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Abstract. The class imbalance problem naturally occurs in some clas-
sification problems where the amount of training samples available for
one class may be much less than that of another. In order to deal with
this problem, random sampling based methods are generally used. This
paper proposes a clustering based sampling technique to select a sub-
set from the majority class involving much larger amount of training
data. The proposed approach is verified in designing a post-classifier us-
ing AdaBoost to improve the speaker verification decisions. Experiments
conducted on NIST99 speaker verification corpus have shown that in gen-
eral, the proposed sampling technique provides better equal error rates
(EER) than random sampling.

1 Introduction

Class imbalance where the training data available for some pattern classes is
much less than that of the others, naturally occurs in pattern classification
problems such as speaker or face verification. Consider a speaker verification
experiment where a post-classifier is to be applied on the verification output
scores for optimal decision making [1]. In obtaining the training data for the
post-classifier, target tests where the tested identity is the same as the claimed
is limited to the number of speakers Q, whereas Q×(Q−1) impostor tests where
the tested identity is different than that of the tested can be obtained. It should
be noted that the imbalance increases in proportion to the number of identities
considered in the verification experiment.

A generally accepted fact which is also observed in other research domains
such as text classification is that the developed classifiers may provide much less
accuracy for the minority classes having much less amount of training data [2].
Several explanations are already available in the literature. For instance, in
Ref. [3] it is argued that this is mainly due to the fact that the a priori proba-
bilities bias the learning procedure in favor of the majority class. Also, due to
the insufficiency of the training data available, the minority class models may
not be accurate enough.

There are several approaches proposed to deal with the imbalance problem.
For instance, over-sampling the minority class to make its training data set
cardinality same as the majority class or under-sampling the majority class. In
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general, over-sampling is implemented by inserting replicas of the available data
points and under-sampling is implemented by taking into account a random
subset of the majority class. These techniques have some disadvantages. In the
case of over-sampling, the computational load is increased and overtraining may
occur due to the replicated samples. Under-sampling does not take into account
all available training data which corresponds to loss of available information.
Moreover, it is not guarantied that the subset of data includes sufficient amount
of critical samples close in the regions where classes overlap. A common drawback
of these techniques is that the best test accuracy is not guaranteed for cardinally
equal training sets since the class probabilities are highly likely to be different
during test phase leading to a larger number of test samples from the majority
class. Moreover, a priori probability information is lost after sampling. In fact,
using more majority samples than minority during training is shown to provide
better test accuracies.

AdaBoost algorithm is an iterative multiple classifier system development
tool which is shown to provide improved classification accuracies for many dif-
ferent data sets compared to the best individual classifier. In each iteration, a
new classifier is trained on a subset of the training data where the weight of each
training sample is taken into account in this process. In fact, this sample selec-
tion mechanism corresponds to the simultaneous application of under-sampling
and over-sampling.

In this paper, the performance of the AdaBoost algorithm in the class imbal-
ance case is investigated. Having observed its poor performance, under-sampling
and over-sampling techniques are applied and a better performance is achieved.
The use of k-means clustering based centroids in the training set of the Ad-
aBoost algorithm is proposed as alternative under-sampling technique. In the
proposed approach, the AdaBoost algorithm is also modified so as to take into
account the class a priori probabilities. Each centroid is used as a representative
of its neighborhood where the misclassification of one centroid is considered as
more costly than another if the number of the training samples in that cluster is
more. Experiments on speaker verification which is basically a 2-class classifica-
tion problem have proven the effectiveness of the proposed approach compared
to the random under-sampling.

2 AdaBoost in Class Imbalance

The original AdaBoost (Adaptive Boosting) algorithm is an ensemble creation
technique which was introduced in [4]. The sequential structure of the algorithm
allows to create new classifiers which are more effective on the training samples
that the current ensemble has a poor performance. In order to achieve this,
weighting is applied on the training samples where a training sample with a
higher weight has a larger probability of being used in the training of the next
classifier. The algorithm summarized in Figure 1. dm(n) denotes the weight of
the nth training sample in S = {(xn, yn)}, n = 1, . . . , N initialized to 1/N
and C denotes the classifier ensemble where Cm is the classifier obtained at the
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mth iteration. At the end of each iteration, the weights of the samples that are
correctly classified (misclassified) by the new classifier are decreased (increased).
Increasing the weight of a misclassified sample corresponds to increasing the
probability of its inclusion in the training set of the next classifier, probably
more than once if its weight is high enough.

