In this section you may find a complete list of all the algorithms which have been included within the KEEL software tool. This list is grouped into different families and it is summarised in the following table. Please click on any item in order to navigate into the different types of algorithms.
Data Preprocessing
DISCRETIZATION | Full Name | Short Name | Reference | Uniform Width Discretizer | UniformWidth-D | H. Liu, F. Hussain, C.L. Tan, M. Dash. Discretization: An Enabling Technique. Data Mining and Knowledge Discovery 6:4 (2002) 393-423. |
|
bib |
Uniform Frequency Discretizer | UniformFrequency-D | H. Liu, F. Hussain, L. Tan, M. Dash. Discretization: An Enabling Technique. Data Mining and Knowledge Discovery 6:4 (2002) 393-423. |
|
bib |
Fayyad Discretizer | Fayyad-D | U.M. Fayyad, K.B. Irani. Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning. 13th International Joint Conference on Uncertainly in Artificial Intelligence (IJCAI93). Chambery (France, 1993) 1022-1029. |
|
bib |
Iterative Dicotomizer 3 Discretizer | ID3-D | J.R. Quinlan. Induction of Decision Trees. Machine Learning 1 (1986) 81-106. |
|
bib |
Bayesian Discretizer | Bayesian-D | X. Wu. A Bayesian Discretizer for Real-Valued Attributes. The. Computer J. 39:8 (1996) 688-691. |
|
bib |
Mantaras Distance-Based Discretizer | MantarasDist-D | J. Cerquides, R. López de Màntaras. Proposal and Empirical Comparison of a Parallelizable Distance-Based Discretization Method. 3rd International Conference on Knowledge Discovery and Data Mining (KDD99). NewPort Beach (USA, 1999) 139-142. |
|
bib |
Unparametrized Supervised Discretizer | USD-D | R. Giráldez, J.S. Aguilar-Ruiz, J.C. Riquelme, F. Ferrer-Troyano, D. Rodríguez. Discretization Oriented to Decision Rules Generation. In:
L.C. Jain, E. Damiani, R.J. Howlett, N. Ichalkaranje (Eds.) Frontiers in Artificial Intelligence and Applications 82, 2002, 275-279. |
|
bib |
R. Giráldez, J.S. Aguilar-Ruiz, J.C. Riquelme. Discretizacion Supervisada no Paramétrica Orientada a la Obtencion de Reglas de Decision.. IX Conferencia de la Asociación Española de Inteligencia Artificial (CAEPIA'01). Gijón (España, 2001) 53-62. |
|
bib |
Chi-Merge Discretizer | ChiMerge-D | R. Kerber. ChiMerge: Discretization of Numeric Attributes. National Conference on Artifical Intelligence American Association for Artificial Intelligence (AAAI'92). San José (California USA, 1992) 123-128. |
|
bib |
Chi2 Discretizer | Chi2-D | H. Liu, R. Setiono. Feature Selection via Discretization. IEEE Transactions on Knowledge and Data Engineering 9:4 (1997) 642-645. |
|
bib |
Ameva Discretizer | Ameva-D | L. Gonzalez-Abril, F.J. Cuberos, F. Velasco, J.A. Ortega. Ameva: An autonomous discretization algorithm. Expert Systems with Applications 36 (2009) 5327-5332. |
|
bib |
Zeta Discretizer | Zeta-D | K.M. Ho, P.D. Scott. Zeta: A Global Method for Discretization of Cotitinuous Variables. 3rd International Conference on Knowledge Discovery and Data Mining (KDD99). NewPort Beach (USA, 1999) 191-194. |
|
bib |
Class-Atribute Dependent Discretizer | CADD-D | J.Y. Ching, A.K.C. Wong, K.C.C. Chan. Class-Dependent Discretization for Inductive Learning from Continuous and Mixed-Mode Data. IEEE Transactions on Pattern Analysis and Machine Intelligence 17:7 (1995) 641-651. |
|
bib |
Class-Atribute Interdependence Maximization | CAIM-D | L.A. Kurgan, K.J. Cios. CAIM Discretization Algorithm. IEEE Transactions on Knowledge and Data Engineering 16:2 (2004) 145-153. |
|
bib |
Extended Chi2 Discretizer | ExtendedChi2-D | C.-T. Sun, J.H. Hsu. An Extended Chi2 Algorithm for Discretization of Real Value Attributes. IEEE Transactions on Knowledge and Data Engineering 17:3 (2005) 437-441. |
|
bib |
Fixed Frequency Discretizer | FixedFrequency-D | Y. Yang, G.I. Webb. Discretization for naive-Bayes learning: managing discretization bias and variance. Machine Learning 74 (2009) 39-74. |
|
bib |
Khiops Discretizer | Khiops-D | M. Boulle. Khiops: A Statistical Discretization Method of Continuous Attributes. Machine Learning 55:1 (2004) 53-69. |
|
bib |
Modified Chi2 Discretizer | ModifiedChi2-D | F.E.H. Tay, L. Shen. A Modified Chi2 Algorithm for Discretization. IEEE Transactions on Knowledge and Data Engineering 14:2 (2002) 666-670. |
|
bib |
MODL Discretizer | MODL-D | M. Boulle. MODL: A bayes optimal discretization method for continuous attributes. Machine Learning 65:1 (2006) 131-165. |
|
bib |
1R Discretizer | 1R-D | R.C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning 11 (1993) 63-91. |
|
bib |
Proportional Discretizer | Proportional-D | Y. Yang, G.I. Webb. Discretization for naive-Bayes learning: managing discretization bias and variance. Machine Learning 74 (2009) 39-74. |
|
bib |
Discretization Algorithm Based on a Heterogeneity Criterion | HeterDisc-D | X. Liu. A Discretization Algorithm Based on a Heterogeneity Criterion. IEEE Transactions on Knowledge and Data Engineering 17:9 (2005) 1166-1173. |
|
bib |
Hellinger-based Discretizer | HellingerBD-D | C. Lee. A Hellinger-based discretization method for numeric attributes in classification learning. Knowledge-Based Systems 20:4 (2007) 419-425. |
|
bib |
Distribution-Index-Based Discretizer | DIBD-D | Q.X. Wu, D.A. Bell, G. Prasad, T.M. McGinnity. A Distribution-Index-Based Discretizer for Decision-Making with Symbolic AI Approaches. IEEE Transactions on Knowledge and Data Engineering 19:1 (2007) 17-28. |
|
bib |
Unsupervised Correlation Preserving Discretization | UCPD-D | S. Mehta, S. Parthasarathy, H. Yang. Toward Unsupervised Correlation Preserving Discretization. IEEE Transactions on Knowledge and Data Engineering 17:9 (2005) 1174-1185. |
|
bib |
Interval Distance-Based Method for Discretization | IDD-D | F.J. Ruiz, C. Angulo, N. Agell. IDD: A Supervised Interval Distance-Based Method for Discretization. IEEE Transactions on Knowledge and Data Engineering 20:9 (2008) 1230-1238. |
|
bib |
Discretization algorithm based on Class-Attribute Contingency Coefficient | CACC-D | C.J. Tsai, C.-I. Lee, W.-P. Yang. A discretization algorithm based on Class-Attribute Contingency Coefficient. Information Sciences 178:3 (2008) 714-731. |
|
bib |
Hypercube Division-Based | HDD-D | P. Yang, J.-S. Li, Y.-X. Huang. HDD: a hypercube division-based algorithm for discretisation. International Journal of Systems Science 42:4 (2011) 557-566. |
