate of its supports and its support in the target class.

(ii) An individual EP is usually sharp in telling the class of only a very small
fraction (e.g. 3%) of all instances, and thus it will have very poor overall clas-
sification accuracy if it is used by itself on all instances. To build an accurate
classifier, we first find, for each class C, all the EPs meeting some support and
growth rate thresholds, from the (opponent) set of all none-C instances to the
set of all C instances. Then we aggregate the power of the discovered EPs for
classifying an instance s: We derive an aggregate differentiating score for each
class C, by summing the differentiating power of all EPs of C that occur in s; the
score for C is then normalized by dividing it by some base score (e.g. median)
of the training instances of C. Finally, we let the largest normalized score deter-
mine the winning class. Normalization is done to reduce the effect of unbalanced
distribution of EPs among the classes (classes with more EPs frequently give
higher scores to instances, even to those from other classes).

CAEP achieves very good predictive accuracy on all the datasets we tested,
and it gives better accuracy than C4.5 and CBA on all except one of these
datasets. (Note: we reported all datasets that we tested!) We believe that the
high accuracy is achieved because we are using a new high dimensional method
to solve a high dimensional problem: Each EP is a multi-attribute test and
CAEP is using the combined power of an unbounded set of EPs to arrive at a
classification decision.

Being equally accurate on all classes is very useful for many applications,
where there are a dominant class (e.g. 98% of all instances) and a minority class,
and the sole purpose of classification is to accurately catch instances of the
minority class. Classification accuracy is not the desired measure, as we would
then consider the classifier which classifies all instances as in the dominant class a
very good classifier. In this paper we also measure classifiers using sensitivity and
precision, which reward classifiers that correctly label more minority instances
and do not mislabel many other instances.
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The CAEP classifier can be efficiently built for large high dimensional train-
ing datasets in a scalable way, since EPs can be discovered efficiently, using
border-based algorithms [3] and Max-Miner [1]. We can quickly produce CAEP
classifiers for datasets such as Mushroom, whose records consist of 21 attributes.
(Figure 9 of [1] shows that CPU time is 100 seconds for support threshold of
0.1%. Border-based algorithms [3] then can find the EPs in around 0.5 hour.)

Several parameters need to be selected. All these are done automatically,
using the performance of the resulting classifier on the training instances as
guidance. Because of the use of aggregation and perhaps normalization, we have
not encountered the traditional overfitting problem in our experiments.

Organization: We compare CAEP with related work below. §2 introduces
EPs and preliminaries. §3 presents our main ideas on how to build CAEP. §4
discusses how to efficiently discover the EPs, their supports and growth rates.
§5 discusses how to reduce the number of EPs and §6 on the automatic selec-
tion of CAEP’s parameters. §7 discusses the rice-DNA dataset and the need to
use sensitivity and precision to measure classifiers. §8 contains the experimental
results, and §9 offers some concluding remarks.

Related Work: CAEP is fundamentally different from previous classifiers
in its use of the new knowledge type of EPs. To arrive at a score for decision
making, CAEP uses a set of multi-attribute tests (EPs) for each class. Most
previous classifiers consider only one test on one attribute at a time; a few
exceptions, X-of-N [14], CBA [9] and linear decision trees [2], consider only one
multi-attribute test to make a decision.

Aggregation of the differentiating power of EPs is different from bagging or
boosting [13], which manipulate the training data to generate different classifiers
and then aggregate the votes of several classifiers. With CAEP, each EP is too
weak as a classifier and all the EPs are more easily obtained.

Loosely speaking, our aggregation of the power of EPs in classification is re-
lated to the Bayesian prediction theory. For an instance t viewed as an itemset,
Bayesian prediction would label t as Ck, where the probability Pr(t|Ck) ∗Pr(Ck)
is the largest among the classes. The optimal Bayesian classifier needs to “know”
the probability Pr(t|Ck) for all possible t, which is clearly impractical for high di-
mensional datasets. Roughly speaking, CAEP “approximates” Pr(t|Ck)∗Pr(Ck)
using the normalized score.

