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Abstract

In binary classification problems it is common for the two classes to be imbalanced: one case is
very rare compared to the other. In this paper we consider the infinitely imbalanced case where one
class has a finite sample size and the other class’s sample size grows without bound. For logistic
regression, the infinitely imbalanced case often has a useful solution. Under mild conditions, the
intercept diverges as expected, but the rest of the coefficient vector approaches a non trivial and
useful limit. That limit can be expressed in terms of exponential tilting and is the minimum of
a convex objective function. The limiting form of logistic regression suggests a computational
shortcut for fraud detection problems.
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1. Introduction

In many applications of logistic regression one of the two classes is extremely rare. In political
science, the occurrence of wars, coups, vetos and the decisions of citizens to run for office have
been modelled as rare events; see King and Zeng (2001). Bolton and Hand (2002) consider fraud
detection, and Zhu et al. (2005) look at drug discovery. In other examples the rare event might
correspond to people with a rare disease, customer conversions at an e-commerce web site, or false
positives among a set of emails marked as spam.

We will let Y ∈ {0,1} denote a random response with the observed value of Y being y = 1 in
the rare case and y = 0 in the common case. We will suppose that the number of observations with
y = 0 is so large that we have a satisfactory representation of the distribution of predictors in that
setting. Then we explore the limit as the number of y = 0 cases tends to infinity while the number
of observed cases with y = 1 remains fixed. It is no surprise that the intercept term in the logistic
regression typically tends to −∞ in this limit. The other coefficients can however tend to a useful
limit.

The main result (Theorem 8 below) is that under reasonable conditions, the intercept term tends
to −∞ like − log(N) plus a constant, while the limiting logistic regression coefficient β = β(N)
satisfies

x̄ =

R

ex′βxdF0(x)
R

ex′β dF0(x)
(1)
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where F0 is the distribution of X given Y = 0 and x̄ is the average of the sample xi values for which
y = 1. The limiting solution is the exponential tilt required to bring the population mean of X given
Y = 0 onto the sample mean of X given Y = 1.

When F0 is the N(µ0,Σ0) distribution for finite nonsingular Σ0 then

lim
N→∞

β(N) = Σ−1
0 (x̄−µ0). (2)

Equation (2) reminds one of a well known derivation for logistic regression. If the conditional
distribution of X given that Y = y is N(µy,Σ) then the coefficient of X in logistic regression is
Σ−1(µ1 − µ0). Equation (2) however holds without assuming that the covariance of X is the same
for Y = 0 and Y = 1, or even that X is Gaussian given that Y = 1.

The outline of the paper is as follows. Section 2 gives three numerical examples that illustrate the
limiting behavior of β. One is a positive result in which we see β approaching the value computed
from (2). The other two examples are negative results where (1) does not hold. Each negative case
illustrates the failure of an assumption of Theorem 8. In one case there is no nontrivial estimate of β
at any N > 0 while in the other β diverges as N → ∞. Section 3 formally introduces the notation of
this paper. It outlines the results of Silvapulle (1981) who completely characterizes the conditions
under which unique logistic regression estimates exist in the finite sample case. The infinite sample
case differs importantly and requires further conditions. A stronger overlap condition is needed
between the two X distributions. Also, the distribution of X given Y = 0 must not have tails that are
too heavy, an issue that cannot arise in finite samples from R

d . Section 4 proves the results in this
paper. A surprising consequence of Equation (1) is that the x values when y = 1 only appear through
their average x̄. Section 5 shows that for the drug discovery example of Zhu et al. (2005), we can
replace all data points with y = 1 by a single one at (x̄,1) with minimal effect on the estimated
coefficient, apart from the intercept term. Section 6 discusses how these results can be used in
deciding which unlabelled data points to label, and it shows how the infinitely imbalanced setting
may lead to computational savings.

We conclude this introduction by relating the present work to the literature on imbalanced data.
The English word “unbalanced” seems to be more popular, at least on web pages, than is “imbal-
anced”. But the latter term has been adopted for this special setting in two recent workshops: AAAI
2000 and ICML 2003, respectively Japkowicz (2000) and Chawla et al. (2003). An extensive survey
of the area is given by Chawla et al. (2004). In that literature much attention is paid to undersam-
pling methods in which some of the available cases with Y = 0 are either randomly or strategically
removed to alleviate the imbalance. Another approach is oversampling in which additional, possibly
synthetic, cases are generated with Y = 1. It is also clear that prediction accuracy will be very good
for a trivial method that always predicts y = 0 and so one needs to take care about misclassification
cost ratios and prior probability ratios.

