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Abstract—Power distribution systems have been significantly af-
fected by many fault causing events. Effective outage cause identifi-
cation can help expedite the restoration procedure and improve the
system reliability. However, the data imbalance issue in many real-
world data often degrades the outage cause identification perfor-
mance. In this paper, artificial immune recognition system (AIRS),
an immune-inspired algorithm for supervised classification task is
applied to the Duke Energy outage data for outage cause identi-
fication using three major causes (tree, animal, and lightning) as
prototypes. The performance of AIRS on these real-world imbal-
anced data is compared with an artificial neural network (ANN).
The results show that AIRS can greatly improve the performance
by as much as 163% when the data are imbalanced and achieve
comparable performance with ANN for relatively balanced data.

Index Terms—Artificial immune system, classification, data im-
balance, outage cause identification, neural network, power distri-
bution systems.

I. INTRODUCTION

POWER distribution reliability has a high impact on the
electricity cost and customer satisfaction and therefore is

an important topic in the electric power industry. Power distribu-
tion systems have been significantly affected by a wide range of
events (such as equipment failures, animal contacts, trees, light-
ning strikes, etc.). In order to improve the reliability as well as
the availability of power distribution systems, the management
systems need to have proper and speedy responses to outages.
For safety concerns, many utilities do not re-energize the system
until they have found the root cause of the outage. The process
may take from tens of minutes to hours: linemen may often need
to walk along the power distribution lines (can be miles) to look
for the evidences of the outage such as burn marks on the pole
for possible lightning-caused outages and dead animal bodies
for possible animal-caused outages. From time to time, the evi-
dences cannot be found at the fault location. For instance, a bird
takes away the body of the squirrel that has jumped into a dis-
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tribution transformer and shorted the phase to ground wire. The
linemen occasionally may even need to ask the dispatch center
for an appropriate crew to execute advanced tasks (e.g., a tree
crew is requested to remove the fallen trees in order to restore
the system).

Power outage cause identifications can provide useful infor-
mation to narrow down the area that has to be searched to ex-
pedite the restoration procedure and consequently improve the
system reliability. For example, the linemen can be informed to
focus on certain types of outage causes or the appropriate crew
can be dispatched earlier to restore the system. As the name im-
plies, power outage cause identification is to categorize a re-
ported outage into one of the existing classes that are carefully
arranged by domain experts; it can be considered as a classifi-
cation problem.

With the development of data mining techniques, historical
outage data have been utilized to extract outage patterns [1], [2].
However, data imbalance (i.e., where at least one of the classes
significantly outnumbers some other classes) as one of the real-
world data imperfections has been affecting the performance
of pattern extraction and classification, since most commonly
used classification methods aim to minimize the overall error
rate. This data imbalance issue may cause some classification
methods to achieve biased performance [3]: a high accuracy on
the majority class but a very low accuracy on the minority class.

Artificial immune systems (AIS) have been gaining signifi-
cant attention in various application areas due to its powerful
adaptive learning and memory capabilities. The artificial im-
mune recognition systems (AIRS) algorithm proposed and well
benchmarked by Watkins and Timmis [4]–[6] exhibits success
as a classification algorithm. In this paper, AIRS is applied to
Duke Energy power outage data to investigate its capability to
perform outage cause identification, particularly with the imbal-
anced real-world data.

Section II introduces Duke Energy outage data and how we
preprocess the data; Section III briefly describes the AIRS algo-
rithm as well as its related immune system concepts; Section IV
presents the power distribution outage cause identification
scheme using AIRS, and Section V shows its performance
on outage cause identification and compares it with artificial
neural network (ANN).

II. DUKE ENERGY OUTAGE DATA AND DATA PREPROCESSING

In Duke Energy distribution systems, every time a fault cur-
rent is detected as a result of the activation of some protective
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TABLE I
OVERVIEW OF ELEMENTS OF EACH INFLUENTIAL FACTOR

device like a circuit breaker or relay, the outage related infor-
mation is recorded into a data collection system. Each outage
record in this database contains 33 information fields. Based
on Duke Energy senior distribution engineers’ suggestions as
well as the statistical significance tests [7], six of the fields are
considered as the most essential and influential factors: circuit
ID, weather, season, time of day, phases affected, and protec-
tive devices activated. These six influential factors are chosen to
be independent variables, and the attribute cause entered by the
crew after finding out the actual outage cause during the restora-
tion process is selected as the dependent variable (i.e., the class
label).