CAEP is the first application of EPs to classification. Partially influenced by
CAEP, [8] proposes a different classifier, JEP-Classifier, also based on aggregated
power of EPs. Major differences include: (i) CAEP uses general EPs, whereas
JEP-Classifier uses exclusively jumping EPs (i.e. EPs whose support increases
from zero in one dataset to non-zero in the other dataset). (ii) For datasets with
more than two classes, CAEP uses the classes in a symmetric way, whereas JEP-
Classifier uses them in an ordered way. (iii) In aggregating the differentiating
power of all EPs, CAEP uses factors based on both support and support growth
rate, whereas JEP-Classifier uses only the supports. (iv) As CAEP uses EPs
with mixed growth rates, the reduction of the EPs is more complicated; for
JEP-Classifier, all jumping EPs have infinite growth rates and the reduction is
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simpler. (v) The normalization idea is used in CAEP but not in JEP-Classifier.
The two classifiers offer their own advantages: CAEP is better for cases with few
or even no jumping EPs whose supports meet a reasonable threshold (such as
1%), whereas JEP-Classifier is better when there are many jumping EPs. Each
of them is almost consistently better than C4.5 and CBA.

2 Emerging Patterns and Preliminaries

Assume the original data instances have m attribute values. Each instance in the
training dataset D is associated with a class label, out of a total of p class labels:
C1, C2, ..., Cp. We partition D into p sets, D1, D2, ...., Dp, with Di containing all
instances of class Ci.

Emerging patterns are defined for binary transaction databases. To find them,
we may need to encode a raw dataset into a binary one: We discretize the value
range of each continuous attribute into intervals [7]. Each (attribute, interval)
pair is called an item in the binary (transaction) database, which will be repre-
sented as an integer for convenience. An instance t in the raw dataset will then
be mapped to a transaction of the binary database: t has the value 1 on exactly
those items (A, v) where t’s A-value is in the interval v. We will represent this
new t as the set of items for which it takes 1, and we will assume henceforth the
datasets D, D1, ..., Dp are binary.

Let I be the set of all items in the encoding. An itemset X is a subset
of I, and its support in a dataset D′, suppD′(X), is |{t∈D′|X⊆t}|

|D′| . Given two
datasets D′ and D′′, the growth rate of an itemset X from D′ to D′′ is defined
as growth rateD′→D′′(X) = suppD′′ (X)

suppD′ (X) if suppD′(X) 6= 0; = 0 if suppD′(X) =
suppD′′(X) = 0; and = ∞ if suppD′(X) = 0 6= suppD′′(X).

Emerging patterns [3] are itemsets with large growth rates from D′ to D′′.
Definition 1. Given growth rate threshold ρ > 1, an emerging pattern (ρ-EP
or simply EP) from D′ to D′′ is an itemset e where growth rateD′→D′′(e) ≥ ρ.

Example 1. Consider the following training dataset with two classes, P and N
(this is actually an encoding of the Saturday morning activity example from [11]).

P N
{ 2,6,7,10 } { 3,5,7,10 } { 3,4,8,10 } { 1,6,7,10 } { 1,6,7,9 }
{ 2,4,8,9 } { 1,4,8,10 } { 3,5,8,10 } { 3,4,8,9 } { 1,5,7,10 }
{ 1,5,8,9 } { 2,5,7,9 } { 2,6,8,10 } { 3,5,7,9 }

Then {1, 9} is an EP from class P to class N with a growth rate 9
5 ; it is also an

ρ-EP for any 1 < ρ ≤ 9
5 . Some other EPs are given later.

3 Classification by Aggregating EPs

We now describe the major ideas and components of the CAEP classifier: (1) how
to partition the dataset to derive the EPs for use in CAEP, (2) how individual
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EPs can differentiate class memberships, (3) how to combine the contribution
of individual EPs to derive the aggregate scores, and (4) how to normalize the
aggregate scores for deciding class membership. We also give an overview on how
to construct and use CAEP.

3.1 Partitioning Dataset to Get EPs of Classes

For each class Ck, we will use a set of EPs to contrast its instances, Dk, against all
other instances: We let D′k = D−Dk be the opposing class, or simply opponent,
of Dk. We then mine (discussion on how is given later) the EPs from D′k to Dk;
we refer to these EPs as the EPs of class Ck, and sometimes refer to Ck as the
target class of these EPs.

For Example 1, some EPs of classN (i.e. from P toN ) are (e : {1}, suppN (e) :
0.6, growth rateP→N : 2.7), ({1, 7}, 0.6,∞), ({1, 10}, 0.4, 3.6), ({3, 4, 8, 9}, 0.2,
∞). Similarly, some EPs of P are ({2}, 0.44,∞), ({8}, 0.67, 3.33), ({4, 8}, 0.33,
1.67).