2. Numerical Examples

For illustration, suppose that when Y = 0 that X ∼ N(0,1) and that we have one single obser-
vation with y = 1 and it has x = 1. To study this case we use logistic regression on (xi,yi) =
(Φ−1((i− 1/2)/N),0) for i = 1, . . . ,N and (xN+1,yN+1) = (1,1). Here Φ is the cumulative dis-
tribution function (CDF) of the N(0,1) distribution. As N increases the problem becomes more
imbalanced and the N points used produce an ever better approximation to the normal distribution.
Taking stratified Xi reduces inessential variation in the computation making the convergence pattern
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INFINITELY IMBALANCED LOGISTIC REGRESSION

N α Neα β
10 −3.19 0.4126 1.5746

100 −5.15 0.5787 1.0706
1,000 −7.42 0.6019 1.0108

10,000 −9.71 0.6058 1.0017
100,000 −12.01 0.6064 1.0003

Table 1: Logistic regression intercept α and coefficient β for imbalanced data described in the text.
There are N observations with Y = 0 and stratified X ∼ N(0,1) and one observation with
Y = 1 and X = 1.

clearer. Some resulting values are shown in Table 1. From this table it seems clear that as N → ∞,
the intercept term is diverging like − log(N) while the coefficient of X is approaching the value
1 that we would get from Equation (2). Theorem 8 below shows that such is indeed the limiting
behavior.

Next we repeat the computation replacing Φ by the CDF of the standard Cauchy distribution
with density 1/(π(1+ x2)). The results are shown in Table 2. Here it is clear that β → 0 as N → ∞
and α appears to behave like a constant minus log(N). It is not surprising that β → 0 in this limit.
The Cauchy distribution has tails far heavier than the logistic distribution. If β 6= 0 then the log
likelihood (4) that we introduce in Section 3 is −∞. The likelihood is maximized at β = 0 and
α = − log(N +1). We get slightly different values in Table 2 because the uniform distribution over
N Cauchy quantiles that we use has lighter tails than the actual Cauchy distribution it approaches.
The heavy tails of the Cauchy distribution make it fail a condition of Theorem 8. The finite sample
setting does not need a tail condition on the distribution of X , beyond an assumption that all observed
values are finite.

In the next example we use the U(0,1) distribution for X given Y = 0. This time we use n = 2
points with y = 1. One has x = 1/2 and the other has x = 2. The results are shown in Table 3. Once
again the value β does not appear to be converging to a limit. It cannot be due to heavy tails, because
the U(0,1) distribution has bounded support. On further thought, we see that x̄ = 5/4. There is no
possible way for an exponential tilt like (1) to reweight the U(0,1) distribution to have mean 5/4.
This example also fails one of the conditions of Theorem 8. We need the point x̄ to be surrounded
by the distribution of X given Y = 0 as defined in Section 3. Such a requirement is stronger than

N α Neα β Neβ

10 −2.36 0.94100 0.1222260 1.2222
100 −4.60 0.99524 0.0097523 0.9752

1,000 −6.90 0.99953 0.0009537 0.9536
10,000 −9.21 0.99995 0.0000952 0.9515

100,000 −11.51 0.99999 0.0000095 0.9513

Table 2: Logistic regression intercept α and coefficient β for imbalanced data described in the text.
There are N observations with Y = 0 and stratified X from the standard Cauchy distribu-
tion, and one observation with Y = 1 and X = 1.
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N α Neα β eβ/N
10 −3.82 0.2184 2.85 1.74

100 −7.13 0.0804 4.19 0.66
1,000 −10.71 0.0223 5.82 0.34

10,000 −14.52 0.0050 7.62 0.20
100,000 −18.49 0.0009 9.54 0.14

Table 3: Logistic regression intercept α and coefficient β for imbalanced data described in the text.
There are N observations with Y = 0 and stratified X ∼U(0,1) and two observations with
Y = 1, one with X = 1/2, the other with X = 2.

what is needed in the finite sample setting. Empirically eα and eβ both appear to follow a power
law in N but we do not investigate this further, focusing instead on the case where β approaches a
non-trivial limit.