|
bib |
Cluster Analysis | ClusterAnalysis-D | M.R. Chmielewski, J.W. Grzymala-Busse. Global discretization of continuous attributes as preprocessing for Machine Learning. International Journal of Approximate Reasoning 15 (1996) 319-331. |
|
bib |
Multivariate Discretization | MVD-D | S.D. Bay. Multivariate Discretization for Set Mining. Knowledge and Information Systems 3 (2001) 491-512. |
|
bib |
FUSINTER | FUSINTER-D | D.A. Zighed, R. Rabaseda, R. Rakotomalala. FUSINTER: A method for discretization of continuous attributes. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6:3 (1998) 307-326. |
|
bib |
FEATURE SELECTION | Full Name | Short Name | Reference | Mutual Information Feature Selection | MIFS-FS | R. Battiti. Using Mutual Information For Selection Features In Supervised Neural Net Learning. IEEE Transactions on Neural Networks 5:4 (1994) 537-550. |
|
bib |
Las Vegas Filter | LVF-FS | H. Liu, R. Setiono. A Probabilistic Approach to Feature Selection: A Filter Solution. 13th International Conference on Machine Learning (ICML96 ). Bari (Italy, 1996) 319-327. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
FOCUS | Focus-FS | H. Almuallim, T. Dietterich. Learning With Many Irrelevant Features. 9th National Conference on Artificial Intelligence (AAAI'91). Anaheim (California USA, 1991) 547-552. |
|
bib |
Relief | Relief-FS | K. Kira, L. Rendell. A Practical Approach to Feature Selection. 9th International Workshop on Machine Learning (ML'92). Aberdeen (Scotlant UK, 1992) 249-256. |
|
bib |
Las Vegas Wrapper | LVW-FS | H. Liu, R. Setiono. Feature Selection and Classification: A Probabilistic Wrapper Approach. 9th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA-AIE'96). Fukuoka (Japon, 1996) 419-424. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Automatic Branch and Bound using Inconsistent Examples Pairs Measure | ABB-IEP-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Automatic Branch and Bound using Inconsistent Examples Measure | ABB-LIU-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Automatic Branch and Bound using Mutual Information Measure | ABB-MI-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Full Exploration using Inconsistent Examples Pairs Measure | Full-IEP-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Full Exploration (LIU) | Full-LIU-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Full Exploration using Mutual Information measure | Full-MI-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Relief-F | Relief-F-FS | I. Kononenko. Estimating Attributes: Analysis and Extensions of RELIEF. European Conference on Machine Learning 1994 (ECML94). Catania (Italy, 1994) 171-182. |
|
bib |
Las Vegas Filter using Inconsistent Examples Pairs Measure | LVF-IEP-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Simulated Annealing using Inconsistent Examples Pairs measure | SA-IEP-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Simulated Annealing using Inconsistent Examples measure | SA-LIU-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Simulated Annealing using Mutual Information measure | SA-MI-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Sequential Backward Search using Inconsistent Examples Pairs measure | SBS-IEP-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Sequential Backward Search using Inconsistent Examples measure | SBS-LIU-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Sequential Backward Search using Mutual Information measure | SBS-MI-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Sequential Forward Search using Inconsistent Examples Pairs measure | SFS-IEP-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Sequential Forward Search using Inconsistent Examples measure | SFS-LIU-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
Sequential Forward Search using Mutual Information measure | SFS-MI-FS | H. Liu, L. Yu. Toward Integrating Feature Selection Algorithms for Classification and Clustering. IEEE Transactions on Knowledge and Data Engineering 17:4 (2005) 491-502. |
|
bib |
H. Liu, H. Motoda. Feature Selection for Knowledge Discovery and Data Mining. Kluwer Academic Publishers, 1998. |
| bib |
EVOLUTIONARY FEATURE SELECTION | Full Name | Short Name | Reference | Steady-state GA with integer coding scheme for wrapper feature selection with k-nn | SSGA-Integer-knn-FS | J. Casillas, O. Cordón, M.J. del Jesus, F. Herrera. Genetic Feature Selection in a Fuzzy Rule-Based Classification System Learning Process. Information Sciences 136:1-4 (2001) 135-157. |
|
bib |
Generational GA with binary coding scheme for filter feature selection with the inconsistency rate | GGA-Binary-Inconsistency-FS | P.L. Lanzi. Fast Feature Selection With Genetic Algorithms: A Filter Approach. IEEE International Conference on Evolutionary Computation. Indianapolis. Indianapolis (USA, 1997) 537-540. |
|
bib |
Generational Genetic Algorithm for Feature Selection | GGA-FS | J. Yang, V. Honavar. Feature Subset Selection Using a Genetic Algorithm. IEEE Intelligent Systems 13:2 (1998) 44-49. |
|
bib |
TRAINING SET SELECTION | Full Name | Short Name | Reference | Pattern by Ordered Projections | POP-TSS | J.C. Riquelme, J.S. Aguilar-Ruiz, M. Toro. Finding representative patterns with ordered projections. Pattern Recognition 36 (2003) 1009-1018. |
|
bib |
Prototipe Selection by Relative Certainty Gain | PSRCG-TSS | M. Sebban, R. Nock, S. Lallich. Stopping Criterion for Boosting-Based Data Reduction Techniques: from Binary to Multiclass Problems. Journal of Machine Learning Research 3 (2002) 863-885. |
|
bib |
Variable Similarity Metric | VSM-TSS | D.G. Lowe. Similarity Metric Learning For A Variable-Kernel Classifier. Neural Computation 7:1 (1995) 72-85. |
|
bib |
Edited Nearest Neighbor | ENN-TSS | D.L. Wilson. Asymptotic Properties Of Nearest Neighbor Rules Using Edited Data. IEEE Transactions on Systems, Man and Cybernetics 2:3 (1972) 408-421. |
|
bib |
Multiedit | Multiedit-TSS | P.A. Devijver. On the editing rate of the MULTIEDIT algorithm. Pattern Recognition Letters 4:1 (1986) 9-12. |
|
bib |