3.2 Differentiating Power of Individual EPs

Each EP can sharply differentiate the class membership of a fraction of instances
which contain the EP, and this sharp differentiating power is derived from the
big difference between its supports in the opposing classes. Continuing with
Example 1, consider the EP ({1, 10}, 0.40, 3.60) for class N . Suppose s is an
instance containing this EP. What is the odds that s belongs to N , given that s
contains this EP? To simplify the discussion, we assume all classes have roughly
equal population counts; then the answer is suppN

suppN+suppP
= 3.60∗suppP

3.60∗suppP+suppP
=

3.60
3.60+1 = 78%, since suppN = 3.60∗suppP . Without this assumption, we need to
replace supports (e.g. suppN ) by counts (e.g. suppN ∗ countN where countN is
the number of instances of class N ), and similar odds can be obtained. Observe
that this EP has no differentiating power on instances s′ that do not contain the
EP. So, assuming the population ratio in the training data accurately reflects
the ratio in test instances and all classes have roughly equal population counts,
this EP can differentiate the class membership with the probability of 78% for
roughly suppN+suppP

2 = 0.5 ∗ (1 + 1
3.60 ) ∗ suppN = 25% of the total population.

The fraction of instances which contain an EP may be a very small fraction
(25% above, but much smaller, e.g. 3%, in many examples) of all instances.
Hence, it cannot yield very accurate predictions if it is used by itself on all
instances. For example, if we applied the above EP on all instances, we would
arrive at an overall predictive accuracy of roughly 0.25 ∗ 0.78 = 19.5%. This
would be much lower if coverage is only 3%.

3.3 Better Overall Accuracy by Aggregated Score

We noticed above that a single EP is sharp on predicting class membership of
a small fraction of instances, but not on all instances. We now show how to
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combine the strength of a set of EPs in order to produce a classifier with good
overall accuracy.

Roughly speaking, given a test instance s, we let all the EPs of a class Ci that
s contains contribute to the final decision of whether s should be labelled as Ci.
This gives us the advantage of covering more cases than each single EP can cover,
because different EPs complement each other in their applicable populations. To
illustrate, consider Example 1. The largest fraction of population that a single
EP (e.g. {8}) can cover is around 50%, whereas the seven EPs given above in
§3.1 have a much larger combined coverage, around 12

14 ≈ 85.7%.
How do we combine the differentiating power of a set of EPs? A natural way

is to sum the contributions of the individual EPs. (Other possibilities exist, but
are beyond the scope of this paper.) Now, how do we formulate the contribution
of a single EP? Roughly, we use a product of the odds discussed earlier and the
fraction of the population of the class that contain the EP. More specifically, let
e be an EP of class C, we let e’s contribution be given by growth rate(e)

growth rate(e)+1
∗

suppC(e). Observe that the first term is roughly the conditional probability that
an instance is in class C given that the instance contains this EP e, and the
second term is the fraction of the instances of class C that this EP applies.
The contribution is proportional to both growth rate(e) and suppC(e). We now
define scores of instances for the classes.

Definition 2. Given an instance s and a set E(C) of EPs of a class C discovered
from the training data, the aggregate score (or score) of s for C is defined as

score(s, C) =
∑

e⊆s,e∈E(C)

growth rate(e)
growth rate(e) + 1

∗ suppC(e).

We now illustrate the calculation of contributions of EPs and scores of in-
stances using Example 1 and the instance s = {1, 5, 7, 9}. Among EPs of the
growth rate threshold of 1.1, s contains 2 of class P : ({5}, 44%, 1.11), ({1, 5, 9},
11%, ∞); it contains 10 of class N : ({1}, 60%, 2.7), ({7}, 80%, 2.4), ({1, 5}, 20%,
1.8), ({1, 7}, 60%, ∞), ({1, 9}, 20%, 1.8), ({5, 7}, 40%, 1.8), ({7, 9}, 40%, 3.6),
({1, 5, 7}, 20%, ∞), ({1, 7, 9}, 20%, ∞), ({5, 7, 9}, 20%, 1.8). The aggregate score
of s for P is: score(s,P) = 1.11

1.11+1 ∗0.44+ ∞
∞+1 ∗0.11 = 0.52∗0.44+1∗0.11 = 0.33.