3. Notation

The data are (x,y) pairs where x ∈ R
d and y ∈ {0,1}. There are n observations with y = 1 and N

with y = 0. The difference in case serves to remind us that n � N. The values of x when y = 1 are
x11, . . . ,x1n. The values of x when y = 0 are x01, . . . ,x0N . Singly subscripted values xi represent x1i.
Sometimes we use n1 for n and n0 for N.

The logistic regression model is Pr(Y = 1 | X = x) = eα+x′β/(1+eα+x′β) for α ∈ R and β ∈ R
d .

The log-likelihood in logistic regression is

n

∑
i=1

{
α+ x′1iβ− log(1+ eα+x′1iβ)

}
−

N

∑
i=1

log(1+ eα+x′0iβ). (3)

We suppose that a good approximation can be found for the conditional distribution of X given
that Y = 0, as seems reasonable when N is very large. For continuously distributed X we might
then replace the second sum in (3) by N

R

log(1+ exp(1+ eα+x′β) f0(x)dx where f0 is a probability
density function. Because some or all of the components of X might be discrete we work instead
with a distribution function F0 for X given that Y = 0.

With a bit of foresight we also center the logistic regression around the average x̄ = ∑n
i=1 xi/n of

the predictor values for cases with Y = 1. Then the log likelihood we work with simplifies to

`(α,β) = nα−
n

∑
i=1

log(1+ eα+(xi−x̄)′β)−N
Z

log(1+ eα+(x−x̄)′β)dF0(x) (4)

where the nα term arises as ∑n
i=1 α+(xi − x̄)′β.

When the centered log likelihood ` has an MLE (α̂0, β̂) we can recover the MLE of the uncen-
tered log likelihood easily: β̂ remains unchanged while α̂ in the uncentered version is α̂0 − x̄′β̂. The
numerical examples in Section 2 used uncentered logistic regression.

Here we study the maximizer (α̂, β̂) of (4) in the limit as N → ∞ with n and x1, . . . ,xn held fixed.
It is reasonable to suppose that α̂ → −∞ in this limit. Indeed we anticipate eα̂ should be O(1/N)
since the proportion of observations with y = 1 in the data is n/(N +n)

.
= n/N. What is interesting

and important is that β̂ does not necessarily diverge.
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INFINITELY IMBALANCED LOGISTIC REGRESSION

3.1 Silvapulle’s Results

It is well known that the MLE in the usual logistic regression setting can fail to be finite when the x
values where y = 1 are linearly separable from those where y = 0.

The existence and uniqueness of MLE’s for linear logistic regression has been completely char-
acterized by Silvapulle (1981). He works in terms of binary regression through the origin. To
employ an intercept, one uses the usual device of adjoining a predictor component that is always
equal to 1.

For y = 1 let z1i = (1,x′1i)
′ for i = 1, . . . ,n1 and for y = 0 let z0i = (1,x′0i)

′ for i = 1, . . . ,n0. Let
θ = (α,β′)′. Then the logistic regression model has Pr(Y = 1 | X = x) = exp(z′θ)/(1 + exp(z′θ))
where of course z = z(x) = (1,x′)′. Silvapulle (1981) employs two convex cones:

C j =

{
n j

∑
i=1

k ji z ji | k ji > 0

}
, j ∈ {0,1}.

Theorem 1 For data as described above, assume that the n0 + n1 by d + 1 matrix with rows taken
from z ji for j = 0,1 and i = 1, . . . ,n j has rank d + 1. If C0 ∩C1 6= /0 then a unique finite logistic
regression MLE θ̂ = (α̂, β̂′) exists. If however C0 ∩C1 = /0 then no MLE exists.

Proof: This result follows from clause (iii) of the Theorem on page 311 of Silvapulle (1981). �

Silvapulle (1981) has more general results. Theorem 1 also holds when the logistic CDF G(t) =
exp(t)/(1 + exp(t)) is replaced by the standard normal one (for probit analysis) or by the U(0,1)
CDF. Any CDF G for which both − logG(t) and − log(1−G(t)) are convex, and for which G(t) is
strictly increasing when 0 < G(t) < 1 obeys the same theorem. The CDF G cannot be the Cauchy
CDF, because the Cauchy CDF fails the convexity conditions.