All six independent variables are categorical as shown in
Table I; they are transformed into numerical variables using the
likelihood measure [7] so that they can be used in most of the
commonly used classification processes, including ANN and
AIRS, which usually require numerical inputs.

The likelihood measure shown in (1) represents the condi-
tional probability of an outage due to a specific cause given
a certain condition (e.g., the likelihood of an observed outage
caused by a tree given icy weather condition)

(1)

where indicates outage cause (e.g., tree, lightning), refers to
outage-related event or condition (e.g., lightning weather, fuse
activated, morning), is the number of outages caused by
outage under condition is the number of outages under
condition , and is the likelihood measure of outage given
condition .

The likelihood measure can provide useful information for
outage cause identification; it is logically used as the inputs to
classifiers.

Duke Energy has 32 service areas in North Carolina and
South Carolina; seven of them are selected as reasonable service
area representations based on domain experts’ suggestions:
Chapel Hill (CH), Clemson (CS), Durham (DH), Greenville
(GV), Hickory (HC), Lancaster (LC), and Winston–Salem
(WS). This selection takes different geographical features and
system status into consideration: these seven regions cover
metropolitan areas, cities, towns, rural areas, and wooded areas
and also embody both old systems and new systems.

III. ARTIFICIAL IMMUNE RECOGNITION SYSTEMS (AIRS)

AIS are adaptive systems inspired by theoretical immunology
and observed immune functions, principle, and models [8]. AIS
utilize inspirations from immune systems and make use of ideas
from immune systems to solve problems in different areas such
as pattern recognition [9] and fault diagnosis [10]. AIRS is a
natural immune system-inspired algorithm for supervised clas-
sification task.

The immune systems consist of a complex set of cells and
molecules that protect our bodies against infection by pathogens
with complicated mechanisms. In this paper, only the AIRS-
related aspects of immunology are introduced; a more detailed
overview of the immune system can be found in [11].

A. Immune Systems

The immune systems, which contain lymphocyte cells known
as B- and T-cells, guard our bodies against infections due to the
attacks of antigens. B-cells have surface receptors that are able
to recognize specific antigens through binding (complementary
pattern matching); stronger binding generates higher affinity be-
tween the receptor and antigen. The binding can activate the re-
ceptor’s hosting B-cell. Activated B-cells then proliferate and
differentiate into plasma cells or memory cells. Plasma cells
secrete a large amount of antibodies through clonal expansion
(which clones the antibodies in proportion to the affinity be-
tween the antigen and the antibody) to neutralize the pathogens.
Those clones undertake mutation to create diverse antibodies
by altering the gene segments. The rate of the mutation is in-
versely proportional to the affinity between the antigen and the
antibody. These antibodies compete for the limited resources,
and the ones that fit the antigen better survive. Memory cells
remain in the system for a long period, allowing for a future re-
sponse to the same or similar antigens to be improved in respect
to both speed and accuracy.

B. AIRS Algorithm

AIRS is a B-cell mechanism-based algorithm. The input data
are considered as antigens, usually represented as vectors. The
potential solutions are expressed as B-cells; each B-cell includes
an antibody that has the same vector format as antigens. A set of
identical B-cells is represented as an artificial recognition ball
(ARB) to reduce duplication [12].

In the initialization phase, the input data are first preprocessed
to fit the defined affinity metric of the antigen-antibody binding.
For example, if the Euclidean distance is used as the affinity
metric, then the data are normalized to ensure the reactions be-
tween any antigen-antibody pair stay in the range of [0, 1]. Be-
sides, an initial set of ARBs and memory cells are
randomly seeded from the training data.

