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Do unbalanced data have a negative effect on LDA?
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Abstract

For two-class discrimination, Xie and Qiu [The effect of imbalanced data sets on LDA: a theoretical and empirical analysis, Pattern
Recognition 40 (2) (2007) 557–562] claimed that, when covariance matrices of the two classes were unequal, a (class) unbalanced data set had
a negative effect on the performance of linear discriminant analysis (LDA). Through re-balancing 10 real-world data sets, Xie and Qiu [The
effect of imbalanced data sets on LDA: a theoretical and empirical analysis, Pattern Recognition 40 (2) (2007) 557–562] provided empirical
evidence to support the claim using AUC (Area Under the receiver operating characteristic Curve) as the performance metric. We suggest that
such a claim is vague if not misleading, there is no solid theoretical analysis presented in Xie and Qiu [The effect of imbalanced data sets on
LDA: a theoretical and empirical analysis, Pattern Recognition 40 (2) (2007) 557–562], and AUC can lead to a quite different conclusion from
that led to by misclassification error rate (ER) on the discrimination performance of LDA for unbalanced data sets. Our empirical and simulation
studies suggest that, for LDA, the increase of the median of AUC (and thus the improvement of performance of LDA) from re-balancing
is relatively small, while, in contrast, the increase of the median of ER (and thus the decline in performance of LDA) from re-balancing is
relatively large. Therefore, from our study, there is no reliable empirical evidence to support the claim that a (class) unbalanced data set has a
negative effect on the performance of LDA. In addition, re-balancing affects the performance of LDA for data sets with either equal or unequal
covariance matrices, indicating that having unequal covariance matrices is not a key reason for the difference in performance between original
and re-balanced data.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

For two-class discrimination, Xie and Qiu [1] claims that,
when covariance matrices of the two classes are unequal, a
(class) unbalanced data set has a negative effect on the perfor-
mance of linear discriminant analysis (LDA). We suggest that
such a claim is vague if not misleading and we could find no
solid theoretical analysis presented in Ref. [1]. However, their
results from empirical experiments are interesting in finding
that the performance of LDA on balanced data sets is superior
to that of LDA on unbalanced data sets.

In the notation used by Xie and Qiu [1], there are n=n1 +n2
observations with d features in the training set, where {x1i}n1

i=1
arise from class �1 and {x2i}n2

i=1 arise from class �2.
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Gaussian-based discrimination assumes two normal distri-
butions: (x|�1) ∼ N(�1, �1) and (x|�2) ∼ N(�2, �2) such
that, for j = 1, 2,

gj (x) = log(p(x, �j )) = −1

2
(x − �j )

T�−1
j (x − �j )

− 1

2
log |�j | − d

2
log 2� + log p(�j ),

where p(�j ) is the prior probability of class �j ; g(x) is a
quadratic function of x. When we assume further a common
covariance matrix such that �1 =�2 =�, although gj (x) is still
quadratic in x (not linear as stated in Ref. [1]), a discriminant
function gL(x) = g1(x) − g2(x) becomes linear in x. Conse-
quently, Gaussian-based LDA is derived: gL(x) = wTx + w0,
where w = �−1(�1 − �2), and

w0 = log
p(�1)

p(�2)
− 1

2
(�T

1 �−1�1 − �T
2 �−1�2)

= log
p(�1)

p(�2)
− 1

2
(�1 + �2)

T�−1(�1 − �2).
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Therefore, the optimal or Bayes discriminant rule of Gaussian-
based LDA is to classify x into �1 if wTx + w0 �0, and into
�2 otherwise.

In practice, plug-in sample Gaussian-based LDA is com-
monly adopted by using relative frequencies of samples
p̂(�j ) = nj/(n1 + n2) to estimate p(�j ), using sample means
�̂j to estimate �j , using sample within-class covariance matri-
ces Sj to estimate �j and using the pooled sample covariance
matrix S to estimate �, where

S = 1

n − 2

(
n1∑
i=1

(x1i − �̂1)(x1i − �̂1)
T

+
n2∑
i=1

(x2i − �̂2)(x2i − �̂2)
T

)

= 1

n − 2
{(n1 − 1)S1 + (n2 − 1)S2}.

Fisher’s linear discriminant rule is to classify x into �1 if
wTx�c, where wTx is a linear combination of x and the coef-
ficients wT maximise the ratio (wT�̂1 − wT�̂2)

2/(wTSw); the
ratio is of the separation of the sample means of wTx to the
pooled sample variance of wTx. Maximisation of this ratio with
respect to w results in w = �S−1(�̂1 − �̂2), where � is an arbi-
trary scalar (not necessarily n − 2 as in Ref. [1]). Traditionally
� is set to be 1 with the threshold c being adapted accordingly.