Prototipe Selection based on Relative Neighbourhood Graphs | RNG-TSS | J.S. Sánchez, F. Pla, F.J. Ferri. Prototype selection for the nearest neighbor rule through proximity graphs. Pattern Recognition Letters 18 (1997) 507-513. |
|
bib |
Modified Edited Nearest Neighbor | MENN-TSS | K. Hattori, M. Takahashi. A new edited k-nearest neighbor rule in the pattern classification problem. Pattern Recognition 33 (2000) 521-528. |
|
bib |
Nearest Centroid Neighbourhood Edition | NCNEdit-TSS | J.S. Sánchez, R. Barandela, A.I. Márques, R. Alejo, J. Badenas. Analysis of new techniques to obtain quality training sets. Pattern Recognition Letters 24 (2003) 1015-1022. |
|
bib |
Edited NRBF | ENRBF-TSS | M. Grochowski, N. Jankowski. Comparison of instance selection algorithms I. Algorithms survey. VII International Conference on Artificial Intelligence and Soft Computing (ICAISC'04). LNCS 3070, Springer 2004, Zakopane (Poland, 2004) 598-603. |
|
bib |
Edited Nearest Neighbor with Estimation of Probabilities Threshold | ENNTh-TSS | F. Vazquez, J.S. Sánchez, F. Pla. A stochastic approach to Wilson's editing algorithm. 2nd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA05). LNCS 3523, Springer 2005, Estoril (Portugal, 2005) 35-42. |
|
bib |
All-KNN | AllKNN-TSS | I. Tomek. An Experiment With The Edited Nearest-Neighbor Rule. IEEE Transactions on Systems, Man and Cybernetics 6:6 (1976) 448-452. |
|
bib |
Model Class Selection | ModelCS-TSS | C.E. Brodley. Adressing The Selective Superiority Problem: Automatic Algorithm/Model Class Selection. 10th International Machine Learning Conference (ICML'93). Amherst (MA USA, 1993) 17-24. |
|
bib |
EVOLUTIONARY TRAINING SET SELECTION | Full Name | Short Name | Reference | CHC Adaptative Search for Instance Selection | CHC-TSS | J.R. Cano, F. Herrera, M. Lozano. Using Evolutionary Algorithms As Instance Selection For Data Reduction In KDD: An Experimental Study. IEEE Transactions on Evolutionary Computation 7:6 (2003) 561-575. |
|
bib |
Generational Genetic Algorithm for Instance Selection | GGA-TSS | J.R. Cano, F. Herrera, M. Lozano. Using Evolutionary Algorithms As Instance Selection For Data Reduction In KDD: An Experimental Study. IEEE Transactions on Evolutionary Computation 7:6 (2003) 561-575. |
|
bib |
Steady-State Genetic Algorithm for Instance Selection | SGA-TSS | J.R. Cano, F. Herrera, M. Lozano. Using Evolutionary Algorithms As Instance Selection For Data Reduction In KDD: An Experimental Study. IEEE Transactions on Evolutionary Computation 7:6 (2003) 561-575. |
|
bib |
Population-Based Incremental Learning | PBIL-TSS | J.R. Cano, F. Herrera, M. Lozano. Using Evolutionary Algorithms As Instance Selection For Data Reduction In KDD: An Experimental Study. IEEE Transactions on Evolutionary Computation 7:6 (2003) 561-575. |
|
bib |
MISSING VALUES | Full Name | Short Name | Reference | Delete Instances with Missing Values | Ignore-MV | P.A. Gourraud, E. Ginin, A. Cambon-Thomsen. Handling Missing Values In Population Data: Consequences For Maximum Likelihood Estimation Of Haplotype Frequencies. European Journal of Human Genetics 12:10 (2004) 805-812. |
|
bib |
Event Covering Synthesizing | EventCovering-MV | D.K.Y. Chiu, A.K.C. Wong. Synthesizing Knowledge: A Cluster Analysis Approach Using Event-Covering. IEEE Transactions on Systems, Man and Cybernetics, Part B 16:2 (1986) 251-259. |
|
bib |
K-Nearest Neighbor Imputation | KNN-MV | G.E.A.P.A. Batista, M.C. Monard. An Analysis Of Four Missing Data Treatment Methods For Supervised learning. Applied Artificial Intelligence 17:5 (2003) 519-533. |
|
bib |
Most Common Attribute Value | MostCommon-MV | J.W. Grzymala-Busse, L.K. Goodwin, W.J. Grzymala-Busse, X. Zheng. Handling Missing Attribute Values in Preterm Birth Data Sets. 10th International Conference of Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC'05). LNCS 3642, Springer 2005, Regina (Canada, 2005) 342-351. |
|
bib |
Assign All Posible Values of the Attribute | AllPossible-MV | J.W. Grzymala-Busse. On the Unknown Attribute Values In Learning From Examples. 6th International Symposium on Methodologies For Intelligent Systems (ISMIS91). Charlotte (USA, 1991) 368-377. |
|
bib |
K-means Imputation | KMeans-MV | J. Deogun, W. Spaulding, B. Shuart, D. Li. Towards Missing Data Imputation: A Study of Fuzzy K-means Clustering Method. 4th International Conference of Rough Sets and Current Trends in Computing (RSCTC'04). LNCS 3066, Springer 2004, Uppsala (Sweden, 2004) 573-579. |
|
bib |
Concept Most Common Attribute Value | ConceptMostCommon-MV | J.W. Grzymala-Busse, L.K. Goodwin, W.J. Grzymala-Busse, X. Zheng. Handling Missing Attribute Values in Preterm Birth Data Sets. 10th International Conference of Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC'05). LNCS 3642, Springer 2005, Regina (Canada, 2005) 342-351. |
|
bib |
Assign All Posible Values of the Attribute Restricted to the Given Concept | ConceptAllPossible-MV | J.W. Grzymala-Busse. On the Unknown Attribute Values In Learning From Examples. 6th International Symposium on Methodologies For Intelligent Systems (ISMIS91). Charlotte (USA, 1991) 368-377. |
|
bib |
Fuzzy K-means Imputation | FKMeans-MV | J. Deogun, W. Spaulding, B. Shuart, D. Li. Towards Missing Data Imputation: A Study of Fuzzy K-means Clustering Method. 4th International Conference of Rough Sets and Current Trends in Computing (RSCTC'04). LNCS 3066, Springer 2004, Uppsala (Sweden, 2004) 573-579. |
|
bib |
Support Vector Machine Imputation | SVMimpute-MV | H.A.B. Feng, G.C. Chen, C.D. Yin, B.B. Yang, Y.E. Chen. A SVM regression based approach to filling in Missing Values. 9th International Conference on Knowledge-Based and Intelligent Information and Engineering Systems (KES2005). LNCS 3683, Springer 2005, Melbourne (Australia, 2005) 581-587. |
|
bib |
Weighted K-Nearest Neighbor Imputation | WKNNimpute-MV | O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, R.B. Altman. Missing value estimation methods for DNA microarrays. Bioinformatics 17 (2001) 520-525. |
|
bib |
Bayesian Principal Component Analysis | BPCA-MV | S. Oba, M. Sato, I. Takemasa, M. Monden, K. Matsubara, S. Ishii. A Bayesian missing value estimation method for gene expression profile data. Bioinformatics 19 (2003) 2088-2096. |
|
bib |
