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Abstract 

Two important issues regarding data driven classifica- 
tion are addressed here: Model interpretation and im- 
balanced data. The aim is to build data driven clas- 
sifiers that provide good predictive performance for a 
set of imbalanced data and enhance the understanding 
of a model by enabling input/output dependencies that 
exist to be visualised. Here, the classification method 
is demonstrated on an imbalanced data set that de- 
scribes fatigue crack initiation in automotive camshafts. 
To generate interpretable models, the Support vector 
Parismonious ANalysis Of Variance (SUPANOVA) tech- 
nique is extended to the classification domain. The tech- 
nique enables an additive decomposition of low dimen- 
sional kernel models to be recovered, enhancing model 
visualization. The standard averaging technique used 
to assess the performance of the model is inappropri- 
ate for imbalanced data. As such, the Geometric mean 
(Gmean), which is typically maximal on the Receiver 
Operating Characteristic (ROC) when the true posi- 
tive and negative classification is balanced between two 
classes is used. A conventional SVM produced results 
of generalisation estimate of 55%. However, introducing 
a class-dependent misclassification cost into the SVM 
resulted in an improved performance of 74%. The SU- 
PANOVA technique produced a reduced performance of 
64%, whilst reducing the model space to just 13 com- 

industries. However, there is a tradeoff between high 
strength and the number of fatigue cracks [l]. As such, 
it is important to investigate why cracks are initiated 
from the graphite nodules within the microstructure. 
Clearly, in this example the number of graphite nodules 
which can be classed as “no crack” exceeds the number 
of “crack” nodules and consequently the data is imbal- 
anced (see Fig. 1). The graphite nodule size and/or dis- 
tribution morphology can be obtained from Finite Body 
Tessellation (FBT). These measurements are used as the 
features for a classifier to learn the characteristics that 
cause fatigue crack initiation. . -.....*-. -. 
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ponents (10%) out of the possible 512. These resulting FABSE CXACZ f.WaSC&iSZFS 

components had low dimensions, and consequently can 
be visualized. Figure 1: The Original microstructural Images of ADI. 
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1 Introduction 
With appropriate heat treatment, Austempered Ductile 
Iron (ADI) provides good resistance to rolling fatigue, 
high strength and good wear resistance. This makes it 
a suitable candidate for camshafts used in automotive 

The ability to  understand a model’s input/output re- 
lationships is generally overlooked when classifying e.g. 

- fault detection. In order to optimise the material per- 
formance and access the feature validation, it is essen- 
tial to understand the underlying model, as well as pro- 
viding good predictive performance for a set of imbal- 
anced data. In accordance with Bayes rule, the best 
classification rule is obtained when the posterior prob- 
abilities of the classes are equal. This is only valid 
when the cost and class prior are chosen appropriately. 

0-7803-7044-9/01/$10.00 02001 IEEE 2410 

/- - 

mailto:kkl98r;srg;cjh]@ecs.soton.ac.uk
mailto:pasrl@soton.ac.uk


However, in most real world applications, such as med- 
ical diagnosis and fault detection in materials, the data 
set is often limited within one class which is statisti- 
cally under-represented with respect to the other class. 
There is the need to impose a different misclassification 
cost associated with the under-represented class and the 
heavily-represented class. The use of standard averag- 
ing techniques for measuring the overall classification 
performance is not applicable in imbalanced data, as 
it causes a bias towards the heavily represented class. 
One appropriate performance measure for dealing with 
imbalanced data is the Geometric Mean, which favours a 
balanced classification by measuring the product of the 
class classification rate. To generate interpretable mod- 
els, the SUPANOVA technique [2] was extended to the 
domain of classification problems enabling a predictive 
model with a high degree of interpretability to be re- 
covered. With this knowledge obtained from modeling, 
the key production and microstructure features that al- 
low optimised automotive materials performance can be 
found. 

