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Abstract. In data mining, large differences in prior class probabilities
known as the class imbalance problem have been reported to hinder
the performance of classifiers such as decision trees. Dealing with imbal-
anced and cost-sensitive data has been recognized as one of the 10 most
challenging problems in data mining research. In decision trees learning,
many measures are based on the concept of Shannon’s entropy. A major
characteristic of the entropies is that they take their maximal value when
the distribution of the modalities of the class variable is uniform. To deal
with the class imbalance problem, we proposed an off-centered entropy
which takes its maximum value for a distribution fixed by the user. This
distribution can be the a priori distribution of the class variable modal-
ities or a distribution taking into account the costs of misclassification.
Others authors have proposed an asymmetric entropy. In this paper we
present the concepts of the three entropies and compare their effective-
ness on 20 imbalanced data sets. All our experiments are founded on the
C4.5 decision trees algorithm, in which only the function of entropy is
modified. The results are promising and show the interest of off-centered
entropies to deal with the problem of class imbalance.

Keywords: Decision trees, Shannon entropy, Off-centered entropies,
Imbalance class.

1 Class Imbalance Problem

In supervised learning, the data set is said to be imbalanced if the class prior
probabilities are highly unequal. In the case of two-class problems, the larger
class is called the majority class and the smaller the minority class. Real-life two-
class problems have often minority class prior under 0.10 (e.g. fraud detection,
medical diagnostic or credit scoring). In such a case the performances of data
mining algorithms are lowered, especially the error rate corresponding to the
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minority class, even though the minority class corresponds to positive cases
and the cost of misclassifying the positive examples is higher than the cost of
misclassifying the negative examples. This problem gave rise to many papers,
from which one can cite papers from [1], [2] and [3]. Dealing with imbalanced
and cost-sensitive data has been recognized as one of the 10 most challenging
problems in data mining [4]. As summarized by the review papers of [5], [6] and
[7] or by the very comprehensive papers of [8] and [9], solutions to the class
imbalance problems were proposed both at the data and algorithmic level.

At the data level, these solutions change the class distribution. They include
different forms of re-sampling, such that over-sampling [3] [10] or under-sampling
[11], on a random or a directed way. A comparative study using C4.5 [12] decision
tree show that under-sampling beat over-sampling [13]. At the algorithmic level,
a first solution is to re-balance the error rate by weighting each type of error
with the corresponding cost [14]. A study of the consistency of re-balancing
costs, for misclassification costs and class imbalance, is presented in [15]. For a
comparison of a cost sensitive approach and a sampling approach one can see
for example [16]. In decision trees learning, other algorithmic solutions consist
in adjusting the probabilistic estimates at the tree leaf or adjusting the decision
thresholds. [17] propose to use a criterion of minimal cost, while [18] explore
efficient pre-pruning strategies for the cost-sensitive decision tree algorithm to
avoid overfitting. At both levels, [19] studied three issues (quality of probabilistic
estimates, pruning, and effect of preprocessing the imbalanced data set), usually
considered separately, concerning C4.5 decision trees and imbalanced data sets.

Our contribution belongs to the second category. We propose to replace the
entropy used in tree induction algorithms by an off-centered entropy. That is
to say that we work at the split level of decision trees learning taking into
account an entropy criterion. The rest of the paper is organized as follows. In
Section 2, we first review splitting criteria based on Shannon’s entropy. We first
recall basic considerations on Shannon’s entropy and then briefly present our off-
centered entropy and the asymmetric entropy. Then, we compare the entropies’
performance on 20 imbalanced data sets in Section 3. Finally, Section 4 draws
conclusions and suggests future work.

2 From Shannon’s Entropy to Non-centered Entropies

In this section we first recall basic considerations on Shannon’s entropy and
then present the two families of non-centered entropies. For both of them we
mainly present the boolean case and mention the results in the general case.
Experiments presented in Section 3 are done in the boolean case.