Expectation-Maximization single imputation | EM-MV | T. Schneider. Analysis of incomplete climate data: Estimation of Mean Values and covariance matrices and imputation of Missing values. Journal of Climate 14 (2001) 853-871. |
|
bib |
Local Least Squares Imputation | LLSImpute-MV | H.A. Kim, G.H. Golub, H. Park. Missing value estimation for DNA microarray gene expression data: Local least squares imputation. Bioinformatics 21:2 (2005) 187-198. |
|
bib |
Single Vector Decomposition imputation | SVDImpute-MV | O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, R.B. Altman. Missing value estimation methods for DNA microarrays. Bioinformatics 17 (2001) 520-525. |
|
bib |
TRANSFORMATION | Full Name | Short Name | Reference | Decimal Scaling ranging | DecimalScaling-TR | L.A. Shalabi, Z. Shaaban, B. Kasasbeh. Data Mining: A Preprocessing Engine. Journal of Computer Science 2:9 (2006) 735-735. |
|
bib |
Min Max ranging | MinMax-TR | L.A. Shalabi, Z. Shaaban, B. Kasasbeh. Data Mining: A Preprocessing Engine. Journal of Computer Science 2:9 (2006) 735-735. |
|
bib |
Z Score ranging | ZScore-TR | L.A. Shalabi, Z. Shaaban, B. Kasasbeh. Data Mining: A Preprocessing Engine. Journal of Computer Science 2:9 (2006) 735-735. |
|
bib |
Nominal to Binary transformation | Nominal2Binary-TR | L.A. Shalabi, Z. Shaaban, B. Kasasbeh. Data Mining: A Preprocessing Engine. Journal of Computer Science 2:9 (2006) 735-735. |
|
bib |
DATA COMPLEXITY | Full Name | Short Name | Reference | Data Complexity Metrics calculation | Metrics-DC | T.K. Ho, M. Basu. Complexity measures of supervised classification problems. IEEE Transactions on Pattern Analysis and Machine Intelligence 24:3 (2002) 289-300. |
|
bib |
NOISY DATA FILTERING | Full Name | Short Name | Reference | Saturation Filter | SaturationFilter-F | D. Gamberger, N. Lavrac, S. Dzroski. Noise detection and elimination in data preprocessing: Experiments in medical domains. Applied Artificial Intelligence 14:2 (2000) 205-223. |
|
bib |
Pairwise Attribute Noise Detection Algorithm Filter | PANDA-F | J.D. Hulse, T.M. Khoshgoftaar, H. Huang. The pairwise attribute noise detection algorithm. Knowledge and Information Systems 11:2 (2007) 171-190. |
|
bib |
Classification Filter | ClassificationFilter-F | D. Gamberger, N. Lavrac, C. Groselj. Experiments with noise filtering in a medical domain. 16th International Conference on Machine Learning (ICML99). San Francisco (USA, 1999) 143-151. |
|
bib |
Automatic Noise Remover | ANR-F | X. Zeng, T. Martinez. A Noise Filtering Method Using Neural Networks. IEEE International Workshop on Soft Computing Techniques in Instrumentation, Measurement and Related Applications (SCIMA2003). Utah (USA, 2003) 26-31. |
|
bib |
Ensemble Filter | EnsembleFilter-F | C.E. Brodley, M.A. Friedl. Identifying Mislabeled Training Data. Journal of Artificial Intelligence Research 11 (1999) 131-167. |
|
bib |
Cross-Validated Committees Filter | CVCommitteesFilter-F | S. Verbaeten, A.V. Assche. Ensemble methods for noise elimination in classification problems. 4th International Workshop on Multiple Classifier Systems (MCS 2003). LNCS 2709, Springer 2003, Guilford (UK, 2003) 317-325. |
|
bib |
Iterative-Partitioning Filter | IterativePartitioningFilter-F | T.M. Khoshgoftaar, P. Rebours. Improving software quality prediction by noise filtering techniques. Journal of Computer Science and Technology 22 (2007) 387-396. |
|
bib |
Classification Algorithms
CRISP RULE LEARNING FOR CLASSIFICATION | Full Name | Short Name | Reference | AQ-15 | AQ-C | R.S. Michalksi,, I. Mozetic, N. Lavrac. The Multipurpose Incremental Learning System AQ15 And Its Testing Application To Three Medical Domains. 5th INational Conference on Artificial Intelligence (AAAI'86 ). Philadelphia (Pennsylvania, 1986) 1041-1045. |
|
bib |
CN2 | CN2-C | P. Clark, T. Niblett. The CN2 Induction Algorithm. Machine Learning Journal 3:4 (1989) 261-283. |
|
bib |
PRISM | PRISM-C | J. Cendrowska. PRISM: An algorithm for inducing modular rules. International Journal of Man-Machine Studies 27:4 (1987) 349-370. |
|
bib |
1R | 1R-C | R.C. Holte. Very simple classification rules perform well on most commonly used datasets. Machine Learning 11 (1993) 63-91. |
|
bib |
Rule Induction with Optimal Neighbourhood Algorithm | Riona-C | G. Góra, A. Wojna. RIONA: A New Classification System Combining Rule Induction and Instance-Based Learning. Fundamenta Informaticae 51:4 (2002) 1-22. |
|
bib |
C4.5Rules | C45Rules-C | J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman Publishers, 1993. |
| bib |
J.R. Quinlan. MDL and Categorical Theories (Continued). Machine Learning: Proceedings of the Twelfth International Conference. Lake Tahoe California (United States of America, 1995) 464-470. |
|
bib |
C4.5Rules (Simulated Annealing version) | C45RulesSA-C | J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman Publishers, 1993. |
| bib |
J.R. Quinlan. MDL and Categorical Theories (Continued). Machine Learning: Proceedings of the Twelfth International Conference. Lake Tahoe California (United States of America, 1995) 464-470. |
|
bib |
PART | PART-C | E. Frank, I.H. Witten. Generating Accurate Rule Sets Without Global Optimization. Proceedings of the Fifteenth International Conference on Machine Learning. (1998) 144-151. |
|
bib |
Repeated Incremental Pruning to Produce Error Reduction | Ripper-C | W.W. Cohen. Fast Effective Rule Induction. Machine Learning: Proceedings of the Twelfth International Conference. Lake Tahoe California (United States of America, 1995) 1-10. |
|
bib |
Simple Learner with Iterative Pruning to Produce Error Reduction | Slipper-C | W.W. Cohen, Y. Singer. A Simple, Fast, and Effective Rule Learner. Proceedings of the Sixteenth National Conference on Artificial Intelligence. Orlando Florida (United States of America, 1999) 335-342. |
|
bib |
Association Rule Tree | ART-C | F. Berzal, J.C. Cubero, D. Sánchez, J.M. Serrano. Serrano.ART: A Hybrid Classification Model. Machine Learning 54 (2004) 67-92. |
|
bib |
DataSqueezer | DataSqueezer-C | L.A. Kurgan, K.J. Cios, S. Dick. Highly Scalable and Robust Rule Learner: Performance Evaluation and Comparison. IEEE Transactions on Systems, Man and Cybernetics,Part B: Cybernetics 36:1 (2006) 32-53. |
|
bib |
Swap1 | Swap1-C | M. Sholom, N. Indurkhya. Optimized Rule Induction. IEEE Expert 1 (1993) 61-70. |
|