Similarly, the contributions of the 10 EPs for N are respectively 0.41, 0.56, 0.12,
0.60, 0.12, 0.24, 0.31, 0.20, 0.20, 0.12, and their sum is score(s,N ) = 2.88.

3.4 Normalizing the Scores to Make Decision

For each instance s, how do we use the p scores for all classes to predict its class?
One might be tempted to assign to s the class label C, for which the score of

s is the largest. This turns out to be a bad strategy. The main reason for this
is that the numbers of EPs for different classes may not be balanced, which is
a frequent scenario for applications where some classes may have more random
(uniform) distributions of values and consequently fewer EPs. If a class C has
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many more EPs than another class C′, then instances usually get higher scores
for C than for C′, even for training instances of class C′. This indeed happens,
for example in the rice-DNA dataset (see §6), which consists of a positive class
and a negative class. The negative class contains mostly “random” instances,
and the ratio of the number of EPs of the positive to that of the negative is 28:1
when the support threshold is 3% and the growth rate threshold is 2.

Our solution to this problem is to “normalize” the scores, by dividing them
using a score at a fixed percentile for the training instances of each class. More
specifically, a base score for each class C, base score(C), should be first found
from the training instances of the class. The normalized score of an instance s for
C, norm score(s, C), is defined as the ratio score(s, C)/base score(C). (Observe
that our use of the term “normalized” is a slight abuse, since our normalized
scores may be > 1.) Instead of letting the class with the highest raw score win,
we let the class with the largest normalized score win. (We break tie by letting
the class with the largest population win.)

How do we determine the base scores? We can let base score(C) be the me-
dian of the scores of the training instances class C; that is, exactly 50% of the
training instances of C have scores larger than or equal to base score(C). We do
not have to use 50%; in fact, other percentiles between 50%–85% give roughly
similar results. The CAEP construction program should automatically choose
a good percentile in this range, by testing the performance of the constructed
classifier on the training instances. We do not want to use percentage on the
two extreme ends (e.g. 3%), because the training instances usually contain some
outliers, and if we use such a choice we let the outliers give too much influence.

Example 2. For a simple illustration of the decision process, assume there are
5 training instances from each of the positive (+ve) and negative (-ve) classes;
assume the positive scores of the positive instances are 14.52, 15.28, 15.76, 16.65,
18.44, and the negative scores of the negatives are 4.8, 4.97, 5.40, 5.47, 5.51. The
(median) base scores for the positive and negative classes are respectively 15.76
and 5.4. Given a test instance s (known to be from the negative class) with
scores 7.07 and 4.82 for the positive and negative classes respectively, we have
norm score(s, +ve) = 7.07/15.76 = 0.45 and norm score(s,−ve) = 4.82/5.4 =
0.89. s is thus labelled as negative.

3.5 The Entire Process

The entire process for building and using CAEP is summarized below, assuming
that the original dataset is partitioned according to the class labels.

CAEP (training datasets D1, . . . ,Dp for p classes C1, · · · , Cp)
;; training phase
1) Mine the EP set Ei from ∪p

j=1Dj − Di to Di for each 1 ≤ i ≤ p;
;; A growth rate threshold is given, or set to a default e.g. 2

2) Optionally, reduce the number of EPs in each of E1, · · · , Ep;
3) Calculate the aggregate scores of all training instances for all classes;
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4) Get the base scores base score(Ci) for each class Ci;
;; testing phase
5) For each test instance s do:
6) Calculate aggregate and normalized scores of s for each class Ci;
7) Assign to s the class Cj for which s has the largest normalized score.

4 Efficient Mining of EPs

For the discovery of EPs we will be using methods introduced in [3]. A key
tool used by the efficient methods of [3] is that of borders, useful for the concise
representation and efficient manipulation of large collections of itemsets.

Example 3. An example border is <L = {{22}, {57}, {61}}, R = {{22, 34, 36,
57, 61, 81, 85, 88}}>. The collection of itemsets represented by this border is
{Y | ∃X ∈ L, ∃Z ∈ R such that X ⊆ Y ⊆ Z}. Representative itemsets covered
in the border include {22}, {22, 57}, {36, 57, 81, 88}. For interested readers, this
is actually a border for the EPs from the edible to the poisonous class, of an en-
coding of the Mushroom dataset, at support threshold δ = 40% in the poisonous
and growth rate threshold ρ = 2.