The training algorithm is a one-shot incremental procedure.
Every time a new training data sample (antigen) is fed to the
algorithm, the best matching cell from the current memory
cell population of antigen’s class is first identified, denoted as

, which has a chance to generate offspring and expand
through clonal expansion; clonal expansion produces

the clones of an antibody in proportion to its affinity with the
presented antigen. Some of the clones experience mutation
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Fig. 1. Schematic diagram of AIRS-based power distribution outage cause
identification.

that changes one or more gene segments to create antibody
variations; the mutation is implemented in the algorithm by
randomly changing the values (in the allowed range) of some
of the antibody vector elements. After this, each ARB from the
updated is presented to the antigen in order to examine
its affinity with the antigen; then a finite amount of resources,
which is proportional to its affinity, is allocated to the ARB
accordingly. When the total resources allocated across the ARB
population exceeds the allowed limit, the weakest ARBs are
removed until the totality of allocated resources is under the
limit. The survived ARBs further produce offspring through
clonal expansion and mutation until the average affinity value
for all the existing ARBs with the antigen reaches the preset
threshold or other stopping criteria for one-antigen training.
Once the training process for current antigen is fulfilled, the
best matching ARB with the same class as the antigen is
nominated as the candidate memory cell ; it will
be added to and become a long-lived memory cell if it
matches the antigen better than .

The algorithm continues until all the training antigens have
been presented. The final generated during the training
phase is used as class prototypes for future classification in
which the class of each presented test antigen is determined
by this set of class prototypes through the k-nearest neighbor
(k-NN) approach.

IV. POWER DISTRIBUTION OUTAGE CAUSE IDENTIFICATION

As discussed in Section II, the likelihood measures of six
independent variables are used as the inputs to classifiers.
However, the likelihood measure depends on both outage
cause and influential condition as shown in (1); an outage
record is mapped to different sets of likelihood measure values
with respect to different outage causes, even under the same
influential condition. As a result, the classifier can only process
the identification of one outage cause type at a time. In this
paper, three top customer interruption causes for most utilities
are used as prototypes: lightning, animal, and tree. Fig. 1 shows
the AIRS-based power distribution outage cause identification
scheme that consists of three identical branches in parallel:
lightning branch, animal branch, and tree branch. Each branch
is responsible for identifying its own designated type of cause.

TABLE II
PROPORTIONS OF TREE-CAUSED, ANIMAL-CAUSED, AND LIGHTNING-CAUSED

OUTAGES IN DIFFERENCE REGIONS

The outage cause identification scheme can be extended to N
branches for N outage types.

Within each branch, the likelihood calculation module first
transforms incoming outage records to a set of likelihood mea-
sures so that the input format is ready for the following classifi-
cation methods. In this module, a corresponding likelihood mea-
sure vector is generated for every outage record; this vector is
regarded as the antigen and presented to the AIRS classifier. The
AIRS classifier in the next step determines the class to which the
incoming outage belongs by utilizing the memory cell set
generated during the training phase.

The AIRS classifier in this outage identification scheme faces
a binary classification task. Taking the tree branch as an ex-
ample, the AIRS classifier categorizes incoming outage as either
a tree-caused outage or a nontree-caused outage (which can be
caused by animal contact, lightning strike, or others). As a re-
sult, an AIRS classifier often faces an imbalanced data classifi-
cation task since one particular outage may only account for a
small percentage of the total number of outages due to the diver-
sity of outage causes. Table II presents the proportions of three
prototyping causes in each region (the region names appear as
defined in Section II); this table clearly shows the data imbal-
ance issue in power distribution outage data.

Lightning-caused outages have an average proportion of
9.97% in training data and 4.36% in test data. The region of
DH has only 1.89% lightning-caused outages in its test dataset.
Tree-caused outages, one of the largest outage classes, are rela-
tively balanced between tree-caused outage and nontree-caused
outage comparing with lightning-caused outages: tree-caused
outages have an average proportion of 25.52% in training data
and 28.88% in test data. Animal-caused outage is in between,
with an average proportion of 15.25% in training data and
14.83% in test data.