bib |
Learning Examples Module 1 | LEM1-C | J. Stefanowski. On rough set based approaches to induction of decision rules. In:
L. Polkowski, A. Skowron (Eds.) Rough sets in data mining and knowledge discovery, 1998, 500-529. |
|
bib |
Learning Examples Module 2 | LEM2-C | J. Stefanowski. On rough set based approaches to induction of decision rules. In:
L. Polkowski, A. Skowron (Eds.) Rough sets in data mining and knowledge discovery, 1998, 500-529. |
|
bib |
Rule Induction Two In One | Ritio-C | X. Wu, D. Urpani. Induction By Attribute Elimination. IEEE Transactions on Knowledge and Data Engineering 11:5 (1999) 805-812. |
|
bib |
Rule Extraction System Version 6 | Rules6-C | D.T. Pham, A.A. Afify. RULES-6: A Simple Rule Induction Algorithm for Supporting Decision Making. 31st Annual Conference of IEEE Industrial Electronics Society (IECON). (2005) 2184-2189. |
|
bib |
Scalable Rule Induction | SRI-C | D.T. Pham, A.A. Afify. SRI: a scalable rule induction algorithm. Proceedings of the Institution of Mechanical Engineers . (2006) 537-552. |
| bib |
Rule-MINI | RMini-C | S.J. Hong. R-MINI: An Iterative Approach for Generating Minimal Rules from Examples. IEEE Transactions on Knowledge and Data Engineering 9:5 (1997) 709-717. |
|
bib |
EVOLUTIONARY CRISP RULE LEARNING FOR CLASSIFICATION | Full Name | Short Name | Reference | Genetic Algorithm based Classifier System with Adaptive Discretization Intervals | GAssist-ADI-C | J. Bacardit, J.M. Garrell. Evolving multiple discretizations with adaptive intervals for a pittsburgh rule-based learning classifier system. Genetic and Evolutionary Computation Conference (GECCO'03). LNCS 2724, Springer 2003, Chicago (Illinois USA, 2003) 1818-1831. |
|
bib |
J. Bacardit, J.M. Garrell. Analysis and improvements of the adaptive discretization intervals knowledge representatio. Genetic and Evolutionary Computation Conference (GECCO'04). LNCS 3103, Springer 2004, Seattle (Washington USA, 2004) 726-738. |
|
bib |
Pittsburgh Genetic Interval Rule Learning Algorithm | PGIRLA-C | A.L. Corcoran, S. Sen. Using Real-Valued Genetic Algorithms to Evolve Rule Sets for Classification. 1st IEEE Conference on Evolutionary Computation. Orlando (Florida, 1994) 120-124. |
|
bib |
Supervised Inductive Algorithm | SIA-C | G. Venturini. SIA: A Supervised Inductive Algorithm with Genetic Search for Learning Attributes Based Concepts. 6th European Conference on Machine Learning (ECML'93). Lecture Notes in Artificial Intelligence. Viena (Austria, 1993) 280-296. |
|
bib |
X-Classifier System | XCS-C | S.W. Wilson. Classifier Fitness Based on Accuracy. Evolutionary Computation 3:2 (1995) 149-175. |
|
bib |
Hierarchical Decision Rules | Hider-C | J.S. Aguilar-Ruiz, J.C. Riquelme, M. Toro. Evolutionary learning of hierarchical decision rules.. Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics 33:2 (2003) 324-331. |
|
bib |
J.S. Aguilar-Ruiz, R. Giráldez, J.C. Riquelme. Natural Encoding for Evolutionary Supervised Learning. IEEE Transactions on Evolutionary Computation 11:4 (2007) 466-479. |
|
bib |
Genetic Algorithm based Classifier System with Intervalar Rules | GAssist-Intervalar-C | J. Bacardit, J.M. Garrell. Bloat control and generalization pressure using the minimum description length principle for a pittsburgh approach learning classifier system. Advances at the frontier of Learning Classifier Systems. Springer Berlin-Heidelberg. (2007) 61-80. |
|
bib |
LOgic grammar Based GENetic PROgramming system | LogenPro-C | M.L. Wong, K.S. Leung. Data Mining using grammar based genetic programming and applications. Kluwer Academics Publishers, 2000. |
| bib |
sUpervised Classifier System | UCS-C | E. Bernadó-Mansilla, J.M. Garrell. Accuracy-Based Learning Classifier Systems: Models, Analysis and Applications to Classification Tasks. Evolutionary Computation 11:3 (2003) 209-238. |
|
bib |
Particle Swarm Optimization / Ant Colony Optimization for Classification | PSO_ACO-C | T. Sousa, A. Silva, A. Neves. Particle Swarm based Data Mining Algorithms for classification tasks. Parallel Computing 30 (2004) 767-783. |
|
bib |
Ant Miner | Ant_Miner-C | R.S. Parpinelli, H.S. Lopes, A.A. Freitas. Data Mining With an Ant Colony Optimization Algorithm. IEEE Transactions on Evolutionary Computation 6:4 (2002) 321-332. |
|
bib |
Advanced Ant Miner | Advanced_Ant_Miner-C | R.S. Parpinelli, H.S. Lopes, A.A. Freitas. Data Mining With an Ant Colony Optimization Algorithm. IEEE Transactions on Evolutionary Computation 6:4 (2002) 321-332. |
|
bib |
R.S. Parpinelli, H.S. Lopes, A.A. Freitas. An Ant Colony Algorithm for Classification Rule Discovery. In:
H.A. Abbass, R.A. Sarker, C.S. Newton (Eds.) Data Mining: a Heuristic Approach, 2002, 191-208. |
|
bib |
Ant Miner+ | Ant_Miner_Plus-C | R.S. Parpinelli, H.S. Lopes, A.A. Freitas. Data Mining With an Ant Colony Optimization Algorithm. IEEE Transactions on Evolutionary Computation 6:4 (2002) 321-332. |
|
bib |
Advanced Ant Miner+ | Advanced_Ant_Miner_Plus-C | R.S. Parpinelli, H.S. Lopes, A.A. Freitas. Data Mining With an Ant Colony Optimization Algorithm. IEEE Transactions on Evolutionary Computation 6:4 (2002) 321-332. |
|
bib |
R.S. Parpinelli, H.S. Lopes, A.A. Freitas. An Ant Colony Algorithm for Classification Rule Discovery. In:
H.A. Abbass, R.A. Sarker, C.S. Newton (Eds.) Data Mining: a Heuristic Approach, 2002, 191-208. |
|
bib |
Constricted Particle Swarm Optimization | CPSO-C | T. Sousa, A. Silva, A. Neves. Particle Swarm based Data Mining Algorithms for classification tasks. Parallel Computing 30 (2004) 767-783. |
|
bib |
Linear Decreasing Weight - Particle Swarm Optimization | LDWPSO-C | T. Sousa, A. Silva, A. Neves. Particle Swarm based Data Mining Algorithms for classification tasks. Parallel Computing 30 (2004) 767-783. |
|
bib |
Real Encoding - Particle Swarm Optimization | REPSO-C | Y. Liu, Z. Qin, Z. Shi, J. Chen. Rule Discovery with Particle Swarm Optimization. Advanced Workshop on Content Computing (AWCC). LNCS 3309, Springer 2004 (2004) 291-296. |
|
bib |
Bioinformatics-oriented hierarchical evolutionary learning | BioHel-C | J. Bacardit, E. Burke, N. Krasnogor. Improving the scalability of rule-based evolutionary learning. Memetic computing 1:1 (2009) 55-67. |
|
bib |