The structure of this paper is as follows : Section 2 de- 
scribes the problem with learning from imbalanced data 
and then proceeds to describe how its performance can 
be evaluated. Section 3 provides detail of the extension 
of SUPANOVA to classification domains. Section 4 de- 
scribes the data obtained. Section 5 shows the results 
obtained from the SUPANOVA approach applied to our 
imbalanced data classifying the graphite nodule crack 
initiation and concludes that with the SUPANOVA tech- 
niques, the same practical results are obtained. 

2 Learning Imbalanced data 
Many machine learning algorithms maximise perfor- 
mance criteria which place equal emphasis on each data 
point, irrespective of class. Clearly this assumption 
needs to be modified in order to use imbalanced data. 
One approach to imbalanced data is to alter the size of 
the training set by either upsampling or downsampling 
using intelligent sampling techniques [3]. Alternatively, 
using Bayes rule, a different cost can be incorporated 
into each class. Then the decision rule in a two class 
problem becomes : 

where p(Clx) is the posterior probability of the given 
data x (which is usually unknown) and the C- and Cf 
denote the misclassification cost associated with each 
class. C+ and C- are class priors that can be used to 
compensate imbalanced data or impose heavier cost for 
the important class prior. One easy way to obtain them 

logarithmically and the optimal values using an appro- 
priate performance criteria. Alternatively, the C’s can 
be taken as the prior sampling bias from the training set 
and then incorporate a heavier penalty on the minority 
class in order to obtain a better classification rate while 
the prior for the majority remains the same [4]. In this 
way, the value of C’s are more restricted and less combi- 
nations have to be made. Imbalanced data is a typical 
real world application problem in which the class priors 
are different. 

The performance of a classification process can be de- 
scribed by a confusion matrix, it describes the number 
of points in the data set corresponding to the four cat- 
egories: False Positive (FP), False Negative (FN), True 
Positive (TP) and True Negative (TN); where TP and 
T N  are the correct predictions. In order to represent 
the true cost function, the standard performance crite- 
ria such as the average accuracy which is based on the 
heavy-represented class of the test set, is not applica- 
ble in this case. The Receiver Operating Characteristic 
(ROC) analysis was made popular in the field of knowl- 
edge discovery and data mining by [5]. It measures the 
classifier performance over the whole range of thresh- 
olds from 0 to 1 from the plots of Sensitivity (Se) and 
Specificity (Sp). Se and Sp are defined as TP/(TP+FN) 
and TN/(TN+FP) respectively. The average accuracy 
of the test set is then the summation of Se and Sp. The 
ROC curve then allows us to represent simultaneously 
the classifier performance by two degrees of freedom for 
a range of possible classification thresholds. The GMean 
is defined as : 

GMean = 

and is typically maximal on the ROC curve when TN M 

TP enforcing balance in the classification rate between 
two classes. 

3 SUPANOVA for Classification 
of Imbalanced Data 

SUPANOVA is a Support Vector Machine (SVM) exten- 
sion technique that was initially used in regression prob- 
lems for providing model visualization [2]. The tech- 
nique enables an additive decomposition of low dimen- 
sional kernel models to be recovered, enhancing model 
visualisation. It does this by exploiting the good gener- 
alization ability of kernel-based algorithms with an addi- 
tional structural regulariser placed on the additive ker- 
nel sub-models. This work was motivated by ANOVA 
kernels that were used to obtain structural information, 
by building up all the subsets of the features [SI. In or- 
der for an ANOVA kernel to be applicable to a SVM, 
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it has to satisfy Mercer's conditions. Each of the addi- 
tive ANOVA kernel are positive definite and hence the 
full 'kernel is also positive definite. A multi-dimensional 
kernels can be represented by the tensor products of uni- 
variate kernels. For example, a two dimensional ANOVA 
kernel (i.e. d=2) can be decomposed as : 

2 

K A N O V A ( ~ ,  v) = n{l+ k(ud, 

= 1 + k(u1,vl) + k(u2 ,2 )  + k(u1,v1)k(u2,v2) 

d=l  (3) 

This technique was employed in SUPANOVA to produce 
a sparse ANOVA kernel that enables an input/output 
interpretation since it is often possible to remove higher 
order terms, leaving lower order terms which can be in- 
terpreted more easily. This is implemented by introduc- 
ing a coefficient, a , that influences each of the com- 
ponents to be controlled. This is the method used in 
the SUPANOVA technique [2]. The two dimensional 
ANOVA kernel is now modified to : 