Fisher’s linear discriminant rule does not assume Gaussian
distributions for x|�1 and x|�2. However, in theory, it is equiv-
alent to plug-in sample Gaussian-based LDA if the data sat-
isfy the assumptions underlying the latter; in practice, it can
be equivalent to the latter with c = −w0. However, when the
assumptions underlying Gaussian-based LDA do not hold, for
instance if �1 �= �2, the optimal threshold c for a minimum
classification error rate (ER) is not equal to −w0 [2], and hence
Fisher’s linear discriminant rule differs from Gaussian-based
LDA.

With the above formulae for Gaussian-based LDA, Ref. [1]
claims that “if the two sample covariance matrices are differ-
ent, the huge imbalance in class distribution is very problematic
for LDA because the prior probability of majority class over-
shadows the differences in the sample covariance matrix terms.
That is, the imbalanced data sets may hinder the performance
of LDA”. Such a claim is supported by their experimental re-
sults using re-balanced data obtained from original unbalanced
data from four sampling methods [1].

2. Comments on the claim

We suggest that the above-mentioned claim and the empirical
study to support it are vague if not misleading, even under an
“ideal” condition such that �̂j and Sj perfectly estimate �j and
�j , respectively. Let us explain it in the context of three issues.

First, if the true prior probabilities are approximately bal-
anced such that p(�1) ≈ p(�2) ≈ 0.5 but the training set is
unbalanced such that n1?n2, then plug-in estimates p̂(�j )

are poor estimates of p(�j ) because p̂(�1)?p̂(�2), even

though when the two sample covariance matrices are identical
S will be a good estimate of �. Consequently, being based on
p̂(�1)/p̂(�2), w0 is wrongly estimated so that LDA performs
poorly. In this case, the use of re-balanced data, as in Ref. [1],
will no doubt adjust p̂(�j ) such that p̂(�j ) ≈ 0.5 and thus
improve the performance of LDA. However, in practice, the
training set is always given while the true priori probabilities
are neither known nor necessarily balanced, and therefore the
preprocessing of re-balancing data cannot guarantee a better
performance of LDA.

Second, if the true prior probabilities are unbalanced such
that p(�1)?p(�2) and the training set demonstrates the imbal-
ance such that n1?n2, then plug-in estimates p̂(�j ) ≈ p(�j )

are good estimates of p(�j ) and thus S = p̂(�1)S1 + p̂(�2)S2
approaches the pooled population (within-class) covariance ma-
trix �=p(�1)�1 +p(�2)�2. When the two sample covariance
matrices are different, such that S1 �= S2, the weights p̂(�j )

truly reflect the contribution of �j to �. In contrast, if the train-
ing set is re-balanced by sampling as in Ref. [1], then p̂(�j )= 1

2
are poor estimates of p(�j ) and S = 1

2 (S1 + S2). There is no
reason to suggest that an LDA that uses S = 1

2 (S1 + S2) and
a wrongly estimated w0 (with the term log p̂(�1)/p̂(�2) = 0)
will perform better than LDA that uses S= p̂(�1)S1 + p̂(�2)S2
where p̂(�j ) ≈ p(�j ). Even if we assume that Ref. [1] uses ac-
curate estimates of the prior probabilities p̂(�j ) from the origi-
nal data such that p̂(�j ) ≈ p(�j ) and uses the re-balanced data
to estimate the pooled covariance matrix such that S= 1

2 (S1+S2)

for Gaussian-based LDA, there is still no justification that such
a linear classifier will approach the performance of the best
“admissible” linear procedure under the condition that �1 �=
�2 [3], which is similar to Fisher’s linear discriminant but with
w = (t1�1 + t2�2)

−1(�1 − �2) (or in practice using sample
statistics such that w = (t1S1 + t2S2)

−1(�̂1 − �̂2)), where de-
sired values of the scalars t1 and t2 have no closed-form solu-
tion so that systematic trials or computing algorithms have to
be adopted [3–5].

Third, the misclassification error rate can be written as

ER = p(�1)P (�2|�1) + p(�2)P (�1|�2),

where P(�j |�k) is the probability of misclassifying an obser-
vation, who arises from class �k , into class �j . For plug-in
sample Gaussian-based LDA, when (x|�1) ∼ N(�1, �1) and
(x|�2) ∼ N(�2, �2), it follows that

P(�2|�1) = P(wTx + w0 < 0|x ∼ N(�1, �1)),

P(�1|�2) = P(wTx + w0 �0|x ∼ N(�2, �2)).