To calculate the aggregate score contributed by all the EPs (meeting some
thresholds) of a class Ci, we need to (i) find the EPs of Ci and (ii) discover their
supports and growth rates. We now list two possible methods:

The large-border based approach: Max-Miner [1] is first used to efficiently
discover the border of the large itemsets from Di. (Such a border is called a
large border, hence the word “large” in the title of this approach.) If the large
itemsets represented by the border can be enumerated in memory, then with one
more scan of Di and D′i we can get the supports and growth rates of the EPs
of Ci. If it can be applied, this approach can discover all EPs whose supports in
Di are larger than the given support threshold. However, because some larger
borders may represent “exponentially” many candidate itemsets, only a small
portion of these candidates can be held in memory; we need to use the next
approach.

The border differential based approach: We first use Max-Miner [1] to discover
the two large borders of the large itemsets in Di and the opponent D′i having
certain support thresholds. Then we use the MBD-LLborder (multiple-border
differential) algorithm of [3] to find all the EP borders. Finally, we enumerate
the EPs contained in the EP borders, and go through Di and D′i to check their
supports and growth rates. With 13 EP borders of the Mushroom dataset for
some support thresholds, using this approach we quickly found the supports and
growth rates of 4692 EPs. Since MBD-LLborder only finds EPs whose supports
in the second dataset are ≥ one support threshold and in the first dataset are
< another support threshold, we need to apply this method multiple times on
multiple pairs [3] of large borders, or combine it with the previous method, to
get the important EPs satisfying the given support and growth rate thresholds.
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5 Reduction of EPs Used

Given a class C, we would like to find as many EPs as possible to give good
coverage of the training instances; at the same time, we prefer EPs that have
relatively large supports and growth rates, as these characteristics correspond to
larger coverage and stronger differentiating power. Very often, many of the EPs
can be removed without loss of too much accuracy, by exploiting relationships
between the EPs. Reduction can increase understandability of the classifier, and
it may even increase predictive accuracy.

The reduction step is optional, and it should not be done if it leads to poor
classification of the training instances. This is a training time decision.

Our method to reduce the number of EPs uses these factors: the absolute
strength of EPs, the relationships between EPs, and the relative difference be-
tween their supports and growth rates. We measure the absolute strength of EPs
using a new growth rate threshold ρ′, which should be larger than the growth
rate threshold ρ for the EPs. The main idea is to select the strong EPs and
remove the weaker EPs which have strong close relatives. We will refer to the
selected EPs as the essential EPs.

To reduce the set of EPs, we first sort the mined EPs into a list E, in decreas-
ing order on (growth rate, support). The set of essential EPs, essE, is initialized
to contain the first EP in E. For each next EP e in E we do 1 and then 2:

1. For each EP x in essE such that e ⊂ x, replace x by e if 1.a or 1.b is true:
1.a. growth rate(e) ≥ growth rate(x)
1.b. supp(e) >> supp(x) and growth rate(e) ≥ ρ′

2. Add e to essE if both 1.a and 1.b are false, and e is not a superset of any x
in essE.

We select EPs this way because: When condition 1.a is true, e definitely
covers more instances than x since e ⊂ x, and e has a stronger differentiating
power than x because e has a higher growth rate. A typical situation captured by
condition 1.b is when x is an EP with growth rate ∞ but a very small support,
whereas e is an EP whose growth rate is less than that of x but e has a much
larger support than x. In this case, we prefer to have e since it covers many more
cases than x and since it has a relatively high differentiating power already due
to its growth rate being larger than ρ′. To illustrate this point, consider these
two EPs of the Iris-versicolor class from the Iris dataset [10]:

e1 = ({1, 5, 11}, 3%,∞) e2 = ({11}, 100%, 22.25)
e2 is clearly more useful than e1 for classification, since it covers 32 times more
instances and its associated odds, 95.7%, is also very near that of the other EP,
e1. In our experiments, for 1.b, we set the default value of ρ′ to 20 and the
default interpretation of the condition “supp(e) >> supp(x)” is supp(e)

supp(x) ≥ 30.
These parameters can be tuned based on coverage on training instances.
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6 Selection of Thresholds and Base Scores

To build a classifier from a training dataset, we need to select two thresholds
(for support and for support growth rate), and a base score for each class.

The selection of these can be done automatically with the guidance of the
training data: We start with some default thresholds and percentiles for the base
scores. Then a classifier is built and its performance on the training instances
is found. We then let the program try several alternatives and see if significant
improvements are made. The best choice is then selected.