2.1 Usual Measures Based on Shannon’s Entropy

In supervised learning of induction tree on categorical variables, many learning
algorithms use predictive association measures based on the entropy pro-
posed by Shannon [20]. Let us consider a class variable Y having q modalities,
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p = (p1, . . . , pq) be the vector of frequencies of Y , and a categorial predic-
tor X having k modalities. The joint relative frequency of the couple (xi, yj)
is denoted pij , i = 1, . . . k; j = 1, . . . q. What is more, we denote by h(Y ) =
−∑q

j=1 p.j log2 p.j the a priori Shannon’s entropy of Y and by h(Y/X) =
E(h(Y/X = xi)) the conditional expectation of the entropy of Y with respect
to X .

Shannon’s entropy, is a real positive function of p = (p1, . . . , pq) to [0..1],
verifying notably interesting properties for machine learning purposes:

1. Invariance by permutation of modalities: h(p) does not change when
the modalities of Y are permuted;

2. Maximality: the value of h(p) reaches its maximum log2(q) when the dis-
tribution of Y is uniform, i.e. each modality of Y has a frequency of 1/q;

3. Minimality: the value of h(p) reaches its minimum 0 when the distribution
of Y is sure, centered on one modality of Y , the others being of null frequency;

4. Strict concavity: the entropy h(p) is a strictly concave function.

Amongst the measures based on Shannon’s entropy, particularly studied in
by [21] and [22], we especially wish to point out:

– the entropic gain [23], which values h(Y ) − h(Y/X);
– the u coefficient [24] is the relative gain of Shannon’s entropy i.e. the entropic

gain normalized on the a priori entropy of Y , and values h(Y )−h(Y/X)
h(Y ) ;

– the gain-ratio [12] which relates the entropic gain of X to the entropy of X ,
rather than to the a priori entropy of Y in order to discard the predictors
having many modalities. It values h(Y )−h(Y/X)

h(X) ;
– the Kvalseth coefficient [25], which normalizes the entropic gain by the mean

of the entropies of X and Y . It then values 2(h(Y )−h(Y/X))
h(X)+h(Y ) .

The peculiarity of these coefficients is that Shannon’s entropy of a distribution
reaches its maximum when this distribution is uniform. Even though it is the
entropic gain with respect to the a priori entropy of Y which is used in the
numerator part of the previously mentioned coefficients, the entropies of Y and
Y/X = xi used in this gain are evaluated on a scale for which the reference
value (maximal entropy) corresponds to the uniform distribution of classes. The
behavior of Shannon’s entropy is illustrated in Fig. 1 in the boolean case.

It would seem more logical to evaluate directly the entropic gain through the
use of a scale for which the reference value would correspond to the a priori
distribution of classes. The above-mentioned characteristic of the coefficients
based on the entropy is particularly questionable when the classes to be learned
are highly imbalanced in the data, or when the classification costs differ largely.

2.2 Off-Centered Entropy

The construction of an off-centered entropy principle is sketched out in the case
of a boolean class variable in [26] and [27]. In these previous works we proposed
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a parameterized version of several statistical measures assessing the interest of
association rules and constructed an off-centered entropy.

Let us consider a class variable Y made of q = 2 modalities. The frequencies
distribution of Y for the values 0 and 1 is noted (1−p, p). We wish to define an off-
centered entropy associated with (1− p, p), noted ηθ(p), which is maximal when
p = θ, θ being fixed by the user and not necessarily equal to 0.5 (in the case of a
uniform distribution). In order to define the off-centered entropy, following the
proposition described in [26], we propose that the (1 − p, p) distribution should
be transformed into a (1−π, π) distribution such that: π increases from 0 to 1/2
when p increases from 0 to θ, and π increases from 1/2 to 1 when p increases from
θ to 1. By looking for an expression of π as π = p−b

a , on both intervals 0 ≤ p ≤ θ

and θ ≤ p ≤ 1, we obtain: π = p
2θ if 0 ≤ p ≤ θ, π = p+1−2θ

2(1−θ) if θ ≤ p ≤ 1.
To be precise, the thus transformed frequencies should be denoted as 1 − πθ

and πθ. We will simply use 1− π and π for clarity reasons. They do correspond
to frequencies, since 0 ≤ π ≤ 1. The off-centered entropy ηθ(p) is then defined
as the entropy of (1 − π, π): ηθ(p) = −π log2 π − (1 − π) log2(1 − π).