COverage-based Genetic INduction | COGIN-C | D.P. Greene, S.F. Smith. Competition–based induction of decision models from examples. Machine Learning 13:23 (1993) 229-257. |
|
bib |
CO-Evolutionary Rule Extractor | CORE-C | K.C. Tan, Q. Yu, J.H. Ang. A coevolutionary algorithm for rules discovery in data mining. International Journal of Systems Science 37:12 (2006) 835-864. |
|
bib |
Data Mining for Evolutionary Learning | DMEL-C | W.H. Au, K.C.C. Chan, X. Yao. A novel evolutionary data mining algorithm with applications to churn prediction. IEEE Transactions on Evolutionary Computation 7:6 (2003) 532-545. |
|
bib |
Genetic-based Inductive Learning | GIL-C | C.Z. Janikow. A knowledge–intensive genetic algorithm for supervised learning. Machine Learning 13:2 (1993) 189-228. |
|
bib |
Organizational Co-Evolutionary algorithm for Classification | OCEC-C | L. Jiao, J. Liu, W. Zhong. An organizational coevolutionary algorithm for classification. IEEE Transactions on Evolutionary Computation 10:12 (2006) 67-80. |
|
bib |
Ordered Incremental Genetic Algorithm | OIGA-C | F. Zhu, S.U. Guan. Ordered incremental training with genetic algorithms. International Journal of Intelligent Systems 19:12 (2004) 1239-1256. |
|
bib |
Incremental Learning with Genetic Algorithms | ILGA-C | S.U. Guan, F. Zhu. An incremental approach to genetic– algorithms–based classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B 35:2 (2005) 227-239. |
|
bib |
Memetic Pittsburgh Learning Classifier System | MPLCS-C | J. Bacardit, N. Krasnogor. Performance and Efficiency of Memetic Pittsburgh Learning Classifier Systems. Evolutionary Computation 17:3 (2009) 307-342. |
|
bib |
Bojarczuk Genetic programming method | Bojarczuk_GP-C | C.C. Bojarczuk, H.S. Lopes, A.A. Freitas, E.L. Michalkiewicz. A constrained-syntax genetic programming system for discovering classification rules: applications to medical datasets. Artificial Intelligence in Medicine 30:1 (2004) 27-48. |
|
bib |
Falco Genetic programming method | Falco_GP-C | I.D. Falco, A.D. Cioppa, E. Tarantino. Discovering interesting classification rules with genetic programming. Applied Soft Computing 1 (2002) 257-269. |
|
bib |
Tan Genetic programming method | Tan_GP-C | K.C. Tan, A. Tay, T.H. Lee, C.M. Heng. Mining multiple comprehensible classification rules using genetic programming. he 2002 Congress on Evolutionary Computation (CEC02). Piscataway (USA, 2002) 1302-1307. |
|
bib |
Genetic Algorithm designed for the task of solving problem MAX-F | Olex-GA-C | A. Pietramala, V.L. Policicchio, P. Rullo, I. Sidhu. A Genetic Algorithm for Text Classification Rule Induction. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2008). LNCS 5212, Springer 2008, Antwerp (Belgium, 2008) 188-203. |
|
bib |
FUZZY RULE LEARNING FOR CLASSIFICATION | Full Name | Short Name | Reference | Fuzzy Rule Learning Model by the Chi et al. approach with rule weights | Chi-RW-C | Z. Chi, H. Yan, T. Pham. Fuzzy Algorithms: With Applications To Image Processing and Pattern Recognition. World Scientific, 1996. |
| bib |
O. Cordón, M.J. del Jesus, F. Herrera. A proposal on reasoning methods in fuzzy rule-based classification systems. International Journal of Approximate 20:1 (1999) 21-45. |
|
bib |
H. Ishibuchi, T. Yamamoto. Rule weight specification in fuzzy rule-based classification systems. IEEE Transactions on Fuzzy Systems 13:4 (2005) 428-435. |
|
bib |
Weighted Fuzzy Classifier | WF-C | T. Nakashima, G. Schaefer, Y. Yokota, H. Ishibuchi. A Weighted Fuzzy Classifier and its Application to Image Processing Tasks. Fuzzy Sets and Systems 158 (2007) 284-294. |
|
bib |
Positive Definite Fuzzy Classifier | PDFC-C | Y. Chen, J.Z. Wang. Support Vector Learning for Fuzzy Rule-Based Classification Systems. IEEE Transactions on Fuzzy Systems 11:6 (2003) 716-728. |
|
bib |
Fuzzy Unordered Rule Induction Algorithm | FURIA-C | J. Hühn, E. Hüllermeier. FURIA: an algorithm for unordered fuzzy rule induction. Data Mining and Knowledge Discovery 19:3 (2009) 293-319. |
|
bib |
EVOLUTIONARY FUZZY RULE LEARNING FOR CLASSIFICATION | Full Name | Short Name | Reference | Fuzzy Learning based on Genetic Programming Grammar Operators and Simulated Annealing | GFS-SP-C | L. Sánchez, I. Couso, J.A. Corrales. Combining GP Operators With SA Search To Evolve Fuzzy Rule Based Classifiers. Information Sciences 136:1-4 (2001) 175-192. |
|
bib |
Fuzzy Learning based on Genetic Programming Grammar Operators | GFS-GPG-C | L. Sánchez, I. Couso, J.A. Corrales. Combining GP Operators With SA Search To Evolve Fuzzy Rule Based Classifiers. Information Sciences 136:1-4 (2001) 175-192. |
|
bib |
Fuzzy AdaBoost | GFS-AdaBoost-C | M.J. del Jesus, F. Hoffmann, L. Junco, L. Sánchez. Induction of Fuzzy-Rule-Based Classifiers With Evolutionary Boosting Algorithms. IEEE Transactions on Fuzzy Systems 12:3 (2004) 296-308. |
|
bib |
LogitBoost | GFS-LogitBoost-C | J. Otero, L. Sánchez. Induction of Descriptive Fuzzy Classifiers With The Logitboost Algorithm. Soft Computing 10:9 (2006) 825-835. |
|
bib |
Fuzzy Learning based on Genetic Programming | GFS-GP-C | L. Sánchez, I. Couso, J.A. Corrales. Combining GP Operators With SA Search To Evolve Fuzzy Rule Based Classifiers. Information Sciences 136:1-4 (2001) 175-192. |
|
bib |
Logitboost with Single Winner Inference | GFS-MaxLogitBoost-C | L. Sánchez, J. Otero. Boosting Fuzzy Rules in Classification Problems Under Single-Winner Inference. International Journal of Intelligent Systems 22:9 (2007) 1021-1034. |
|
bib |
Grid Rule Base Generation and Genetic Rule Selection | GFS-Selec-C | H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka. Selecting Fuzzy If-Then Rules for Classification. IEEE Transactions on Fuzzy Systems 3:3 (1995) 260-270. |
|
bib |
Structural Learning Algorithm in a Vague Environment with Feature Selection | SLAVE-C | A. González, R. Perez. Selection of relevant features in a fuzzy genetic learning algorithm. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 31:3 (2001) 417-425. |
|
bib |
Methodology to Obtain Genetic fuzzy rule-based systems Under the iterative Learning approach | MOGUL-C | O. Cordón, M.J. del Jesus, F. Herrera. Genetic learning of fuzzy rule-based classification systems cooperating with fuzzy reasoning methods. International Journal of Intelligent Systems 13:10 (1998) 1025-1053. |