~ ( u , v )  = aofalk(u',vl)+a2(2~~,v~)+a3k(u~, d ) k ( u 2 , v 2 )  

To enforce sparsity within the ANOVA model, a 1-norm 
on these coefficients is added to minimise the trade off 
between the error in approximation in SVM with the 
sparseness representation and is given as : 

min-uy, @a) + II a 111 (4) 

where L is the loss in approximation of SVM and is 
associated with the ANOVA basis, @a. The X is the 
structural regulariser parameter controlling sparsity of 
the kernel expansion and the weights corresponding to 
each ANOVA basis. 

In dealing with imbalanced data, incorporating a mod- 
ified class dependent misclassification cost function is 
required for SVMs. The misclassification cost for each 
class can be implemented to the capacity control, C (i.e. 
C+ and C- for the respective class). This is known as 
Control Sensitivity CS SVM [7], the initial approach was 
to impose a heavy penalty on a skewed class and is ex- 
tended to imbalanced data. The modified minimisation 
of the cost function in CS'SVM is then given as : 

n n 

subject to constraint : yz(wTx + b) 2 1 - & - 1; and 
, <: 2 0. The GMean performance can be easily 

obtained using the true classification rate of the posi- 
tive and negative class of the classifier. Previous work 
done in this research programme, uses several SVM ex- 
tension techniques for imbalanced data [8]. This work 

is extended to providing an interpretable model using 
the SUPANOVA. A fast way of converting the SU- 
PANOVA from regression to be applicable to classifi- 
cation problems, was described in [9]. This is done by 
altering the model selection from Mean Square Error 
to classification rate. This paper however, reformulates 
the regression task to a classification (i.e changing the 
quadratic (regression) to a hinge loss function). The 
SUPANOVA technique enables an additive decomposi- 
tion of low dimensional kernel models to be recovered, 
enhancing model visualization. This is a very difficult 
task and is decomposed to 4 stages similar to that of 
the regression, except the loss function and the model 
selection must be changed. Here are the stages involved 

Model Selection 
a good generalisation estimate from the CS SVM 
based on Gmean provides the value of the two dif- 
ferent capacity controls (i.e. C+ and C-)  for each 
class. 

ANOVA basis selection; 
using the values of C's in model selection, Lagrange 
multipliers, a > 0 are obtained. The decision func- 
tion (below) is decomposed into all its possible sub- 
components assuming all the a's to be 1. 

n m 

i=l  i 

where ai > 0 are the Lagrange multipliers, yi are 
the targets, aj are the model coefficients, n is the 
number of training patterns and m is the number 
of additive kernels used in the model. 

Sparse ANOVA selection; 
this reduces the number of model coefficients, aj 2 
0 from stage 2 by a 1-norm imposed on the additive 
model coefficients. The solution to the hinge loss 
function is then given by : 

n n 

subject to the constraint : diag(y)@a _> 1 - ti - 1; 
and 5% , (;,a 2 0. Where yi is the target, is 
the ANOVA basis obtained, X is the structural reg- 
ulariser and ('s are the slack variable that measures 
the distance of a point from the optimal hyperplane 
for the respective classes. Hence, providing inter- 
pretability through the additive kernel function. 

Parameter selection 
using only those coefficients selected in stage 3, re- 
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construct a new model using. 