The decision fusion module collects classification decisions
from different branches. Conflicting decisions occur occasion-
ally; the decision fusion module needs to mediate results from
all the branches by comparing the affinities between the antigen
and the winner memory cell in each branch in order to identify
the outage cause of the incoming outage record. This module
is not discussed in this paper, and only the decisions from each
individual branch are presented in order to demonstrate the ca-
pability of the AIRS algorithm on classifying imbalanced data.

V. RESULTS AND DISCUSSIONS

In this paper, Duke Energy outage data from 1994 to 2002
are used. For each representative region, the data are divided
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TABLE III
CONFUSION MATRIX

into training data and test data by year: the outage records from
1994 to 1999 are used as the training set and the remaining data
(2000 to 2002) form the test set. For example, the region of HC
has a training data set with 10 030 outages and a test set with
5617 records.

The AIRS classifier uses the default parameter setting as in
[2], except that the number k for the k-NN approach is set to
1. For an imbalanced dataset, majority class antigens may pro-
duce more memory cells than minority class antigens during the
AIRS training phase. One minority class cell may be surrounded
by some majority class cells when representing the memory
cells in a high-dimensional space, so taking votes from several
memory cells close to an antigen may cause a biased decision.

Empirical studies show that many classification algorithms
have sufficiently similar accuracies such that the differences
among those algorithms are statistically insignificant [13]. The
widely used ANN has been investigated in our previous works
[2], [14]. The performance of AIRS is compared with a three-
layer feed-forward neural network (six input nodes, 40 hidden
nodes, and one output node, as in [14]). Due to the randomness
property of both AIRS and ANN, each algorithm has been run
30 times in order to generate statistically representative results.

A. Performance Measure

The overall classification accuracy is the most straightfor-
ward performance measure for a classification task, but it can
be misleading in the case with imbalanced data. For example,
assuming that there is a two-class imbalanced data set , the
majority class contains 95% of the data and the minority
class contains the remaining 5% of the data; a classifier can
achieve an overall accuracy as high as 95%, even if it blindly
(indiscriminately) categorizes every case to the majority class

. This is certainly an undesirable approach from a classifi-
cation viewpoint. Kubat et al. have proposed the g-mean [15]
based on the confusion matrix to measure the classification per-
formance on imbalanced data sets. Table III shows the con-
fusion matrix where the tree-/animal-/lightning-caused outages
are considered as positive classes and nontree-/nonanimal-/non-
lightning-caused outages as negative classes.

True positive rate indicates the classification accu-
racy of tree-/animal-/lightning-caused outages, and the true neg-
ative rate presents the classification accuracy of non-
tree-/nonanimal-/nonlightning-caused outages, as shown in (2)
and (3), respectively. G-mean examines the classification accu-
racies on both positive and negative classes; it punishes large
disparities between them: the g-mean is high when both
and are large and the difference between and
is small. According to the definition of g-mean, whose basic idea
is to maximize the accuracies on both classes, shown in (4), the
classifier in the previous example of two-class imbalanced data

Fig. 2. G-means for lightning outage identification (test data).

Fig. 3. G-means for animal outage identification (test data).

set only gets a g-mean value of 0, although it has 95% overall
accuracy

(2)

(3)

- (4)

B. Results

The performance of the classification using ANN and AIRS is
presented in this section. Figs. 2–4 show the g-means achieved
by two methods on test data for lightning-caused outage, an-
imal-caused outage, and tree-caused outage, respectively. In the
figures, the heights of the vertical bars represent the mean values
of g-means over 30 runs, and the “whiskers” represent their
95% confidence intervals. The region names appear as defined
in Section II.
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Fig. 4. G-means for tree outage identification (test data).