We observe from our experiments that the lower the support threshold δ, the
higher predictive accuracy the classifier achieves; and for each support thresh-
old, the higher the growth rate threshold, the higher predictive accuracy the
classifier achieves. Once δ is lowered to 1%-3%, the classifier usually becomes
stable in predictive accuracy; if the growth rate threshold is then raised to the
highest possible (see discussion below), CAEP almost always has better predic-
tive accuracy than C4.5 and CBA. In our experiments reported later, δ is always
between 1%–3%; the exact choice of δ is influenced by the how much running
time is allowed for CAEP construction.

The growth rate threshold also has strong effect on the quality of the classifier
produced. Our general principle is to (a) mine EPs with a small initial growth
rate threshold such as 2, and (b) automatically select a larger final growth rate
threshold guided by the coverage of selected EPs on the training instances. Gen-
erally, if the growth rate threshold is too high, the classifier would contain too
few EPs and the classifier may have low accuracy because of poor coverage of
the training instances. (Coverage of a set of EPs is measured by the number of
zero scores it produces on the training instances: The fewer the number of zero
scores the better the coverage.) On the other hand, if it can be done without low-
ering the coverage of training instances, raising the growth rate threshold would
always results in a classifier with higher predictive accuracy. Our experiments
show that with support threshold 1%–3%, the UCI datasets usually yield a huge
number of EPs with growth rates from 1 to ∞ (Rice-DNA data is an exception,
see § 7). The automatically chosen growth rate threshold is usually around 15.

7 Rice-DNA, Sensitivity, and Precision

Our motivation for more accurate measure of classifiers comes from the rice-
DNA dataset (available at http://adenine.krdl.org.sg:8080/limsoon/kozak/rice),
containing rice-DNA Kozak sequences.

A genomic DNA is a string over the alphabet of {A, C, T, G}. The context
surrounding the protein translation start site of a gene is called the Kozak se-
quence [5]. Correct identification of such start sites from a long genomic DNA
sequence can save a lot of labor and money in identifying genes on that sequence.
The start site is always the A-T-G sequence. The context surrounding the A-T-
G has been the most important information to distinguish real start sites from
non-start sites. A context is typically taken from up to 15 bases up stream of



40 Guozhu Dong et al.

A-T-G to 10 bases down stream. So a Kozak sequence—for the purpose of this
work—consists of 25 letters (excluding the A-T-G).

In the genomic DNA sequences, non-start sites (negative) overwhelm real
start sites (positive) typically at a ratio of 24:1 or more. So a distinctive feature
of the rice-DNA dataset is that the number of instances of the two datasets
are very unbalanced. What makes the treatment of this dataset more difficult
is that the number of positives, which is more important in reality, is far more
the minority. With this very unbalanced dataset, even the just-say-no classifier,
which always predicts an instance to be negative, will have an overall accuracy
of 24

25 = 96%. Unfortunately, the fact is that not a single real start site has been
identified, which is against our aim of classification.

From this analysis we can see that in evaluating a classification method
more meaningful measures than accuracy or error rate on the whole dataset are
desirable. We will use a measure in terms of two parameters, namely sensitivity
and precision, for each class, which have long been used in the signals world and
in information retrieval [4].

Given N instances whose class is known to be C, for a classifier P , if P labels
N ′ instances as of class C, of which N1 are indeed to be of class C, then N1/N is
called P ’s sensitivity on C, denoted sens(C), and N1/N

′ is called P ’s precision
on C, denoted prec(C). (For N ′ = 0, we define sens(C) = 0, prec(C) = 0.

The performance of the just-say-no classifier on the rice-DNA dataset is:
sens(+ve) = 0, prec(+ve) = 0, sens(−ve) = 24

24 = 100%, prec(−ve) = 24
25 =

96%.

8 Experimental Results

We compare CAEP with the state-of-the-art classifiers C4.5 and CBA. (CBA was
reported to beat C4.5 [9].) Except for rice-DNA (see §6 for its description), the
datasets we use are from the UCI machine learning repository [10]. Furthermore,
we test CAEP on datasets with a large number of records and where each record
is long, where no results of C4.5 or CBA are known to us.