|
bib |
O. Cordón, M.J. del Jesus, F. Herrera, M. Lozano. MOGUL: A Methodology to Obtain Genetic fuzzy rule-based systems Under the iterative rule Learning approach. International Journal of Intelligent Systems 14:11 (1999) 1123-1153. |
|
bib |
Fuzzy rule approach based on a genetic cooperative-competitive learning | GFS-GCCL-C | H. Ishibuchi, T. Nakashima, T. Murata. Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 29:5 (1999) 601-618. |
|
bib |
Fuzzy Hybrid Genetics-Based Machine Learning | FH-GBML-C | H. Ishibuchi, T. Yamamoto, T. Nakashima. Hybridization of Fuzzy GBML Approaches for Pattern Classification Problems. IEEE Transactions on Systems, Man and Cybernetics - Part B: Cybernetics 35:2 (2005) 359-365. |
|
bib |
Fuzzy Expert System | GFS-ES-C | Y. Shi, R. Eberhart, Y. Chen. Implementation of evolutionary fuzzy systems. IEEE Transactions on Fuzzy Systems 7:2 (1999) 109-119. |
|
bib |
Steady-State Genetic Algorithm for Extracting Fuzzy Classification Rules From Data | SGERD-C | E.G. Mansoori, M.J. Zolghadri, S.D. Katebi. SGERD: A Steady-State Genetic Algorithm for Extracting Fuzzy Classification Rules From Data. IEEE Transactions on Fuzzy Systems 16:4 (2008) 1061-1071. |
|
bib |
Genetic Programming-based learning of COmpact and ACcurate fuzzy rule-based classification systems for High-dimensional problems | GP-COACH-C | F.J. Berlanga, A.J. Rivera, M.J. del Jesus, F. Herrera. GP-COACH: Genetic Programming based learning of COmpact and ACcurate fuzzy rule based classification systems for high dimensional problems. Information Sciences 180:8 (2010) 1183-1200. |
|
bib |
Linguistic fuzzy rule-based classification Interval-Valued fuzzy reasoning method with TUning and Rule Selection | IVTURS-C | J. Sanz, A. Fernández, H. Bustince, F. Herrera. IVTURS: a linguistic fuzzy rule-based classification system based on a new Interval-Valued fuzzy reasoning method with TUning and Rule Selection. IEEE Transactions on Fuzzy Systems 21:3 (2013) 399-411. |
|
bib |
Genetic Programming-based learning of COmpact and ACcurate fuzzy rule-based classification systems for High-dimensional problems | GP-COACH | F.J. Berlanga, A.J. Rivera, M.J. del Jesus, F. Herrera. GP-COACH: Genetic Programming based learning of COmpact and ACcurate fuzzy rule based classification systems for high dimensional problems. Information Sciences 180:8 (2010) 1183-1200. |
|
bib |
New SLAVE | NSLV-C | A. González, R. Perez. Improving the genetic algorithm of SLAVE. Mathware and Soft Computing 16 (2009) 59-70. |
|
bib |
D. Garcia, A. González, R. Perez. Overview of the SLAVE learning algorithm: A review of its evolution and prospects. International Journal of Computational Intelligence Systems 7:6 (2014) 0-1221. |
|
bib |
SLAVE2 | SLAVE2-C | A. González, R. Perez. SLAVE: A genetic learning system based on an iterative approach. IEEE Trans. on Fuzzy Systems 7:2 (1999) 176-191. |
|
bib |
A. González, R. Perez. Selection of relevant features in a fuzzy genetic learning algorithm. IEEE Trans. on Systems, Man and Cybernetics-Part. B Cy-bernetics 31:3 (2001) 0-425. |
|
bib |
SLAVEv0: Structural Learning Algorithm in a Vague Environment | SLAVEv0-C | A. González, R. Perez. Completeness and consistency conditions for learning fuzzy rules. Fuzzy Sets and Systems 96 (1998) 37-51. |
|
bib |
D. Garcia, A. González, R. Perez. Overview of the SLAVE learning algorithm: A review of its evolution and prospects. International Journal of Computational Intelligence Systems 7:6 (2014) 0-1221. |
|
bib |
NESTED GENERALIZED LEARNING | Full Name | Short Name | Reference | Batch Nested Generalized Exemplar | BNGE-C | D. Wettschereck, T.G. Dietterich. An Experimental Comparison of the Nearest-Neighbor and Nearest-Hyperrectangle Algorithms. Machine Learning 19 (1995) 5-27. |
|
bib |
Exemplar-Aided Constructor of Hyperrectangles | EACH-C | S. Salzberg. A Nearest Hyperrectangle Learning Method. Machine Learning 6 (1991) 251-276. |
|
bib |
INNER | INNER-C | O. Luaces. Inflating examples to obtain rules. International Journal of Intelligent Systems 18 (2003) 1113-1143. |
|
bib |
Rule Induction from a Set of Exemplars | RISE-C | P. Domingos. Unifying Instance-Based and Rule-Based Induction. Machine Learning 24:2 (1996) 141-168. |
|
bib |
Evolutionary Hyperrectangle Selection based on CHC | EHS_CHC-C | S. García, J. Derrac, J. Luengo, C.J. Carmona, F. Herrera. Evolutionary Selection of Hyperrectangles in Nested Generalized Exemplar Learning. Applied Soft Computing 11:3 (2011) 3032-3045. |
|
bib |
ASSOCIATIVE CLASSIFICATION | Full Name | Short Name | Reference | Classification Based on Associations | CBA-C | B. Liu, W. Hsu, Y. Ma. Integrating Classification and Association Rule Mining. 4th International Conference on Knowledge Discovery and Data Mining (KDD98). New York (USA, 1998) 80-86. |
|
bib |
Classification Based on Associations 2 | CBA2-C | B. Liu, Y. Ma, C.K. Wong. Classification Using Association Rules: Weaknesses and Enhancements . In:
R.L. Grossman, C. Kamath, V. Kumar (Eds.) Data Mining for Scientific and Engineering Applications, 2001, 591-601. |
|
bib |
Classification based on Predictive Association Rules | CPAR-C | X. Yin, J. Han. CPAR: Classification based on Predictive Association Rules. 3rd SIAM International Conference on Data Mining (SDM03). San Francisco (USA, 2003) 331-335. |
|
bib |
Classification Based on Multiple Class-Association Rules | CMAR-C | W. Li, J. Han, J. Pei. CMAR: Accurate and efficient classification based on multiple class-association rules. 2001 IEEE International Conference on Data Mining (ICDM01). San Jose (USA, 2001) 369-376. |
|
bib |
Fuzzy rules for classification problems based on the Apriori algorithm | FCRA-C | Y.-C. Hu, R.-S. Chen, G.-H. Tzeng. Finding fuzzy classification rules using data mining techniques. Pattern Recognition Letters 24:1-3 (2003) 509-519. |
|
bib |
Classification with Fuzzy Association Rules | CFAR-C | Z. Chen, G. Chen. Building an associative classifier based on fuzzy association rules. International Journal of Computational Intelligence Systems 1:3 (2008) 262-273. |
|
bib |
Fuzzy Association Rule-based Classification method for High-Dimensional problems | FARC-HD-C | J. Alcala-Fdez, R. Alcalá, F. Herrera. A Fuzzy Association Rule-Based Classification Model for High-Dimensional Problems with Genetic Rule Selection and Lateral Tuning. IEEE Transactions on Fuzzy Systems 19:5 (2011) 857-872. |