Similarly to Ref. [4], the estimated probabilities of misclassi-
fication can be rewritten as

P(�2|�1) = �

⎛
⎜⎜⎝

− log
p̂(�1)

p̂(�2)
− 1

2
(�̂1 − �̂2)

TS−1(�̂1 − �̂2)

[(�̂1 − �̂2)
TS−1�1S−1(�̂1 − �̂2)]1/2

⎞
⎟⎟⎠

= �

(
−wT�̂1 + w0√

wT�1w

)
,
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Fig. 1. The misclassification error rates ER(p̂(�1)).

P(�1|�2) = �

⎛
⎜⎜⎝

log
p̂(�1)

p̂(�2)
− 1

2
(�̂1 − �̂2)

TS−1(�̂1 − �̂2)

[(�̂1 − �̂2)
TS−1�2S−1(�̂1 − �̂2)]1/2

⎞
⎟⎟⎠

= �

(
wT�̂2 + w0√

wT�2w

)
,

where � is the cumulative distribution function (CDF) of the
standard normal distribution N(0, 1). Therefore, in the formula
for ER, p(�j ) and �j are population parameters, or sample
parameters from a sufficiently large original data set, while
p̂(�j ), �̂j and S are sample statistics obtained from a training
set.

In the experiments performed by Xie and Qiu [1], the test
set includes n1/4 observations arising from �1 and n2/4 from
�2 such that it conforms to the original relative frequencies;
the remaining 75% of observations are then re-sampled into a
training set with approximately equal number of observations
from each class. Without explicit indication in Ref. [1] of how
they obtain the sample relative frequencies p̂(�j ) (from the
re-balanced training set or from the original data set) and the
weights in calculating the pooled sample covariance matrix in
those experiments, we assume that all the parameters of the
linear discriminant function are estimated from the re-balanced
training set such that p̂(�j ) ≈ 1

2 and S ≈ p̂(�1)S1+p̂(�2)S2=
1
2 (S1 + S2). In this context, a claim that using the re-balanced
data can reduce ER can be translated into the following equality:

1
2 = arg min

p̂(�1)

{p(�1)P (�2|�1; p̂(�1))

+ p(�2)P (�1|�2; p̂(�1))}.
In order to verify this equality, we first perform some nu-

merical evaluations on two specific scenarios: one is with �1 =

�2, the other is with �1 �= �2. In each scenario, we as-
sume the original data set is unbalanced with p(�1) = 0.8,
and there are large numbers of observations in both the test
set and the training set such that �̂j and Sj perfectly estimate
�j and �j , respectively, whether the data in the training set
are unbalanced or balanced. With the population parameters
p(�j ), �j and �j known, ER becomes a function of p̂(�1)

alone:

ER(p̂(�1)) = p(�1)P (�2|�1; p̂(�1))

+ p(�2)P (�1|�2; p̂(�1)),

where

P(�2|�1; p̂(�1))

= �

⎛
⎜⎜⎝

− log
p̂(�1)

1 − p̂(�1)
− 1

2
(�1 − �2)

T�−1(�1 − �2)

[(�1 − �2)
T�−1�1�−1(�1 − �2)]1/2

⎞
⎟⎟⎠ ,

P(�1|�2; p̂(�1))

= �

⎛
⎜⎜⎝

log
p̂(�1)

1 − p̂(�1)
− 1

2
(�1 − �2)

T�−1(�1 − �2)

[(�1 − �2)
T�−1�2�−1(�1 − �2)]1/2

⎞
⎟⎟⎠ ,

in which � = p̂(�1)�1 + (1 − p̂(�1))�2.
Here we consider a simple case in which each observation

only has one feature (i.e., d = 1). The population parameters
are known to be p(�1)=0.8, �1 =1, �2 =−1, �1 =1 and �2 ∈
[0.2, 5.0]. The relationship between ER(p̂(�1)) and p̂(�1) is
drawn in the three-dimensional plot as a function of p̂(�1) and
�2 in the left panel of Fig. 1. The surface of ER(p̂(�1)) does
not have a minimum point at p̂(�1) = 0.5.
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In the right panel of Fig. 1, we draw the curves of ER(p̂(�1))

for �2 = 0.2, 1, and 5, respectively. We observe the following.