TABLE IV
P-VALUES OF TWO-SAMPLE TESTS OF HYPOTHESIS ON G-MEANS

Two-sample tests of hypothesis are performed using the
30-run experimental data to compare the g-means of both
approaches. In this paper, the null hypothesis

- - - (5)

is tested against the alternative hypothesis

- - - (6)

The P-values of the tests can help make the decision whether
or not AIRS achieves higher performance than ANN: a P-value
indicates the probability of obtaining the existing sample data
given the null hypothesis [16], so a low P-value leads to the re-
jection of the null hypothesis. The commonly used level of sig-
nificance 0.05 is applied, i.e., a P-value under 0.05 will reject the
null hypothesis in favor of the alternative hypothesis. Table IV
presents the P-values of two-sample tests on g-means achieved
by AIRS and ANN.

Fig. 2 clearly indicates that AIRS significantly increases the
average g-mean values for lightning outage in most of the re-
gions. The P-values of the two-sample tests of the hypothesis
in Table IV also shows that the g-means achieved by AIRS are
significantly higher than those by ANN in all the regions ex-
cept HC, where the P-value 0.1792 is larger than the significance
level 0.05.

Fig. 3 shows a similar pattern that AIRS achieves better per-
formance in terms of average g-mean for animal-caused outages
in all the regions but GV. The two-sample test results in Table IV

indicate that AIRS gets higher g-mean in five regions than ANN
but lower g-mean in GV; the conclusion cannot be drawn for WS
at the significance level of 0.05.

Comparing with lightning-caused outages and animal-caused
outages, the sample mean of g-means over 30 runs for tree out-
ages by AIRS, as shown in Fig. 4, is close to that by ANN in
many regions and AIRS does not show obvious dominance for
tree-caused outages as for lightning-caused outages. The two-
sample tests on g-means indicate that AIRS has higher g-means
in CH and HC and lower g-means in DH and WS; for the re-
maining three regions, the conclusion that one is no better than
the other cannot be made.

Table II shows that the two-class constitution for tree-caused
outages are more balanced than animal-caused outages and that
the two-class constitution for animal-caused outages are more
balanced than lightning-caused outages: the region averaged
odds (i.e., the ratio of probability of an event’s occurrence to
the probability of the event not occurring) of a tree-caused
outage in test data is about 1:2.5. The region averaged odds
of a tree-caused outage in test data is about 1:5.7, while the
region averaged odds of a lightning-caused outage in test data
is as small as about 1:22. It is noticed that with the increase of
percentage of the designated outage cause, the advantage of
AIRS over ANN is weakened: the average proportion of light-
ning-caused outages, animal-caused outages, and tree-caused
outages is in an ascending order, while AIRS outperforms
ANN in all the six regions for lightning-caused outages, five
regions for animal-caused outages, and only two regions for
tree-caused outages.

We further examine the individual case in Table II. It is
observed that animal-caused outages do not necessarily ac-
count for more percentage than lightning-caused outages;
neither do tree-caused outages with animal-caused outages.
For example, LC only has 7.46% animal-caused outages, while
WS has 9.72% lightning-caused outages; WS only has 21.90%
tree-caused outages, while CS has 22.56% animal-caused
outages. Therefore, we disregard the categories of outage
causes to further investigate the relationship between the in-
crease of g-mean values and the percentage of positive classes
(lightning-/animal-/tree-caused outages); the scatter plot of
the increase of g-means versus the percentage of positive
classes is shown in Fig. 5. It is shown in this figure that as the
percentage of positive classes gets smaller (i.e., the data are
more imbalanced); the increase of the g-mean values in general
gets larger (can be as large as 163%). It means that when the
data imbalance issue gets more severe, the advantage of AIRS
over ANN is more significant; when the data constitution is
relatively balanced, AIRS has comparable performance with
ANN.

When implementing classification tasks, a standard ANN
with back-propagation algorithm aims to minimize the overall
error rate. For an imbalanced data set, the majority class has
dominant influence on the overall error since ANN tends to
prioritize the different classes in favor of the class with more
training data examples in order to achieve a high overall ac-
curacy. This biased favor may sacrifice the performance on
classifying minority class and achieves a high accuracy on
the majority class but a very low, sometimes unacceptable,
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Fig. 5. Scatter plot of the increase of g-means versus the percentage of positive
classes.