The cone intersections may seem unnatural. A more readily interpretable condition is that the
relative interior (as explained below) of the convex hull of the x’s for y = 0 intersects that for y = 1.
That is H0 ∩H1 6= /0 where

H j =

{
n j

∑
i=1

λ ji x ji | λ ji > 0,
n j

∑
i=1

λ ji = 1

}
.

When the x ji span R
d then H j is the interior of the convex hull of x ji. When x ji lie in a lower

dimensional affine subspace of R
d then the interior of their convex hull is the empty set. However

the interior with respect to that subspace, called the relative interior, and denoted H j above is not
empty. In the extreme where x ji = x j1 for i = 1, . . . ,n j, then the desired relative interior of the
convex hull of x j1, . . . ,x jn j is simply {x j1}.

Lemma 2 In the notation above H0 ∩H1 6= /0 if and only if C0 ∩C1 6= /0.

Proof: Suppose that x0 ∈ H0 ∩H1. Then z0 = (1,x′0)
′ ∈ C0 ∩C1. Conversely suppose that z0 ∈

C0 ∩C1. Then we may write

z0 =
n0

∑
i=1

k0i

(
1

x0i

)
=

n1

∑
i=1

k1i

(
1

x1i

)
,

where each k ji > 0. From the first component of z0 we find a common positive value for ∑n0
i=1 k0i

and ∑n1
i=1 k1i. Let K denote that value, and put λ ji = k ji/K for j = 0,1 and i = 1, . . . ,n j. Then

x0 = ∑n0
i=1 λ0ix0i = ∑n1

i=1 λ1ix1i ∈ H0 ∩H1. �
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3.2 Overlap Conditions

In light of Silvapulle’s results we expect that we will need to assume some overlap between the data
x1, . . . ,xn from the 1s and the distribution F0 of X given Y = 0 in order to get a nontrivial result. The
setting here with N → ∞ is different and requires a stronger, but still very weak, overlap condition.
In describing this condition, we let Ω = {ω ∈ R

d | ω′ω = 1} be the unit sphere in R
d .

Definition 3 The distribution F on R
d has the point x∗ surrounded if
Z

(x−x∗)′ω>ε
dF(x) > δ (5)

holds for some ε > 0, some δ > 0 and all ω ∈ Ω.

We will make use of two simple immediate consequences of (5). If F has the point x∗ sur-
rounded, then there exist η and γ satisfying

inf
ω∈Ω

Z

(x−x∗)′ω≥0
dF(x) ≥ η > 0 (6)

and

inf
ω∈Ω

Z

[(x− x∗)
′ω]+ dF(x) ≥ γ > 0 (7)

where Z+ = max(Z,0) is the positive part of Z. For example we can take η = δ in (6) and γ = εδ
in (7). Notice that F cannot surround any point if F concentrates in a low dimensional affine subset
of R

d . This implies that having at least one point surrounded by F0 will be enough to avoid rank
deficiency.

In Theorem 1 it follows from Lemma 2 that we only need there to be some point x∗ that is
surrounded by both F̂0 and F̂1 where F̂j is the empirical distribution of x j1, . . . ,x jn j . If such x exists,
we get a unique finite MLE. (Recall that Theorem 1 assumes full rank for the predictors.)

In the infinitely imbalanced setting we expect that F0 will ordinarily surround every single one
of x1, . . . ,xn. We do not need F0 to surround them all but it is not enough to just have some point x∗
exist that is surrounded by both F0 and F̂1. We need to assume that F0 surrounds x̄. We do not need
to assume that F̂1 surrounds x̄, a condition that fails when the xi are confined to an affine subset of
R

d as they necessarily are for n < d.
There is an interesting case in which F0 can fail to surround x̄. The predictor X may contain

a component that is itself an imbalanced binary variable, and that component might never take the
value 1 in the y = 1 sample. Then x̄ is right on the boundary of the support of F0 and we cannot be
sure of a finite β in either the finite sample case or the infinitely imbalanced case.

3.3 Technical Lemmas

The first technical lemma below is used to get some bounds. The second one establishes existence
of a finite MLE when N < ∞.