(1) When �2 = 0.2 or 5 such that �2 �= �1, the best perfor-
mance of LDA is obtained at p̂(�1) = 0.8, which is equal
to the true prior probability of class �1, rather than from
the re-balanced data, which give p̂(�1) = 0.5; the proce-
dure of re-balancing data has a negative effect on the per-
formance of LDA if the original unbalanced data conform
to the truly unbalanced population.

(2) When �2 = 1 such that �2 = �1, the best performance of
LDA is also obtained at p̂(�1) = 0.8 rather than from the
re-balanced data; the procedure of re-balancing data may
also have a negative effect.

(3) In general, data with a compact within-class distribution
(in the sense of a small within-class covariance matrix)
may result in a better performance of LDA (in the sense of
smaller ER(p̂(�1))), compared with data with a dispersed
within-class distribution.

(4) In fact, in this case, since min(p(�1), p(�2)) = 0.2, in
practice the maximum ER(p̂(�1)) can be controlled to be
0.2, the smaller prior probability, if we always classify
observations into the class with higher prior probability.

In summary, under the condition of large numbers of observa-
tions, with regard to ER as the measure of performance, there is
no evidence from our numerical evaluations to justify the claim
that re-balancing original data can improve the performance of
Gaussian-based LDA, and the best performance of LDA is al-
ways obtained when the estimated priori probabilities conform
to the true population prior probabilities.

3. AUC or ER

Unbalanced data sets are quite common in practice. For two-
class discrimination, conventionally one of two classes which
has higher prior probability is called the majority or negative
class, and the other class is called the minority or positive
class. In practice, many discrimination techniques are not very
successful in identifying the minority class [6].

There are many approaches to dealing with data imbalance
(rarity) [7]. The simplest approaches are random over-sampling
with replacement and under-sampling, where the former is to
increase the number of the minority class and the latter is to
reduce the number of the majority class. Such sampling will
modify the class distributions of the training data. Random
over-sampling cannot gain new information about the minor-
ity class; random under-sampling may lose useful informa-
tion about the majority class. Nevertheless, for practical data
sets, such sampling may improve the performance of LDA
with regard to certain evaluation metrics, as shown by Xie and
Qiu [1].

The ER, also called “accuracy” in Refs. [7–9], is the most
widely used evaluation metric for classifiers such as LDA. How-
ever, as an average over all the observations that are classified,
it inevitably favours the majority class given the assumption
that the error in the minority class is of equal importance to that

in the majority class. Therefore, it can be biased by the prior
probabilities if errors have in practice different importance be-
tween the two classes; it is recommended to use a loss function
in this case.

For two-class discrimination of unbalanced data, where the
error in the minority class may be more important in prac-
tice, the receiver operating characteristic (ROC) curve and the
area under the curve, the so-called AUC, are commonly used
[7,9]. The ROC curve is a plot of the true positive rate vs.
the false positive rate, and hence a higher AUC generally in-
dicates a better classifier. As pointed out by Hanley and Mc-
Neil [10], there is a three-way equivalence between AUC, the
Wilcoxon–Mann–Whitney statistic and the probability of a cor-
rect ranking of a randomly chosen (negative, positive) pair.
More precisely, suppose that a discriminant function such as
gL(x) is designed to provide a high score for a positive obser-
vation and a low score for a negative one. Then, given a ran-
domly chosen (negative, positive) pair denoted by (xN, xP ), it
holds that AUC = Prob(xN < xP ).

Such equivalence to the Wilcoxon–Mann–Whitney statistic is
also mentioned in Refs. [1,8,11], and hence AUC is concerned
more about ranking than about the misclassification error of
the predictions [11]. In contrast to ER, AUC is invariant to the
prior probabilities [8].

The ROC is obtained by varying the discriminant threshold,
while, in practice, ER is obtained for some classifiers such as
LDA at a conventionally fixed, discriminant threshold which
is optimal under certain assumptions. Therefore, AUC is inde-
pendent of the discriminant threshold while ER is not.

Concerning the relationship between AUC and ER, Ref. [8]
shows that there is good agreement between these two evalu-
ation metrics in ranking 9 classification algorithms including
C4.5 (an algorithm based on classification trees) and plug-in
sample Gaussian-based quadratic discriminant analysis (QDA).
Furthermore, the theoretical analysis in Ref. [11] shows that
the mean of AUC is monotonically decreasing as ER increases.
Meanwhile, Ref. [11] shows that, the more unbalanced the data,
the higher the coefficient of variation of AUC and the lower
the mean of AUC. This not only indicates that AUC may sug-
gest a different conclusion from that drawn by ER with regard
to classifier performance on unbalanced data, but also suggests
that using AUC as the evaluation metric favours balanced data.
In fact, using C4.5, Ref. [12] presents a thorough empirical
study of 26 real-world data sets; their results show that, in gen-
eral, ER is better with original data while AUC is better with
re-balanced data.