With respect to the distribution (1 − p, p), clearly ηθ(p) is not an entropy
strictly speaking. Its properties must be studied considering the fact that ηθ(p)
is the entropy of the transformed distribution (1 − π, π), i.e. ηθ(p) = h(π). The
behavior of this entropy is illustrated in Fig. 1 for θ = 0.2.

The off-centered entropy preserves various properties of the entropy, among
those studied in particular by [28] in a data mining context. Those properties
are easy to prove since ηθ(p) is defined as an entropy on π and thus possess
such characteristics. It can be noticed that ηθ(p) is maximal for p = θ i.e. for
π = 0.5. Invariance by permutation of modalities property is of course voluntarily
abandoned. Proofs are given in detail in [29].

Following a similar way as in the boolean case we then extended the definition
of the off-centered entropy to the case of a variable Y having q modalities,
q > 2 [29,30]. The off-centered entropy for a variable with q > 2 modalities
is the defined by ηθ(p) = h(π∗) where: π∗

j = πj∑ q
j=1 πj

(in order to satisfy the

normalization property), 0 ≤ πj ≤ 1,
∑q

j=1 πj = 1 (πj should be analogous to

frequencies), πj = pj

qθj
if 0 ≤ pj ≤ θj , πj = q(pj−θj)+1−pj

q(1−θj)
if θj ≤ pj ≤ 1.

2.3 Off-Centered Generalized Entropies

Shannon’s entropy is not the only diversity or uncertainty function usable to
build coefficients of predictive association. [31] already proposed a unified view
of the three usual coefficients (the λ of Guttman, the u of Theil and the τ of
Goodman and Kruskal), under the name of Proportional Reduction in Error co-
efficient. In a more general way we built the Proportional Reduction in Diversity
coefficients, which are the analogue of the standardized gain when Shannon’s
entropy is replaced by whichever concave function of uncertainty [32].

One of the particularities of the off-centering we here propose, compared to
the approach proposed by [33] is that rather than defining a single off-centered
entropy, it adapts to whichever kind of entropy. We thus propose a decentring
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framework that one can apply to any measure of predictive association based on
a gain of uncertainty [30].

2.4 Asymmetric Entropy

With an alternative goal, directly related to the construction of a predictive
association measure, especially in the context of decision trees, [34] proposed a
consistent and asymmetric entropy for a boolean class variable. This measure
is asymmetric in the sense that one may choose the distribution for which it
will reach its maximum; and consistent since it takes into account n, the size
of the sampling scheme. They preserve the strict concavity property but alter
the maximality one in order to let the entropy reach its maximal value for a
distribution chosen by the user (i.e. maximal for p = θ, where θ is fixed by
the user). This implies revoking the invariance by permutation of modalities.
They propose: hθ(p) = p(1−p)

(1−2θ)p+θ2 . It can be noticed that for θ = 0.5, this
asymmetric entropy corresponds to the quadratic entropy of Gini. The behavior
of this entropy is illustrated in Fig. 1 for θ = 0.2.