1. for m = 1, ..., M
1.1 Build classifier Cm using sample set Sm from S using distribution dm.
1.2 Compute the weighted error using εm =

∑N
n=1 dm(n)(1 − qn,m) where

qn,m = 1 if xn is correctly classified by Cm and zero otherwise.
1.3 Compute αm = 1

2
ln( 1−εm

εm
), εm ∈ (0, 0.5) and update the weights using,

dm+1(n) =
dm(n)

Zm

{
e−αm if Cm(xn) = yn

eαm if Cm(xn) �= yn

where Zm is a normalization factor so that dm+1 is a distribution.
2. The joint output of the classifier ensemble is computed using

C(x) =
M∑

m=1

αmCm(x).

Fig. 1. The AdaBoost algorithm.

In order to evaluate the AdaBoost algorithm in class imbalance case, exper-
iments are conducted on the “phoneme” data set from the ELENA database
which involves 3818 and 1586 samples respectively for the first class, w0 and
second class, w1. 2500 and 100 samples are used for training providing an im-
balance ratio of 25 : 1. 1300 samples from each class are used for testing. In the
under-sampling case, 100 training samples are selected from w0 to be considered
for model training whereas in the over-sampling case, the training samples of
w1 are replicated for 24 times so that both classes have the same amount of
training data. The experiments are repeated for 10 times and the results are av-
eraged. A quadratic discriminant classifier (QDC) from the PRTOOLS toolbox
for MATLAB is used as the base classifier [5].

Figure 2 illustrates the training error achieved as a function of the classifiers
in the ensemble. As seen in the figure, the performance on the training data
in the case of imbalanced classes is much better than the sampling based ap-
proaches. However, it is evident from Figure 3 that this is mainly due to training
inaccurate models that almost always predict the majority class. The poor test
performance of AdaBoost indicates that the algorithm is not well suited for im-
balanced data sets. In other words, the inherently available sample weight based
under-sampling and over-sampling mechanism in AdaBoost may not be helpful.
Moreover, the test performance achieved by the sampling techniques provide
their efficiency also for the AdaBoost algorithm where the under-sampling per-
formance is slightly better than over-sampling.
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Fig. 2. Training error for different number of base classifiers.
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Fig. 3. Test error for different number of base classifiers.

3 Proposed Approach

Let Nt and Ni denote the number of training samples from minority and majority
classes respectively where Ni >> Nt. Let µk, k = 1, . . . , Nt denote the centroids
obtained by applying the k-means clustering algorithm to the training samples
from the majority class so that the same number of training samples as in the
minority class is obtained. Assume that ck denote the number of training samples
which are closest to µk where

∑Nt

k=1 ck = Ni and cavg is the average number of
training samples in the clusters. The selection of Nt centroids from the majority
training data set balances the training data such that the same number of data
points are used for both the minority and majority classes. The use of centroids
instead of a random subset as in under-sampling approach has some advantages.
For instance, the selection of samples which are very close to each other and have
similar classification difficulties is avoided. Also, different costs can be associated
with each misclassification. For instance, the misclassification of a centroid with
a large number of training data can be considered to have a high cost. Having
computed the centroids, the training data, S involving the Nt centroids from the



702 Hakan Altınçay and Cem Ergün

majority class and all Nt training data from the minority are considered as the
training set, S = {(xn, yn)}, n = 1, . . . , 2Nt.

There are some drawbacks in applying the AdaBoost algorithm using the
centroids. Firstly, the subset selection mechanism in Step 1 does not take into
account the relative cardinalities of the training sets of minority and majority
classes. Moreover, the cost of misclassifying a highly crowded centroid is not
differentiated from a less crowded one in computing the model error, εm. It should
be noted that the term “cost” does not denote the relative importance of correct
classification among different classes as used in various cost sensitive boosting
algorithms [6]. Instead, it is assumed that a misclassified centroid corresponds to
the misclassification of all the majority training vectors closest to it and hence,
the term “cost” stands for the contribution to εm by a misclassified centroid.