Ref. [1] uses AUC to evaluate the performance of plug-in
sample Gaussian LDA (denoted by LDA-� hereafter); in our
study, we will use both AUC and ER to evaluate the perfor-
mance of LDA-� and one of its special versions which as-
sumes that the common covariance matrix is diagonal (denoted
by LDA-�). In our implementation, we first carry out experi-
ments on 15 unbalanced (with the proportion of the majority
class p̂(�2) > 65%) data sets. Obtained from the UCI machine
learning repository [13], the data sets include all 10 data sets
used by Xie and Qiu [1] and five other more unbalanced data
sets (with p̂(�2) > 75%); as with [1], these data sets have only
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continuous features. Then, we investigate four simulated data
sets of normally distributed data and normal mixture data.

4. Replication of experiments on UCI data sets

As with Refs. [1,12], the test set is constructed by including
n1/4 observations arising from the minority class �1 and n2/4
from the majority class �2 such that it maintains the prevalence
rate of each class; the remaining 75% of observations in the
original, unbalanced training set are then re-sampled into two
training sets with equal numbers of observations from each
class, respectively, by random over-sampling with replacement
and random under-sampling.

We implement such constructions randomly T times; such a
validation is not a cross-validation since the training set and test
set are not necessarily crossed over. However, it can be expected
that such a validation is as effective as T-fold cross-validation,
if T is a large number. In our implementation, T = 200. As
suggested in Ref. [8], we average over the T AUCs to obtain one
average AUC, rather than average over the T ROCs to calculate
one AUC.

The AUC is obtained through calculating the Wilcoxon–
Mann–Whitney statistic of the predicting scores for LDA. It is
implemented by an R function wilcox.test from a standard pack-
age stats in R to perform the Mann–Whitney test (equivalently
the Wilcoxon rank sum test) for two unpaired samples. In order
to exercise the test, scores of the discriminant function gL(x)

are used as the varying discriminant threshold and for ranking.
Table 1 presents the description of the 10 UCI data sets

being studied by both Xie and Qiu [1] and us (the class prior
probabilities different from Table 1 of [1] are highlighted in
italics). The experiments on the five other UCI data sets provide
similar results which can be found in the appendix of a report
on the web page for Technical Reports of the Department of
Statistics at the University of Glasgow.

As with Refs. [8,14], the UCI data are rescaled into the range
[0, 1]. In addition, before carrying out LDA, we perform, for
each feature xi , the Shapiro–Wilk test for within-class normal-
ity and Levene’s test for homogeneity of variance across the
two classes at the significance level 0.05. As the maximum
number of observations allowed by an R function shapiro.test

Table 1
Description of data

Data set Observations Features Class (min., maj.) Prior (min.,(%) maj.(%))

Letter-a 20,000 16 (A, remainder) (3.94, 96.06)

Satimage-3 6435 36 (3, remainder) (21.1, 78.9)

Waveform 5000 21 (1, remainder) (32.94, 67.06)

Image 2310 18 (BRICKFACE, remainder) (14.29, 85.71)

Vehicle 846 18 (van, remainder) (23.52, 76.48)

Pima 768 8 (1, 0) (34.9, 65.1)

New-thyroid 215 5 (hypo, remainder) (13.95, 86.05)

Glass 214 9 (3, remainder) (7.94, 92.06)

Wine 178 13 (3, remainder) (26.97, 73.03)

Iris 150 4 (Iris-virginica, remainder) (33.33, 66.67)

from the R package stats is 5000, we use 5000 randomly sam-
pled observations for the tests when there are more in the
data set. If for a particular feature the within-class normality
is rejected in either of the two classes, we mark the feature
as “Normality rejected”. Results of these two tests, as shown
in Table 2, suggest that for all 10 data sets under study the
null hypotheses of within-class normality and homoscedastic-
ity across the classes are rejected, including the data set “Pima”
which is stated to have nearly equal sample covariance matrices
in Ref. [1].

Tables 3–6 list our results, obtained from LDA-� and
LDA-�, of medians of AUC and ER for the original and
re-balanced data, as well as p-values for the Wilcoxon signed-
rank test for the pairs of (original, over-sampling) and of (orig-
inal, under-sampling). From the tables, we can observe the
following.