Lemma 4 For α,z ∈ R,

eα+z ≥ log(1+ eα+z) ≥ [log(1+ eα)+ zeα/(1+ eα)]+
≥ [zeα/(1+ eα)]+ = z+ eα/(1+ eα).

(8)
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INFINITELY IMBALANCED LOGISTIC REGRESSION

Proof: For the leftmost inequality, apply x ≥ log(1 + x) to x = eα+z. For the others, the func-
tion h(z) = log(1 + eα+z) is convex and positive. Therefore h(z) ≥ [h(0)+ zh′(0)]+ ≥ [zh′(0)]+ =
z+h′(0). �

Lemma 5 Let n ≥ 1 and x1, . . . ,xn ∈ R
d be given, and assume that the distribution F0 surrounds

x̄ = ∑n
i=1 xi/n and that 0 < N < ∞. Then the log likelihood `(α,β) given by (4) has a unique finite

maximizer (α̂, β̂).

Proof: The log likelihood ` is strictly concave in (α,β). It either has a unique finite maximizer or
it grows forever along some ray {(λα0,λβ0) | 0 ≤ λ < ∞} ⊂ R

d+1. By following such a ray back to
where it intersects a small cylinder around the origin we may assume that either 0 ≤ |α0| < ε/2 and
β′

0β0 = 1, where ε is the constant in Definition 3, or that 0 < |α0| < ε/2 and β0 = 0. We will show
that ∂`(λα0,λβ0)/∂λ is always strictly negative, ruling out infinite growth and thus establishing a
unique finite maximizer.

For β0 = 0 and α0 > 0 we find limλ→∞ ∂`(λα0,λβ0)/∂λ = −Nα0 < 0. For β0 = 0 and α0 < 0
we find limλ→∞ ∂`(λα0,λβ0)/∂λ = nα0 < 0.

Now suppose β′
0β0 = 1 and |α0| < ε/2. Using nα0 = ∑n

i=1 α0 +(xi − x̄)′β0, we find

lim
λ→∞

∂
∂λ

`(λα0,λβ0) = ∑
i:α0+(xi−x̄)′β0<0

α0 +(xi − x̄)′β0

−N
Z

α0+(x−x̄)′β0>0
α0 +(x− x̄)′β0 dF0(x).

(9)

The sum in (9) is either 0 or is negative and the integral is either 0 or is positive. For the integral to
be 0 we must have (x− x̄)′β0 ≤−α0 with probability one for x ∼ F0. But this is impossible because
F0 has x̄ surrounded. �

4. Main Results

Lemma 6 below shows that, as anticipated, eα̂ is typically O(1/N) as N → ∞. Specifically, we find
a bound B = 2n/η < ∞ for which limsupN→∞ Neα̂ < B.

Lemma 6 Under the conditions of Lemma 5, let α̂ and β̂ maximize ` of (4). Let η satisfy (6). Then
for N ≥ 2n/η we have eα̂ ≤ 2n/(Nη).

Proof: Let β be any point in R
d . Write eα = A/N for 0 < A < ∞. Then

∂
∂α

` = n−
n

∑
i=1

AN−1e(xi−x̄)′β

1+AN−1e(xi−x̄)′β −N
Z

AN−1e(x−x̄)′β

1+AN−1e(x−x̄)′β dF0(x)

≤ n−A
Z

(x−x̄)′β≥0

e(x−x̄)′β

1+AN−1e(x−x̄)′β dF0(x)

≤ n−
Aη

1+A/N
.
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Now suppose that N ≥ 2n/η and that eα > 2n/(Nη), that is A > 2n/η. Then ∂`/∂α < 0. Because
` is concave this negative partial derivative implies that

argmax
α

`(α,β) < log(2n/η)− log(N). (10)

Because β was arbitrary (10) holds for all β ∈ R
d . Lemma 5 implies that β̂ is finite, and so (10)

applies for β = β̂. �

Lemma 7 Under the conditions of Lemma 5, let α̂ and β̂ maximize ` of (4). Then limsupN→∞ ‖β̂‖<
∞.