In order to avoid the problems specified above, a balancing based AdaBoost
algorithm (AdaBoost-B) is proposed as illustrated in Figure 4. The proposed
algorithm is based on the SSTBoost algorithm [7]. However, as stated above,
the definition of cost and error are not based on relative importance of correct
classification among different classes as in SSTBoost. It should be noted that the
weight update in AdaBoost-B algorithm is the same as AdaBoost when costn =
1, ∀n. Also, different orders of scaling on the majority class are applied depending
on the number of training vectors belonging to the centroids. The weights of the
misclassified centroids that are more crowded are increased more than those of
less crowded and the weights of the correctly classified centroids that are more
crowded are decreased less than those of less crowded. The computation of the
weighted error is also modified so as to take into account the fact that each
centroid is a representative for a cluster of training data. The contribution to
the weighted error by all vectors in a given cluster µn is proportional to the
number of samples in that cluster. Hence, a weighted distribution should be
computed as wm(n) = cn × dm(n)/γm to take into account the contribution
to the error by all available majority class samples. As a matter of fact, the a
priori probabilities are incorporated in the classifier creation which is lost in the
under-sampling and over-sampling cases. The scaling factor γm is used to make
the scaled weights a valid distribution and cn = 1 for the minority class.

For the minority class, costn = 1, meaning that the standard weighting used
in the AdaBoost algorithm is applied where different costs are not associated
with correct classification or misclassification.

The performance evaluation of identity verification systems is usually based
on the Receiver Operating Characteristic (ROC). The cost of misclassification
for different classes determine the operating point on the curve which is generally
set using a threshold on the output scores. In summary, the k-means clustering
based under-sampling approach helps to select a subset of training samples which
represent the underlying distribution more accurately than the random selection
approach. Moreover, information about the dense and sparse regions in the input
space are included in the iterations so that misclassified centroids corresponding
to sparse regions are defined as less costly than those representing the dense
regions.
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- Define costn =

{
1 if xn ∈ minority

cn
cavg

if xn ∈ majority

1. for m = 1, ..., M
1.1 Build classifier Cm using sample set Sm from S using distribution Wm.
1.2 Compute γm =

∑2Nt
n=1 dm(n)cn where cn is selected as 1 for the minority

class.
1.3 Compute the weighted error using εm =

∑2Nt
n=1(

cn
γm

)dm(n)(1−qn,m) where
qn,m = 1 if xn is correctly classified by Cm and zero otherwise.

1.4 Compute αm = 1
2

ln( 1−εm
εm

), εm ∈ (0, 0.5) and update the weights using,

dm+1(n) =
dm(n)

Zm

{
e−αm(2−costn) if Cm(xn) = yn

eαmcostn if Cm(xn) �= yn

where Zm is a normalization factor so that dm+1 is a distribution.
2. The joint output of the classifier ensemble is computed using

C(x) =
M∑

m=1

αmCm(x).

Fig. 4. The balancing based AdaBoost algorithm, AdaBoost-B.

4 Speaker Verification and Experimental Setup

In Speaker Verification (SV ), the aim is to decide whether the tested speech
utterance belongs to the claimed identity or it is an impostor [8]. In the state-
of-the-art SV systems, the output is composed of two likelihood scores where
the decision is based on the likelihood ratio obtained as the difference of the log
likelihoods of the outputs,

LR = L(X |λi) − L(X |λB) (1)

where λi denotes the claimant model, λB denotes the reference model and X de-
notes the tested utterance. The decision to accept or reject is based on comparing
the likelihood ratio to a threshold, Θ such that

LR ≥ Θ =⇒ target speaker (2)
LR < Θ =⇒ impostor (3)

Universal Background Models (UBM) are generally used as the reference models
where each UBM is a Gaussian Mixture Model (GMM) having a large number
of mixtures trained to represent speaker-independent distribution of the feature
vectors [9]. The claimant models, λi are also GMMs which are trained using
Bayesian adaptation from the UBM. The short-time spectral information ex-
tracted from the speech utterances, Mel-frequency cepstral coefficients (MFCC)
are used as the feature vectors. Sixteen MFCCs and their Delta’s [8] are com-
puted in every 80 samples for the spectral representation of each Hamming
windowed speech frame of length 160 samples.
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A subset of the corpus is excluded from verification tests and is used for
training the reference model. Approximately one hour of speech is used to train
a UBM for male and another one hour of speech for training a female UBM.
Each UBM involves 1024 mixtures. Then, these UBMs are combined to obtain
a single 2048 mixture joint UBM to be used as a reference model. Excluding
the speakers used for UBM training, 396 speakers (245 female and 151 male) are
considered during the verification experiments. The training data of each speaker
is split into 6 equal parts for 6-fold cross validation to obtain the training data
for the multiple classifier based decision boundary. During the cross-validation,
the speech segment which is not included in the model training and kept outside
for validating the models had impostor attacks on all the other speakers. During
the testing phase, non-overlapping speech segments of length 10s are used. The
target tests and impostor attacks are performed using the standard setup defined
for this corpus.