(1) Concerning LDA-�, AUCs of re-balanced data are sig-
nificantly (at the level 0.05) better than those of original
data, except for the under-sampled data of “Pima”, “New-
thyroid” and “Glass”. Although the increase of its median
(and thus the improvement of classifier performance) from
re-balancing is not very large in amount, in general, it can
be said that, for the data sets being studied, AUC favours
re-balanced data.

(2) Concerning LDA-�: of the 10 data sets, AUCs of re-
balanced “Satimage-3” and “Image” are significantly
worse than those of the original data for both re-sampling
methods, and AUC of re-balanced “Glass” is significantly
worse than that of original data for the under-sampling.
Meanwhile, no significant difference exists between AUCs
of “Vehicle”. This may be because of the different es-
timates of the covariance matrix between LDA-� and
LDA-�; this indicates that the accuracy of estimation can
play a more important role in AUC than the re-balancing
does.

(3) In contrast to AUC, ER is significantly increased by re-
balancing except for “New-thyroid” and “Vehicle”. The
increase of its median (and thus the decline of classifier
performance) from re-balancing is relatively large. In gen-
eral, it can be said that, for the data sets being studied, ER
favours original data.
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Table 2
Results of the Shapiro–Wilk test for within-class normality and Levene’s test
for homogeneity of variance across the two classes

Data set Features Normality Homoscedasticity
rejected rejected

Letter-a 16 16 12
Satimage-3 36 36 36
Waveform 21 15 15
Image 18 18 18
Vehicle 18 18 14
Pima 8 8 5
New-thyroid 5 5 3
Glass 9 9 2
Wine 13 12 10
Iris 4 3 3

Table 3
Results from LDA-�: medians of AUC for the original and re-balanced data
and p-values for the Wilcoxon signed-rank test for pairs of (original, over-
sampling) and of (original, under-sampling)

Data Original Over Under p-v. p-v.
set (Ori.-over.) (Ori.-under.)

Letter-a 0.977 0.986 0.986 0 0
Satimage-3 0.987 0.988 0.987 0 0
Waveform 0.943 0.945 0.944 0 0
Image 0.994 0.995 0.995 0 0
Vehicle 0.989 0.993 0.991 0 0
Pima 0.835 0.840 0.834 0 0.801
New-thyroid 0.995 1 0.997 0 0.083
Glass 0.827 0.918 0.801 0 0.018
Wine 1 1 1 0.005 0.010
Iris 0.977 0.990 0.987 0 0

Table 4
Results from LDA-�: medians of ER for the original and re-balanced data
and p-values for the Wilcoxon signed-rank test for pairs of (original, over-
sampling) and of (original, under-sampling)

Data Original Over. Under. p-v. p-v.
set (Ori.-over.) (Ori.-under.)

Letter-a 0.011 0.044 0.045 0 0
Satimage-3 0.051 0.076 0.077 0 0
Waveform 0.126 0.170 0.171 0 0
Image 0.019 0.033 0.036 0 0
Vehicle 0.047 0.047 0.052 0.827 0.002
Pima 0.224 0.234 0.240 0 0
New-thyroid 0.056 0.019 0.037 0 0
Glass 0.075 0.226 0.292 0 0
Wine 0 0.023 0.023 0 0
Iris 0.081 0.108 0.108 0 0

Obtained from LDA-� on the 10 data sets, scatter plots of AUC
and ER on re-balanced (by over-sampling and under-sampling)
vs. original data are shown in Figs. 2 and 3, and box-plots of
AUC and ER on original and re-balanced data are shown in
Figs. 4 and 5, respectively. Results from LDA-� are similar
and thus are omitted here.

Table 5
Results from LDA-�: medians of AUC for the original and re-balanced data
and p-values for the Wilcoxon signed-rank test for pairs of (original, over-
sampling) and of (original, under-sampling)

Data Original Over. Under. p-v. p-v.
set (Ori.-over.) (Ori.-under.)

Letter-a 0.951 0.952 0.952 0 0
Satimage-3 0.982 0.981 0.981 0 0
Waveform 0.916 0.917 0.917 0 0
Image 0.873 0.864 0.865 0 0
Vehicle 0.783 0.782 0.783 0.204 0.060
Pima 0.818 0.822 0.820 0 0.023
New-thyroid 0.997 1 1 0 0.136
Glass 0.709 0.750 0.653 0 0
Wine 1 1 1 0 0.096
Iris 0.990 0.990 0.990 0 0

Table 6
Results from LDA-�: medians of ER for the original and re-balanced data
and p-values for the Wilcoxon signed-rank test for pairs of (original, over-
sampling) and of (original, under-sampling)

Data Original Over. Under. p-v. p-v.
set (Ori.-over.) (Ori.-under.)