Conventiona 
SVM 
CS SVM 

n m 

Crack No Crack (variance) 
0.34 0.90 0.55 
C+=lOOO C-=lo00 (0.0315) 
0.72 0.77 0.74 

Prior to proceeding, the form of the univariate kernel 
must be chosen. There are many kernels that can be 
employed, such as Radial basis functions, polynomi- 
als, splines. However, there are additional parameters 
within many of these kernels that must be determined. 
Whilst they provide increased flexibility to the model, a 
significant additional cost is introduced. A spline kernel 
has been used here as it does not require any additional 
parameter to be determined and it does have the abil- 
ity to approximate any function with arbitrary accuracy 

4 Data Description 
The AD1 materials data set for the automotive camshaft 
application contains a total of 2923 examples of which 
116 samples are crack initiation sites (“Crack” class) 
while 2807 samples did not act as crack initiation sites 
(“NO Crack” class). These data were obtained from 
a FBT of AD1 [l]. A set of nine measurements relat- 
ing to the spatial distributions and measures of the ob- 
ject (graphite nodules) were obtained from the tessel- 
lation. This set of nine features describes the prior do- 
main knowledge of the microstructural distributions e.g. 
morphology of secondary particles. FBT involves three 
stages : binarisation of images, a distance transforma- 
tion and a watershed transformation [l l] .  During these 
stages, noise in the background is attenuated and holes 
within bodies are filled. Then, the features for each nod- 
ule for learning are generated from the following mea- 
surements : x1 Nodule area; 22 Nodule aspect ratio, 2 3  

Nodule angle, 2 4  Cell area surrounding the nodule, 2 5  
Local cell area fraction, x6 Number of near neighbours, 
27 Nearest neighbour distance, 28 Mean near neighbour 
distance and z g  Nearest neighbour angle. Where the 
near neighbour cells are defined as the cells that are 
sharing the same boundaries. Prior to using the different 
approaches to classifying the graphic nodule, the input 
features are normalised. This will ensure that the input 
feature is restricted to a unit domain and it provides no 
bias on the significance of each feature. Upon normal- 
ising, the data needs to be partitioned for training and 
testing. Due to the extensive computation time required 
for a large data set, a reduced data set was considered 
which consists of 700( ‘‘no crack”) and 90( “crack”) for 
training and the rest of the data being used for testing. 
This was repeated ten times with random selection of 
the data each time. 

. 

5 SUPANOVA Results 
Work done previously by us [8], has shown several SVM 
extension techniques dealing with imbalanced data. Ta- 
ble l ,  shows some of the results obtained using the SVM 
for classification. In contrast to previous work, based on 
five random selected testing and training set, we have 
extended this approach to the use of ten sets. These 
results were based on setting the capacity control, C 
(i.e. C+ - crack and C- - no crack) sampled logarith- 
mically on [0.01,10000] for each class using the Spline 
and Radial Basis Function (RBF with 0=0.5). Similar 
results were obtained using both types of kernels. Using 
an imbalanced data, the conventional SVM only pro- 
vides a Gmean of 55%. Further investigation using the 
CS SVM, shows that the ratio of the C’s (i.e. C+=l 
and C-=O.l) coincide with that of the ratio of the data 
size (i.e. 90:700 for crack with no crack). This shows 
that the conventional SVM estimate coincides with the 
Bayes optimal decision rule, which has been consistent 
with the proof by [12]. In order to reduce the number of 
parameters to be determined, spline kernels were used 
throughout this paper. In the conventional SVM, the 
C’s value is much higher than those of the CS SVM. 
This indicates that while using the SVM, the minimi- 
sation in Eq. 7 emphasises the misclassification error. 
In conclusion, the CS SVM is more appropriate for the 
application to imbalanced data as it provide the best 
Gmean performance of 74% and a lower Gmean vari- 
ance. 

I Approaches I TP 1 T N  I GMean I 

I c+=1 I c-=0.1 I (0.0202) 
SUPANOVA I 0.80 I 0.53 I 0.64 

I C+=l.O I c-=0.1 I (0.0275) I 
Table 1: Summary of test results from SUPANOVA for 
classification model. 