The output scores corresponding to the tested speaker and the joint UBM are
the treated as the inputs for the classifier ensemble to be created using AdaBoost.
The number of training and test samples for the minority class (target tests) and
the majority class (impostor attacks) are given in Table 1. Due to 396 speakers
involved in the SV experiment, the ratio of impostor to target training samples
is high as 395 : 1. This ratio represents a rather high imbalance ratio. However,
it naturally occurs in practice for SV problem.

Table 1. The number of training and test samples for the minority and the majority
classes.

class number of training samples number of test samples

majority 938520 22071
minority 2376 1479

5 Results

In the experiments, two independent multiple classifier systems are implemented.
The first one, Ar corresponds to the application of the original AdaBoost algo-
rithm on a random subset of the majority class which involves the same number
of training samples as the minority class. The second system, ABc corresponds
to the use of cluster centroids of the majority class equal to the number of mi-
nority samples and the AdaBoost-B algorithm. Using Ar, the performance of
AdaBoost algorithm in improving the verification decision for SV systems is
investigated. Using ABc, it is aimed to examine whether alternative sampling
techniques can improve the verification accuracy or not. Two different versions
of the boosting algorithm are considered, aggressive and conservative. In [10],
the given form of the boosting algorithm in Figure 1 is referred as Aggressive
boosting since the weights of both correctly and incorrectly classified samples
are modified. Alternatively, in Conservative boosting, either the weights of mis-
classified samples are increased or the weights of correctly classified samples are
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decreased. In the conservative implementations in this study, only the weights of
correctly classified samples are updated in both Ar and ABc. The over-sampling
approach is not considered due to the heavily increased computational load after
over-sampling in our case.

Two different base classifiers are considered, namely quadratic discriminant
classifier (QDC) and an MLP neural network consisting of one hidden layer
with 10 neurons trained for 300 iterations using fast backpropagation algorithm
(NNET). The experiments are conducted for 10 times and the results are av-
eraged. In the experiments, the total number of classifiers in each ensemble is
selected as 20.

The Equal Error Rate (EER) provided by the baseline SV system based on a
linear Bayes decision boundary is 15.28%. The EER’s obtained using AdaBoost
are presented in Table 2. As seen in the table, both of the systems considered
in this study provide significant improvements in the verification accuracy. ABc
provides better accuracies in both conservative and aggressive types of the boost-
ing for the QDC type of base classifier. ABc provides better accuracy also in the
conservative boosting of the NNET classifiers. However, the aggressive boosting
of NNET classifiers in Ar yields a better performance than ABc.

There are some points that should be emphasized. Firstly, the imbalance ratio
may be so large that, irrespective of the problems that may occur during the
learning process, training an ensemble of classifiers may be infeasible from the
computational point of view. Secondly, under-sampling based ensemble creation
is observed to provide significant improvements. Moreover, taking into account
the distribution of the impostor scores during sampling is valuable for further
improvement. In fact, we mainly observe that the clustering based sampling and
cluster dependent scaling of the training samples provide better accuracies than
random selection in majority of the cases.

Table 2. Experimental results for two different base classifiers (in %).

base classifier: QDC base classifier: NNET
MCS Conservative Aggressive Conservative Aggressive

Ar 13.87 14.00 13.46 13.33
ABc 13.72 13.86 13.39 13.40

6 Conclusions

In this study, the class imbalance problem is addressed and it is observed that the
under-sampling approach is a simple but effective method where the AdaBoost
algorithm based multiple classifier approach trained using the under-sampled
training data provided significant improvements. The use of k-means clustering
based centroids in the training set of the AdaBoost algorithm is proposed as an
alternative under-sampling technique. In the proposed approach, the AdaBoost
algorithm is also modified so as to take into account the class a priori proba-
bilities. Each centroid is used as a representative of its neighborhood where the
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misclassification of one centroid is considered as more costly than another if the
number of the training samples in that cluster are more. Experimental results
have shown that the proposed approach may be effective in majority of the cases.
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