Proof: Let eα = A/N for A > 0 and let β ∈ R
d . Pick γ to satisfy (7). Then

`(α,0)− `(α,β)

= −(n+N) log(1+ eα)+
n

∑
i=1

log(1+ eα+(xi−x̄)′β)

+N
Z

log(1+ eα+(x−x̄)′β)dF0(x)

> −(n+N)eα +N
eα

1+ eα

Z

(x−x̄)′β≥0
(x− x̄)′βdF0(x)

≥−(n+N)
A
N

+A
‖β‖γ

1+A/N

after applying two inequalities from (8) and making some simplifications. If follows that `(α,β) <
`(α,0) whenever ‖β‖ ≥ γ−1(1 + A/N)(1 + n/N). For large enough N we have ‖β̂‖ ≤ 2/γ, using
Lemma 6 to control A. �

As illustrated in Section 2, infinitely imbalanced logistic regression will be degenerate if F0 has
tails that are too heavy. We assume that

Z

ex′β(1+‖x‖)dF0(x) < ∞, ∀β ∈ R
d . (11)

Condition (11) is satisfied by distributions with bounded support and by light tailed distributions
such as the multivariate normal distribution.

Theorem 8 Let n ≥ 1 and x1, . . . ,xn ∈ R
d be fixed and suppose that F0 satisfies the tail condi-

tion (11) and surrounds x̄ = ∑n
i=1 xi/n as described at (5). Then the maximizer (α̂, β̂) of ` given

by (4) satisfies

lim
N→∞

R

ex′β̂ xdF0(x)
R

ex′β̂ dF0(x)
= x̄.

Proof: Setting ∂`/∂β = 0, dividing by Neα̂−x̄′β̂ and rearranging terms, gives

Z

(x− x̄)ex′β̂

1+ eα̂+(x−x̄)′β̂
dF0(x) = −

1
N

n

∑
i=1

ex′iβ̂(xi − x̄)

1+ eα̂+(xi−x̄)′β̂
. (12)
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Method α β1 β2 β3 β4 β5 β6

Original −3.707 4.629 4.807 0.398 0.594 0.170 0.130
Single y = 1 −10.116 4.623 4.984 0.397 0.595 0.193 0.182
x1 j = x̄ −3.701 4.765 5.136 0.410 0.614 0.204 0.190
SE 0.041 0.696 0.851 0.040 0.130 0.299 0.413

Table 4: This table shows logistic regression coefficients for the chemical compound data set de-
scribed in the text. The top row shows ordinary logistic regression coefficients. The second
row shows the coefficients when the cases with y = 1 are deleted and replaced by a single
point (x̄,1). The third row shows the coefficients when all 608 cases with y = 1 are re-
placed by (x̄,1). The fourth row shows standard errors for the ordinary logistic regression
coefficients in the top row.

As N → ∞ the right side of (12) vanishes because ‖β̂‖ is bounded as N → ∞ by Lemma 7. Therefore
the MLEs satisfy

lim
N→∞

R

xex′β̂[1+ eα̂+(x−x̄)′β̂]−1 dF0(x)
R

ex′β̂[1+ eα̂+(x−x̄)′β̂]−1 dF0(x)
= x̄. (13)

The denominator of (13) is at most
R

ex′β̂dF0(x) and is at least
Z

ex′β̂(1− eα̂+(x−x̄)′β̂)dF0(x) →
Z

ex′β̂dF0(x)

as N → ∞ because α →−∞ and
R

e2x′β̂dF0(x) < ∞ by the tail condition (11). Therefore the denom-

inator of (13) has the same limit as
R

ex′β̂ dF0(x) as N → ∞. Similarly the numerator has the same

limit as
R

ex′β̂xdF0(x). The limit for the denominator is finite and nonzero, and so the result follows.
�

5. Illustration

It is perhaps surprising that in the N → ∞ limit, the logistic regression depends on x1, . . . ,xn only
through x̄. The precise configuration of those n points in R

d becomes unimportant. We could rotate
them about x̄, or replace each of them by x̄, or even replace them by one single point at x̄ with Y = 1
and still get the same β̂ in the N → ∞ limit.

To investigate whether this effect can hold in finite data sets, we look at an example from Zhu
et al. (2005). They study a data set with 29,812 chemical compounds on which 6 predictor variables
were measured. Compounds were rated as active (Y = 1) or inactive (Y = 0) and only 608 of the
compounds were active.