Upon obtaining an acceptable performance value (i.e. 
with known value of C’s), the SUPANOVA was then 
used to generate model interpretability. The parame- 
ter to be determined here is the structural regulariser, 
X set in the range in [0.05,1] with an increment of 0.1. 
The number of components selected was based on its 
occurrence more than 5 times out of the 10 randomly 
selected data sets. With X=0.05, the Gmean for the 
classification was 64%. A tradeoff of 10% in Gmean 
leads to 13 significant components being selected among 
the possible 512. Increasing the value of X reduces the 
number of components selected, hence providing a more 
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easily interpretable classification model. However, the 
Gmean value is reduced resulting in worse classification 
model. Table 2 describes the plots obtained from the 
selected components. Figure 2 shows examples of plots 
with some of the components selected versus the output 
from the SUPANOVA classification model. Although, 
there are different trends observed in component 27 8 28 
and x1 8 x5 8 26 , these differences contribute only a 
small amount (i.e the output Y ,  is very small). As such, 
it can be ignored. There is a inconsistent observation 
in feature 2 3  8 26 @ 29, and further investigation is re- 
quired. The three most commonly selected components 
(i.e. based on the univariate) are 2 6 ,  25 and 28 respec- 
tively. This provides information on the importance of 
each individual component with respect to other com- 
ponents. Hockley et al. [l] uses simple comparisons of 
means and shows that x1 and 2 5  are important com- 
ponents. Here, we extend our understanding using a 
predictive and mathematical model. The SUPANOVA 
technique shows that the model is consistent with those 
findings with more complex and interesting features se- 
lected, which give an improved insight into the possible 
physical mechanisms occurring. 

In summary, larger graphite nodules XI, of high local 
area fraction 25, (i.e. local clustering from near neigh- 
bour nodules 26) act as fatigue initiation sites. This 
may be understood in the following mechanical terms: 
the graphite nodules have a significantly lower effective 
Young’s modulus than the surrounding matrix, decohere 
easily and may be considered to act as holes in a me- 
chanical sense. The predominantly spherical nature of 
the nodules indicates that size increases will not increase 
the local stress concentration factor, although the larger 
graphite nodules will give a larger sampling volume of 
potential initiation points. Local clustering around such 
larger graphite nodules (as identified by the classifier) 
may be expected to  superimpose local particle stress 
fields, raising the peak stress levels. The more com- 
plex bivariate and trivariate relationships are somewhat 
harder to assess. The object angle 2 3  defines the an- 
gle between the loading axis and the major axis of the 
nodule and if this is high the major axis of the nod- 
ule is closer to perpendicular to the tensile axis (which 
might be expected to promote cracking). However this 
combined with a relatively far away nearest neighbour 
might be expected to minimise superimposition of lo- 
cal particle stress fields, and hence make these nodules 
less likely to act as crack initiation sites. Given the 
very low aspect ratio of the nodules (they are effectively 
spherical) correlations with object angle are surprising. 
Similar reasoning can be applied to the trivariate rela- 
tionship identified by the classifier, here the situation 
where the nearest neighbour is aligned either parallel to 
or perpendicular to the nodule appears to reduce the 

likelihood of crack initiation, which might be attributed 
to a local shielding effect. These interpretable classifi- 
cation results allow us to assess the relationships that 
give rise to crack initiation and hence to identify opti- 
mised microstructures with good fatigue resistance for 
the camshaft application. 

- 2 5 -  

01 0 2  0 1  0 1  0 5  0 6  0 ,  

5 

(a) Local Area Fraction, 25 

(b) Graphite Area, 2 1  Vs Cell Area, 2 4  

(c) Graphite Area, 2 1 ,  Cell Area, 2 4  

and No. of near neighbours 28 

Figure 2: A example of plots with those components se- 
lected versus the output with SUPANOVA for the clas- 
sification task. Where a negative trend in Y denotes a 
crack initiation. 

6 Conclusions 
By utilising the CS SVM and Geometric mean perfor- 
mance criteria, the conventional SVM can be extended 
in its application to imbalanced data. The SUPANOVA 
has been extended to the classification domain for im- 
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Table 2: These results are based on considering the 10 randomly sampled sets and the selected component terms 
occur more than 5 times during the 10 runs. 

balanced data, and shown to provide a comparable per- 
formance to an SVM whilst providing much greater in- 
sight into the model, enabling input significance, and 
input interactions to be visualized. With this knowl- 
edge obtained from the modeling, the key production 
and microstructure features that will optimise automo- 
tive materials performance can be found, hence produc- 
ing a camshaft which is more resistant to fatigue cracks. 
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