Letter-a 0.023 0.076 0.076 0 0
Satimage-3 0.121 0.136 0.135 0 0
Waveform 0.154 0.163 0.163 0 0
Image 0.218 0.310 0.310 0 0
Vehicle 0.363 0.363 0.358 0.002 0.001
Pima 0.245 0.260 0.260 0 0
New-thyroid 0.037 0.019 0.019 0 0
Glass 0.075 0.509 0.509 0 0
Wine 0.023 0.045 0.045 0 0
Iris 0.135 0.162 0.162 0 0

5. Simulation studies

Although we may observe some patterns from the empirical
study using real-world data sets such as those from the UCI
machine learning repository, it is not reliable to generalise the
patterns into a conclusion beyond the tested data sets. In this
sense, a study on simulated data sets can be a good complement
to the empirical study.

In Ref. [4], simulation studies by Monte Carlo meth-
ods are used to compare the performance of the so-called
best linear function [3], the quadratic and Fisher’s linear
discriminant function, under the condition that �1 �= �2.
One of the simulation studies with respect to p(�j ) and
p̂(�j ) shows that ER is smaller when p̂(�j ) is closer to
p(�j ).

Fisher’s linear discriminant rule as used in Ref. [4] is in
fact a variant of the plug-in sample Gaussian-based LDA with
w = S−1(�̂1 − �̂2), and

w0 = log
p(�1)

p(�2)
− 1

2
(�̂1 + �̂2)

TS−1(�̂1 − �̂2),

where population prior probabilities p(�j ) are used for the
term log p(�1)/p(�2) in w0 while sample prior probabilities
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Fig. 2. Scatter plots of AUC on re-balanced data (by over-sampling and under-sampling) vs. original data, obtained from LDA-�.
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Fig. 3. Scatter plots of ER on re-balanced data (by over-sampling and under-sampling) vs. original data, obtained from LDA-�.
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Fig. 4. Box-plots of AUC on original and re-balanced data (by over-sampling and under-sampling), obtained from LDA-�.
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Fig. 5. Box-plots of ER on original and re-balanced data (by over-sampling and under-sampling), obtained from LDA-�.
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p̂(�j ) are used in S = p̂(�1)S1 + p̂(�2)S2. In practice, since
the p(�j ) are unknown, log p̂(�1)/p̂(�2) is more widely used
in w0.

Table 7
Results from LDA-�: medians of AUC for the original and re-balanced data
and p-values for the Wilcoxon signed-rank test for pairs of (original, over-
sampling) and of (original, under-sampling)

Data Original Over. Under. p-v. p-v.
set (Ori.-over.) (Ori.-under.)

Normal-equ 0.962 0.963 0.962 0 0.012
Normal-unequ 0.943 0.949 0.948 0 0
Mixture-equ 0.981 0.982 0.981 0 0.260
Mixture-unequ 0.992 0.992 0.992 0.151 0.001

Table 8
Results from LDA-�: medians of ER for the original and re-balanced data
and p-values for the Wilcoxon signed-rank test for pairs of (original, over-
sampling) and of (original, under-sampling)

Data Original Over. Under. p-v. p-v.
set (Ori.-over.) (Ori.-under.)

Normal-equ 0.072 0.108 0.112 0 0
Normal-unequ 0.060 0.096 0.096 0 0
Mixture-equ 0.056 0.068 0.068 0 0
Mixture-unequ 0.032 0.044 0.044 0 0
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Fig. 6. Scatter plots of AUC on re-balanced data (by over-sampling and under-sampling) vs. original data, obtained from LDA-�.

In this section, we simulate four data sets; each data set con-
sists of 1000 observations and is divided into two classes, �1
and �2, with 200 observations from the minority class �1 and
800 observations from the majority class �2 such that each
data set is unbalanced with p̂(�1) = 0.2. The first data set is
randomly generated from two 4-variate normal distributions,
x|�1 ∼ N(�1, �1) and x|�2 ∼ N(�2, �2), with equal covari-
ance matrices such that �1=�2; the second data set is similar to
the first one except that �1 �= �2. The third and fourth data sets
are randomly generated from two 4-variate normal mixtures;
each mixture has two components. The third one has equal co-
variance matrices across the two classes while the fourth one
does not.