In [33], the same authors extend their approach to the situation where the
class variable has q > 2 modalities. What is more, since one may only make
an estimation of the real distribution (pj)j=1,...,q with an empirical distribution
(fj)j=1,...,q, they wish that for same values of the empirical distribution, the
value of the entropy should decrease as n rises (property 5, a new property called
consistency). They thus are led to modify the third property (minimality) in a
new property 3′ (asymptotic minimality): the entropy of a sure variable is only
required to tend towards 0 as n → ∞. In order to comply with these new prop-
erties, they suggest to estimate the theoretical frequencies pj by their Laplace
estimator, p̂j = nfj+1

n+q . They thus propose a consistent asymmetric entropy as:

hθ(p) =
∑q

j=1
p̂j(1−p̂j)

(1−2θj)p̂j+θ2
j
.
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Fig. 1. Off-centered, asymmetric and Shannon’s entropies
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3 Experiments with More or Less Imbalanced Data Sets

In our experiments, we compare the behaviors of decision tree algorithms to
classify imbalanced data sets using our proposed off-centered entropy oce, the
Shannons entropy se and the asymmetric entropy ae. To achieve the evaluation
we added oce and ae to the decision tree algorithm C4.5 [12]. In these experi-
ments, in each node the distribution for which oce and ae are maximal is the
a priori distribution of the class variable in the considered node.

The experimental setup used the 20 data sets described in Table 1 (column
1 indicates the data set name, the numbers of cases and of attributes), where
the first twelve ones are from the UCI repository [35], the next six are from
the Statlog repository [36], the following data set is from the DELVE repository
(http://www.cs.toronto.edu/∼delve/), while the last one is from [37].

In order to evaluate the performance of the considered entropies for classify-
ing imbalanced data sets, we pre-processed multi-class (more than two classes,
denoted by an asterisk) data sets as two-class problems. The columns 2 and 3 of
Table 1 show how we convert multi-class to minority and majority classes. For
example, with the OpticDigits data set, the digit 0 is mapped to the minority
class (10%) and the remaining data are considered as the majority class (90%).
For the 20-newsgroup collection, we pre-processed the data set by representing
each document as a vector of words. With a feature selection method which uses
mutual information, we get a binary data set of 500 dimensions (words).

The test protocols are presented in the column 4 of Table 1. Some data sets are
already divided in training set (trn) and testing set (tst). If the training set and
testing set are not available then we used cross-validation protocols to evaluate
the performance, else k-fold cross validation is used. With a data set having less
than 300 data points, the test protocol is leave-one-out cross-validation (loo).
It involves using a single data point of the data set as the testing data and the
remaining data points as the training data. This is repeated such that each data
point in the data set is used once as testing data. With a data set having more
than 300 data points, k-fold cross-validation is used to evaluate the performance.
In k-fold cross-validation, the data set is partitioned into k folds. A single fold
is retained as the validation set for testing, and the remaining k-1 folds are used
as training data. The cross-validation process is then repeated k times. The k
results are then averaged. The columns 5 to 9 of Table 1 present the results
according to each entropy in terms of tree size, global error rate, error rate
on the minority class and on the majority class (best results are in bold). The
synthetic comparisons two by two are presented in Table 2.

For these first comparisons, we recall that the rule of prediction is the majority
rule. The definition of another rule of prediction, better adapted to non-centered
entropies, is one of the enhancements which we intend to accomplish.

We can conclude that the non-centered entropies, particularly the off-centered
entropy, outperform the Shannon’s entropy. These both entropies significantly
improve the MinClass accuracy, without penalizing the MajClass accuracy,
where MinClass (MajClass) accuracy is the proportion of true results in the
minority (majority) class.
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Table 1. Experiments on 20 imbalanced data sets

Base Class Min. Class Maj. Valid. Method Tree size Acc. MinClass acc. MajClass acc.