TABLE V
P-VALUES OF TWO-SAMPLE TESTS OF HYPOTHESIS ON TRUE POSITIVE RATE

accuracy on the minority class. However, the AIRS algorithm
generates matching antibodies for every incoming data and
adds the best one into the memory cell set as long as it does not
get too close to existing cells. This scheme helps prevent the
biased performance as ANN does.

G-mean is calculated from and in (4); therefore,
true positive rate and true negative rate are further compared
to investigate the performance differences between two tech-
niques. In this case, the null hypothesis and the alternative hy-
pothesis for the two-sample test are shown in the following:

(7)

(8)

The P-values of two-sample tests in Table V indicate that
AIRS has higher than ANN in five of seven regions (ex-
cept GV and HC) for lightning-caused outages, in four regions
(except GV, HC, and WS) for animal-caused outages, and in
three regions (CH, CS, and HC) for tree-caused outages. The
two-sample test results in Table VI show that ANN has higher

than AIRS in most of the regions for all three outage
causes (only except WS for lightning-caused outages and DH,
GV, HC, and WS for animal-caused outages).

When the g-mean is broken down into true positive rate and
true negative rate, it is found that AIRS in general increases
the true positive rate at the price of decreasing the true nega-
tive rate. It means that AIRS can improve the accuracy on the

TABLE VI
P-VALUES OF TWO-SAMPLE TESTS OF HYPOTHESIS ON TRUE NEGATIVE RATE

TABLE VII
CAUSE-AVERAGED DIFFERENCE OF OVERALL ACCURACY AND

G-MEAN BETWEEN ANN AND AIRS

minority class, but the classification accuracy on the majority
class is sacrificed to some extent. Comparing with ANN, AIRS
reduces the disparities of the classification accuracies between
the majority class and the minority class. As a result, the g-mean
value is increased, which indicates a more balanced classifi-
cation. However, the decreased classification accuracy in the
majority class that has a larger number of outages may have a
stronger impact on the overall accuracy than the increased accu-
racy of the minority class. Take the region of CH as an example:
the test data in this region have 650 tree-caused outage and
1 435 nontree-caused outages. AIRS increases the sample mean
of true positive rate from 0.4029 to 0.5506, which indicates 96
more tree-caused outages are correctly classified, but the de-
crease of the sample mean of true negative rate from 0.9470 to
0.7865 causes 230 more nontree-caused outages are misclassi-
fied. As a consequence, AIRS improves the performance bal-
ance (g-mean) by 8.35% but decreases the overall classification
accuracy by 7.88%. Table VII shows the outage-cause-averaged
(to avoid the long list of all the regions) difference in g-mean
values and overall classification accuracy. The comparison uses
performance of ANN as a base; therefore, “+” indicates the
improvement by AIRS, while “—” represents the decrease by
AIRS. It is shown in the table that although the overall accu-
racy is decreased, the g-mean values are increased much more,
especially for the lightning-caused outages and animal-caused
outages that involve severe imbalanced data constitution. This
effect needs to be taken into consideration when choosing clas-
sification approaches: whether an application prefers a balanced
performance or a higher overall classification accuracy.

VI. CONCLUSION

Effective power outage cause identification can substantially
expedite the restoration procedure and improve the distribution
system reliability and availability. However, the data imbalance
issue encountered in many real-world data sets often affects the
performance of outage cause identification since most of the
commonly used methods aim to minimize the overall error rate.
In this paper, the immune inspired algorithm for supervised clas-
sification task, AIRS, is applied to Duke Energy distribution
outage data for cause identification with imbalanced data. Three
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major outage causes (tree, animal, and lightning) for most utili-
ties are used as prototypes. The performance achieved by AIRS
in terms of g-mean, the performance measure for imbalanced
classification, is compared with that by ANN, which has been
investigated in our previous works. The results show that AIRS
can greatly improve the performance (as much as 163%) when
the data are imbalanced and achieve comparable performance
with ANN for relatively balanced data. Imbalanced data, as a
very practical issue, have been challenging many power utili-
ties; the successful application of the AIRS algorithm on imbal-
anced historical outage data for cause identification presents a
promising approach for real-world classification tasks.
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