For x|�1 ∼ N(�1, �1) and x|�2 ∼ N(�2, �2), as with
Refs. [2,4], we can use a linear transformation to reduce �1
to the identity matrix I and diagonalise �2. Therefore, without
loss of generality, in this section, we use a canonical form with
�1 = 0, �1 = I and �2 = (−1.5, −0.75, 0.75, 1.5)T, and with
�2 a diagonal covariance matrix. For the data set with equal
covariance matrices, �2 = I =�1; for the data set with unequal
covariance matrices, �2 is a diagonal matrix with four diagonal
elements which are (0.25, 0.75, 1.25, 1.75), so that �2 �= �1.

Compared with the normal distribution, the mixture of nor-
mal distributions is a better approximation to real data in a
variety of situations. In this section, two simulated data sets are
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Fig. 7. Scatter plots of ER on re-balanced data (by over-sampling and under-sampling) vs. original data, obtained from LDA-�.
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Fig. 8. Box-plots of AUC on original and re-balanced data (by over-sampling and under-sampling), obtained from LDA-�.
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Fig. 9. Box-plots of ER on original and re-balanced data (by over-sampling and under-sampling), obtained from LDA-�.

randomly generated from two mixtures, �1 and �2, of 4-variate
normal distributions.

Each mixture has two components with equal mixing
coefficients. The two components, A and B, of the mix-
ture �1 are normally distributed with probability density
functions N(�1A, �1) and N(�1B, �1), respectively, where
�1A = 0 and �1B = (2, 0, 0, 0)T; and the two components,
C and D, of the mixture �2 are normally distributed with
probability density functions N(�2C, �2) and N(�2D, �2),

respectively, where �2C =(−1.5, −0.75, 0.75, 1.5)T and �2D =
(−3.5, −0.75, 0.75, 1.5)T. In such a way, when �1 and �2 are
equal/unequal, the covariance matrices of the two mixtures will
become equal/unequal. Meanwhile, we set �1 and �2 in the
same way as for the normally distributed data.

In our simulation studies, both �1 and �2 are diagonal; the
performance of LDA-� is similar to that of LDA-�, and thus
only the results obtained from LDA-� are presented in the
following.

The simulations from the multivariate normal distributions
and normal mixtures are based on an R function mvrnorm for
simulating, from a contributed R package MASS. As with the
UCI data sets being studied, the simulated data are rescaled
into the range [0, 1].

Table 7 and 8 list our results, obtained from LDA-�, of me-
dians of AUC and ER for the original and re-balanced data, as
well as p-values for the Wilcoxon signed-rank test for the pairs
of (original, over-sampling) and of (original, under-sampling).
From the tables, we can observe the following.

(1) Concerning AUC obtained from LDA-�, although for the
simulated data sets being studied it generally favours re-
balanced data, the increase of its median (and thus the
improvement of performance of LDA) from re-balancing
is relatively small. We observe that, of the two simulated
mixture data sets, there is no significant change in AUC
between under-sampled and original data for one data set
and between over-sampled and original data for the other
data set.

(2) Concerning ER obtained from LDA-�, in contrast to AUC,
all ERs are significantly increased after the data are re-
balanced. ER favours original data and the increase of its
median (and thus the decline in performance of LDA) from
re-balancing is noticeably large.

Obtained from LDA-� on the four simulated data sets, scatter
plots of AUC and ER on re-balanced (by over-sampling and
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under-sampling) vs. original data are shown in Figs. 6 and 7,
and box-plots of AUC and ER on original and re-balanced data
are shown in Figs. 8 and 9, respectively.

6. Conclusions

In general, we can draw the following conclusions with re-
gard to the data sets in our study.

(1) Concerning AUC obtained from LDA, although it gener-
ally favours re-balanced data, the increase of its median
(and thus the improvement of performance of LDA) from
re-balancing is relatively small. In contrast to AUC, ER
favours original data and the increase of its median (and
thus the decline in performance of LDA) from re-balancing
is relatively large. This shows that AUC and ER can lead
to quite different conclusions on the discrimination perfor-
mance of LDA for unbalanced data sets.

(2) Therefore, from our study, there is no reliable empirical
evidence to support the claim that a (class) unbalanced data
set has a negative effect on the performance of LDA.

(3) Re-balancing affects the performance of LDA for both the
data sets with equal or unequal covariance matrices. This
indicates that having unequal covariance matrices is not
a key reason for the difference in performance between
original and re-balanced data.
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