Opticdigits* 10%(0) 90%(rest) trn-tst se 27 99.39 96.63 99.69
5620 ae 21 99.83 100.00 99.81
64 oce 21 99.67 99.44 99.69

Tictactoe 35%(1) 65%(2) 10-fold se 69 93.33 87.50 96.49
958 ae 89 93.65 89.52 95.82
9 oce 89 94.17 90.43 96.15

Wine* 27%(3) 73%(rest) loo se 5 95.51 89.58 97.69
178 ae 5 97.19 95.83 97.69
13 oce 5 97.19 95.83 97.69

Adult 24%(1) 76%(2) trn-tst se 123 86.25 60.85 94.11
48842 ae 171 85.67 60.02 93.61

14 oce 107 85.70 61.61 93.15

20-newsgrp* 5%(1) 95%(rest) 3-fold se 9 98.59 73.31 99.95
20000 ae 13 98.65 74.49 99.95
500 oce 13 98.65 74.49 99.95

Breast Cancer 35%(M) 65%(B) 10-fold se 18 94.04 90.43 96.31
569 ae 11 94.39 90.40 96.90
30 oce 13 93.33 90.45 95.20

Letters* 4%(A) 96%(rest) 3-fold se 67 99.47 91.48 99.81
20000 ae 99 99.35 90.00 99.75

16 oce 105 99.44 92.59 99.73

Yeast* 31%(CYT) 69%(rest) 10-fold se 52 71.76 47.95 82.66
1484 ae 65 71.82 48.82 82.26

8 oce 34 72.34 47.00 84.02

Connect-4* 10%(draw) 90%(rest) 3-fold se 4141 83.25 57.02 91.72
67557 ae 4013 83.46 57.59 91.81

42 oce 4037 84.07 60.09 91.82

Glass* 33%(1) 67%(rest) loo se 39 77.10 72.41 80.32
214 ae 23 78.97 72.86 81.94
9 oce 21 86.45 78.57 90.28

Spambase 40%(spam) 60%(rest) 10-fold se 250 93.00 90.94 94.31
4601 ae 269 93.22 91.52 94.28
57 oce 225 93.35 91.21 94.67

Ecoli* 15%(pp) 85%(rest) 10-fold se 11 94.55 74.68 98.19
336 ae 14 94.24 76.50 97.43
7 oce 11 95.45 81.93 97.80

Pima 35%(1) 65%(2) 10-fold se 25 74.94 62.79 81.42
768 ae 20 75.71 64.30 81.82
8 oce 20 75.19 63.15 81.62

German 30%(1) 70%(2) 10-fold se 39 74.27 40.00 88.36
1000 ae 40 73.54 40.07 86.95
20 oce 43 74.48 44.40 86.45

Shuttle* 20%(rest) 80%(1) trn-tst se 27 99.99 99.93 100.00
58000 ae 19 99.80 99.90 100.00

9 oce 11 99.99 99.97 100.00

Segment* 14%(1) 86%(rest) 10-fold se 7 99.22 95.78 99.79
2310 ae 18 99.31 95.91 99.85
19 oce 19 99.31 96.75 99.75

Satimage* 24%(1) 90%(rest) trn-tst se 99 97.35 94.36 98.25
6435 ae 103 98.00 96.10 98.57
36 oce 93 97.95 95.23 98.77

Vehicle* 24%(van) 76%(rest) 10-fold se 41 94.81 88.49 95.70
846 ae 31 94.94 90.66 96.33
18 oce 32 95.18 88.95 97.10

Splice* 25%(EI) 75%(rest) 10-fold se 72 96.37 92.74 97.62
3190 ae 62 96.40 93.23 97.50
60 oce 24 96.40 93.69 97.33

All-Aml 35% (AML) 65%(ALL) loo se 3 91.18 92.86 90.00
72 ae 3 91.18 92.86 90.00

7129 oce 3 91.18 92.86 90.00
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Table 2. Comparison of Shannon entropy (se), Off-centered entropy (oce) and Asym-
metric entropy (ae)

oce vs. se Tree size Acc. MinClass acc. MajClass acc.