Table 4 shows the logistic regression coefficients for this data, as well as what happens to them
when we replace the 608 data points (x,y) with y = 1 by a single point at (x̄,1), or by 608 points
equal to (x̄,1). In a centered logistic regression the point (x̄,1) becomes (x̄− x̄,1) = (0, . . . ,0,1) ∈
R

d+1.
The intercept changes a lot when we reduce the rare cases from 608 to 1 but otherwise the

coefficients do not change importantly. Interestingly the single point version has a β vector closer
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to the original logistic regression than has the version with 608 points at (x̄,1). The differences in β
are quite small compared to the sampling uncertainty. We would reach the same conclusions about
which predictors are most important in all three cases.

The linear predictor α̂+ β̂′(x− x̄) was computed using the coefficients from each of these models
(taking care to use the original xi’s not the versions set to x̄.) The correlation between the linear
predictor from logistic regression to that fit with all xi = x̄ is 0.999881. The correlation between the
linear predictor from logistic regression to that fit with just one (x̄,1) data point is still higher, at
0.999888. The two altered linear predictors have correlation 0.999998. Not surprisingly any two of
these linear predictors plot as a virtual straight line. There will be no important differences in ROC
curves, precision and recall curves or other performance measures among these three fits.

6. Discussion

This paper has focussed on establishing the limit of β̂ as N → ∞. This section presents some context
and motivation. Section 6.1 shows these findings lead to greater understanding of how logistic
regression works or fails and how to improve it. Section 6.2 shows how even after passing to the
limit the resulting model makes some useful predictions. Section 6.3 illustrates the special case of
F0 that is Gaussian or a mixture of Gaussians. Section 6.4 describes how using infinitely imbalanced
logistic regression may lead to cost savings in fraud detection settings.

6.1 Insight Into Logistic Regression

In the infinitely imbalanced limit, logistic regression only uses the y = 1 data points through their
average feature vector x̄. This limiting behavior is a property of logistic regression, not of any
particular data set. It holds equally well in those problems for which logistic regression works badly
as it does in problems where the Bayes rule is a logistic regression.

In the illustrative example we got almost the same logistic regression after replacing all the rare
cases by a single point at x̄. We would not expect this property for learning methods in general. For
example classification trees such as those fit by CART (Breiman et al., 1984) will ordinarily change
a lot if all of the Y = 1 cases are replaced by one or more points (x̄,1).

Logistic regression only has d parameters apart from the intercept, so it is clear that it cannot
be as flexible as some other machine learning methods. But knowing that those parameters are
very strongly tied to the d components of x̄ gives us insight into how logistic regression works on
imbalanced problems. It is reasonable to expect better results from logistic regression when the x1i

are in a single tight cluster near x̄ than when there are outliers, or when the x1i points are in two well
separated clusters in different directions from the bulk of F0.

The insight also suggests things to do. For example when we detect outliers among the x1i,
shrinking them towards x̄, or removing them should improve performance. When we detect sharp
clusters among x1i then we might fit one logistic regression per cluster, separating that cluster from
the x0i’s, and predict for new points by pooling the cluster specific results. Even an O(n2) clustering
algorithm may be inexpensive in the N � n setting.

6.2 Nontrivial Limiting Predictions

In the infinitely imbalanced limit with N → ∞ we often find that β̂ converges to a finite limit while
α̂ → −∞. This limit gives Pr(Y = 1 | X = x) → 0 for all x and so it gives trivial probabilities for
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prediction purposes. But we are often interested in probability ratios with nontrivial limits such as:

Pr(Ỹ = 1 | X = x̃)
Pr(Y = 1 | X = x)

→ e(x̃−x)′β.

For example if we are presented with a number of cases of potential fraud to investigate and have
limited resources then we can rank them by x′β and investigate as many of the most likely ones as
time or other costs allow.

Because this rank is derived from a probability ratio we can also take into account the monetary
or other measured value of the cases. If the values of uncovering fraud in the two cases are v and
ṽ, respectively, then we might prefer to investigate the former when vex′β > ṽex̃′β. If the costs of
investigation are c and c̃ then we might prefer the former when vex′β/c > ṽex̃′β/c̃.