Table 1: Accuracy Comparison

Dataset #records #attrib- #classes C4.5 CBA CAEP Accuracy #EPs/class
utes (disc.) w/o red. red. w/o red. red.

breast-w 699 10 2 96.1% 96.1% 97.85% 97.70% 7647 233
ionosphere 351 34 2 92.0% 92.1% 92.39% 91.41% 1813464 7906

iris 150 4 3 94.7% 92.9% 98.62% 100% 40 4
mushroom 8124 22 2 — — 98.82% 98.93% 823649 2738

pima 768 8 2 72.5% 73.0% 96.23% 96.56% 1427 57
rice-DNA 15760 28 2 — 55.3% 70.87% 75.63% 30555 24449

sonar 208 60 2 72.2% 78.3% 83.90% 90% 651864 4608
tic-tac-toe 958 9 2 99.4% 100% 99.06% 96.87% 5707 682

vehicle 846 18 4 66.4% 68.8% 76.28% 76.17% 324048 14857
wine 178 13 3 92.1% 91.6% 99.38% 99.44% 175384 1859
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Table 2: Precision and Sensitivity of CAEP

Dataset class(instance dist.) sensitivity precision
w/o red. red. w/o red. red.

breast-w benign (66%) 96.72% 97.17% 100% 99.34%
malignant (34%) 100% 98.75% 94.26% 95.00%

ionosphere good (64%) 94.54% 92.9% 94.23% 94.15%
bad (36%) 88.33% 88.65% 91.33% 87.68%

iris Setosa (35%) 100% 100% 100% 100%
Versicolour (31%) 100% 100% 96.33% 100%
Virginica (34%) 96.00% 100% 100% 100%

mushroom edible (52%) 99.43% 99.61% 98.32% 98.46%
poisonous (48%) 98.16% 98.35% 99.38% 99.34%

pima positive (29%) 95.52% 94.93% 92.27% 93.60%
negative (71%) 96.54% 97.23% 98.18% 97.95%

rice-DNA positive (4%) 77.01% 73.91% 9.58% 10.95%
negative (96%) 70.62% 75.70% 98.71% 98.63%

sonar R (46%) 83.33% 93.33% 84.62% 87.32%
M (54%) 84.09% 87.27% 88.46% 94.29%

tic-tac-toe positive (65%) 99.52% 96.01% 99.07% 99.21%
negative (35%) 98.19% 98.49% 99.13% 93.12%

vehicle van (24%) 48.68% 53.95% 64.22% 62.94%
saab (25%) 65.62% 65.00% 59.23% 61.16%
bus (27%) 95.40% 90.72% 89.01% 88.93%
opel (24%) 92.93% 93.06% 88.31% 90.54%

wine class 1 (40%) 98.57% 100% 100% 98.75%
class 2 (33%) 100% 100% 100% 100%
class 3 (27%) 100% 98.00% 98.00% 100%

Discretization of continuous attributes is done by the entropy method [7],
using code from the MLC++ machine learning library [6]. All the results are
obtained by 10-fold cross validation. Table 1 compares the overall predictive
accuracy of CAEP, C4.5 (with discretization) and CBA. Dashes indicate that
results are unavailable. (A recent test of C4.5 on rice shows that it has essen-
tially 0% sensitivity and 0% precision – it is essentially the “just-say-negative”
classifier which claims that everything is negative; observe that this gives an
accuracy of about 96%.) Columns 2, 3 and 4 describe the datasets: the numbers
of records, of attributes and of classes respectively. Rice-DNA and Mushroom
are the most challenging datasets, having both a large number of instances and
high dimensionality. Observe that datasets of 2, 3 and even more classes are in-
cluded, and that CAEP performs equally well. Columns 5 and 6 give the average
predictive accuracy of C4.5 and CBA over 10-fold cross-validation, and Columns
7 and 8 are that of CAEP, both before and after reduction. Columns 9 and 10
give the average number of EPs in the classifier, before and after reduction. It
can be seen that although the number of EPs has been dramatically reduced
after the reduction process, there is no big loss in predictive accuracy and often
there is an increase in accuracy.

It takes the CAEP classifier almost no time to decide the class of an instance;
e.g. only 0.01 second for a classifier with 10000 EPs.
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Table 2 gives a more detailed characterization of CAEP on the datasets;
sensitivity and precision on each class, before and after reduction, are listed. It
shows that CAEP generally has good sensitivity and precision on each class.

The positive sensitivity and precision on the rice-DNA dataset are better
than the best observed neural network (NN) results known to us.
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