Mean (oce-se) -9.900 0.76% 1.94% 0.44%
Mean Std. dev. (oce-se) 6.318 0.47% 0.53% 0.53%
Student ratio -1.567 1.621 3.673 0.830
p-value (Student) Non sign. Non sign. 0.0016 Non sign.

oce wins 12 16 18 7
Exaequo 3 1 1 5
se wins 5 3 1 8
p-value (sign test) Non sign. 0.0044 0.0000 Non sign.

ae vs. se Tree size Acc. MinClass acc. MajClass acc.

Mean (ae-se) -1.750 0.25% 1.04% -0.01%
Mean Std. dev. (ae-se) 7.500 0.14% 0.37% 0.14%
Student ratio -0.233 1.746 2.808 -0.048
p-value (Student) Non sign. 0.0970 0.0112 Non sign.

ae wins 8 14 15 8
Exaequo 2 1 1 4
se wins 10 5 4 8
p-value (sign test) Non sign. Non sign. 0.0192 Non sign.

oce vs. ae Tree size Acc. MinClass acc. MajClass acc.

Mean (oce- ae) -8.150 0.51% 0.90% 0.45%
Mean Std. dev. (oce- ae) 4.563 0.38% 0.49% 0.44%
Student ratio -1.786 1.330 1.846 1.014
p-value (Student) 0.0901 0.1991 0.0805 0.3234

oce wins 8 11 11 8
Exaequo 6 5 3 4
ae wins 6 4 6 8
p-value (sign test) Non sign. Non sign. Non sign. Non sign.

Indeed, compared to Shannon’s entropy se, the off-centered entropy oce im-
proves the MinClass accuracy 18 times out of 20, with 1 defeat and 1 equality,
which corresponds to a p-value of 0.0000. The corresponding average gain in
accuracy is close to 0.02 (p-value = 0.0016 according to a paired t-test). The
accuracy of the MajClass is not significantly modified, but the global accuracy
is improved 16 times out of 20, with 3 defeats and 1 equality (p-value = 0.0044),
while the average corresponding gain is close to 0.008. Moreover, the trees pro-
vided by oce have often a more reduced size, but this reduction is not significant.

The asymmetric entropy ae gives slightly less significant results when com-
pared to Shannon’s entropy se. It improves 15 times out of 20 the MinClass ac-
curacy (p-value = 0.0192), with an average gain close to 0.01 (p-value = 0.0112).
However, the improvement of the global accuracy is not significant: ae wins 14
times out of 20, with 1 equality and 5 defeats, while the increase of the global ac-
curacy is only 0.002. In the same way, the performance for the MajClass accuracy
is comparable (ae wins 8 times, se wins 8 times, and 4 equalities). Furthermore,
for the size of the tree, the performance is also comparable (ae wins 8 times, se
wins 10 times, and 2 equalities).

When comparing the two non-centered entropies oce and ae, one can observe
a slight but not significant superiority of the off-centered entropy oce for each
criterion. Particularly, a gain of 1 point on the MinClass error rate and 0.5 point
on the total error rate must be noticed.
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4 Conclusion and Future Works

In order to deal with imbalanced classes, we proposed an off-centered split func-
tion for learning induction trees. It has the characteristic to be maximum for the
distribution a priori of the class in the node considered. We then compare, in
the boolean case on 20 imbalanced data bases, the performances of our entropy
with the entropy of Shannon and an asymmetric entropy. All our experiments
are founded on C4.5 decision trees algorithm, in which only the entropy is mod-
ified. Compared to Shannon’s entropy both non-centered entropies, significantly
improve the minority class accuracy, without penalizing the majority one. Our
off-centered entropy is slightly better than the asymmetric one, but this is not
statistically significant. However one major advantage of our proposal is that it
can be applied to any kind of entropy, for example to the quadratic entropy of
Gini used in the CART algorithm [38]. We plan to improve the pruning scheme
and the criterion to affect a class to a leaf. Indeed, these two criteria such as
defined in C4.5, do not well support the recognition of the minority class. We
then can hope for an improvement of our already good results. It could be also
valuable to take into account a cost-sensitive matrix.
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