In active learning problems one must choose which data to gather. There are several kinds of
active learning, as described in Tong (2001). The interventional setting is very similar to statisti-
cal experimental design. For example, Cohn et al. (1996) describe how to select training data for
feedforward neural networks. In the selective setting, the investigator has a mix of labelled cases
(both x and y known) and unlabelled cases (x known but y unknown), and must choose which of the
unlabelled cases to get a label for. For example the label y might indicate whether a human expert
says that a document with feature vector x is on a specific topic. In a rare event setting, finding the
cases most likely to have y = 1 is a reasonable proxy for finding the most informative cases, and
one could then allocate a large part of the labelling budget to cases with high values of x′β.

6.3 Gaussian Mixtures F0

When F0 is a nonsingular Gaussian distribution then as remarked in the introduction, β → Σ−1
0 (x̄−

µ0). The effective sample size of an imbalanced data set is often considered to be simply the number
of rare outcomes. The formula for β depends on the data only through x̄, which as an average of n
observations clearly has effective sample size of n. In the limit where N → ∞ first and then n → ∞
we get β → Σ−1

0 (µ1 −µ0) where µ j = E(X |Y = j). A confidence ellipsoid for µ1 translates directly
into one for β.

Gaussian mixture models are a flexible and widely used method for approximating distributions.
They have the further advantage for the present problem that exponential tilts of Gaussian mixtures
are also Gaussian mixtures. The result is a convenient expression to be solved for β.

Suppose that

F0 =
K

∑
k=1

λkN(µk,Σk)

where λk > 0 and ∑K
k=1 λk = 1. If at least one of the Σk has full rank then F0 will surround the point

x̄. Then the limiting β is defined through

x̄ =
∑K

k=1 λk(µk +Σkβ)eβ′µk+β′Σkβ/2

∑K
k=1 λkeβ′µk+β′Σkβ/2

,

so that β is the solution to

0 =
K

∑
k=1

λk(µk +Σkβ− x̄)eβ′µk+β′Σkβ/2. (14)

Solving Equation (14) for β is cast as a convex optimization in Section 6.4.
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6.4 Computational Costs

The exponential tilting solution to (1) is the value β for which
R

(x− x̄)ex′β dF0(x) = 0. That solution
is more conveniently expressed as the root of

g(β) ≡
Z

(x− x̄)e(x−x̄)′β dF0(x) = 0. (15)

Equation (15) is the gradient with respect to β of

f (β) =
Z

e(x−x̄)′β dF0(x),

which has Hessian
H(β) =

Z

(x− x̄)(x− x̄)′e(x−x̄)′β dF0(x).

The tilting problem (1) can be solved by finding the root of (15) which is in turn equivalent to the
minimization of the convex function f .

When F0 is modeled as a mixture F0 of Gaussians the objective function, gradient, and Hessian
needed for optimization have a simple form. They are,

f (β) =
K

∑
k=1

λkeβ′(µk−x̄)+β′Σkβ/2,

g(β) =
K

∑
k=1

λk(µ̃k(β)− x̄)eβ′(µk−x̄)+β′Σkβ/2, where,

µ̃k(β) ≡ µk +Σkβ, and,

H(β) =
K

∑
k=1

λk

(
Σk +(µ̃k(β)− x̄)(µ̃k(β)− x̄)′

)
eβ′(µk−x̄)+β′Σkβ/2.

The cost of solving (14) or (15) by an algorithm based on Newton’s method takes O(d3) com-
putation per iteration. By contrast, each step in iteratively reweighted least squares fitting of logistic
regression takes O((n + N)d2) work. Even if one downsamples the data set, perhaps keeping only
N = 5n randomly chosen examples from the Y = 0 cases, the work of an iteration is O(nd2). The
one time cost to fit a mixture of Gaussians includes costs of order Nd2 to form covariance matrix
estimates, or O(nd2) if one has downsampled. But after the first iteration there can be substantial
computational savings for solving (15) instead of doing logistic regression, when n/d is large.

When there is one common class and there are numerous rare classes, such as types of fraud
or different targets against which a drug might be active, then the cost of approximating F0 can be
shared over the set of uncommon classes.

In fraud detection problems we might expect that the distribution F0 for legitimate data points is
slowly changing while the patterns in the fraudulent points change rapidly in response to improved
detection. In such a setting we get a computational saving by fitting an approximation to F0 once,
or at long time intervals, and then computing many different β(∞) vectors. These vectors can be for
different known types of fraud, for fraud over shorter time intervals, or even individual fraud cases.
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