|
bib |
DECISION TREES | Full Name | Short Name | Reference | C4.5 | C4.5-C | J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Iterative Dicotomizer 3 | ID3-C | J.R. Quinlan. Induction of Decision Trees. Machine Learning 1 (1986) 81-106. |
|
bib |
Classification and Regression Tree | CART-C | L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone. Classification and Regression Trees. Chapman and Hall (Wadsworth, Inc.), 1984. |
| bib |
Supervised Learning In Quest | SLIQ-C | M. Mehta, R. Agrawal, J. Rissanen. SLIQ: A Fast Scalable Classifier for Data Mining. Proceedings of the 5th International Conference on Extending Database Technology. (1996) 18-32. |
|
bib |
Hybrid Decision Tree -Genetic Algorithm | DT_GA-C | D.R. Carvalho, A.A. Freitas. A hybrid decision tree/genetic algorithm method for data mining. Information Sciences 163:1 (2004) 13-35. |
|
bib |
Oblique Decision Tree with Evolutionary Learning | DT_Oblique-C | E. Cantú-Paz, C. Kamath. Inducing oblique decision trees with evolutionary algorithms. IEEE Transactions on Evolutionary Computation 7:1 (2003) 54-68. |
|
bib |
Functional Trees | FunctionalTrees-C | J. Gama. Functional Trees. Machine Learning 55 (2004) 219-250. |
|
bib |
PrUning and BuiLding Integrated in Classification | PUBLIC-C | R. Rastogi, K. Shim. PUBLIC: A Decision Tree Classifier that Integrates Building and Pruning. Data Mining and Knowledge Discovery 4:4 (2000) 315-344. |
|
bib |
Tree Analysis with Randomly Generated and Evolved Trees | Target-C | J.B. Gray, G. Fan. Classification tree analysis using TARGET. Computational Statistics and Data Analysis 52:3 (2008) 1362-1372. |
|
bib |
Adaptive Boosting Negative Correlation Learning Extension with C4.5 Decision Tree as Base Classifier | AdaBoost.NC-C | S. Wang, X. Yao. Multiclass Imbalance Problems: Analysis and Potential Solutions. IEEE Transactions on Systems, Man and Cybernetics Part B 42:4 (2012) 1119-1130. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Multiclassifier learning approach (One-vs-One / One-vs-All) with C4.5 as baseline algorithm | C45_Binarization-C | M. Galar, A. Fernández, E. Barrenechea, H. Bustince, F. Herrera. An Overview of Ensemble Methods for Binary Classifiers in Multi-class Problems: Experimental Study on One-vs-One and One-vs-All Schemes. Pattern Recognition 44:8 (2011) 1761-1776. |
|
bib |
M. Galar, A. Fernández, E. Barrenechea, H. Bustince, F. Herrera. Dynamic Classifier Selection for One-vs-One Strategy: Avoiding Non-Competent Classifiers. Pattern Recognition 46:12 (2013) 3412-3424. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
PROTOTYPE SELECTION | Full Name | Short Name | Reference | All-KNN | AllKNN-C | I. Tomek. An Experiment With The Edited Nearest-Neighbor Rule. IEEE Transactions on Systems, Man and Cybernetics 6:6 (1976) 448-452. |
|
bib |
Edited Nearest Neighbor | ENN-C | D.L. Wilson. Asymptotic Properties Of Nearest Neighbor Rules Using Edited Data. IEEE Transactions on Systems, Man and Cybernetics 2:3 (1972) 408-421. |
|
bib |
Multiedit | Multiedit-C | P.A. Devijver. On the editing rate of the MULTIEDIT algorithm. Pattern Recognition Letters 4:1 (1986) 9-12. |
|
bib |
Condensed Nearest Neighbor | CNN-C | P.E. Hart. The Condensed Nearest Neighbour Rule. IEEE Transactions on Information Theory 14:5 (1968) 515-516. |
|
bib |
Tomek's modification of Condensed Nearest Neighbor | TCNN-C | I. Tomek. Two modifications of CNN. IEEE Transactions on Systems, Man and Cybernetics 6 (1976) 769-772. |
|
bib |
Instance Based 3 | IB3-C | D.W. Aha, D. Kibler, M.K. Albert. Instance-Based Learning Algorithms. Machine Learning 6:1 (1991) 37-66. |
|
bib |
Modified Edited Nearest Neighbor | MENN-C | K. Hattori, M. Takahashi. A new edited k-nearest neighbor rule in the pattern classification problem. Pattern Recognition 33 (2000) 521-528. |
|
bib |
Modified Condensed Nearest Neighbor | MCNN-C | V.S. Devi, M.N. Murty. An incremental prototype set building technique. Pattern Recognition 35 (2002) 505-513. |
|
bib |
Decremental Reduction Optimization Procedure 3 | DROP3-C | D.R. Wilson, T.R. Martinez. Reduction Tecniques For Instance-Based Learning Algorithms. Machine Learning 38:3 (2000) 257-286. |
|
bib |
Iterative Case Filtering | ICF-C | H. Brighton, C. Mellish. Advances In Instance Selection For Instance-Based. Data mining and Knowledge Discovery 6:2 (2002) 153-172. |
|
bib |
Reduced Nearest Neighbor | RNN-C | G.W. Gates. The Reduced Nearest Neighbour Rule. IEEE Transactions on Information Theory 18:3 (1972) 431-433. |
|
bib |
Selective Nearest Neighbor | SNN-C | G.L. Ritter, H.B. Woodruff, S.R. Lowry, T.L. Isenhour. An Algorithm For A Selective Nearest Neighbor Decision Rule. IEEE Transactions on Information Theory 21:6 (1975) 665-669. |
|
bib |
Variable Similarity Metric | VSM-C | D.G. Lowe. Similarity Metric Learning For A Variable-Kernel Classifier. Neural Computation 7:1 (1995) 72-85. |
|
bib |
Prototype Selection based on Clustering | PSC-C | J.A. Olvera-López, J.A. Carrasco-Ochoa, J.F. Martínez-Trinidad. A new fast prototype selection method based on clustering. Pattern Analysis and Applications 13 (2010) 131-141. |
|
bib |
Model Class Selection | ModelCS-C | C.E. Brodley. Adressing The Selective Superiority Problem: Automatic Algorithm/Model Class Selection. 10th International Machine Learning Conference (ICML'93). Amherst (MA USA, 1993) 17-24. |
|
bib |
Shrink | Shrink-C | D. Kibler, D.W. Aha. Learning Representative Exemplars Of Concepts: An Initial Case Study. 4th International Workshop on Machine Learning (ML'87 ). Irvine (CA USA, 1987) 24-30. |
| bib |
Minimal Consistent Set | MCS-C | B.V. Dasarathy. Minimal Consistent Set (MCS) Identification for Optimal Nearest Neighbor Decision Systems Design. IEEE Transactions on Systems, Man and Cybernetics 24:3 (1994) 511-517. |
|
bib |
Random Mutation Hill Climbing | RMHC-C | D.B. Skalak. Prototype and Feature Selection by Sampling and Random Mutation Hill Climbing Algorithms. 11th International Conference on Machine Learning (ML'94). New Brunswick (NJ USA, 1994) 293-301. |
|
bib |
Noise Removing Minimal Consistent Set | NRMCS-C | X.-Z. Wang, B. Wu, Y.-L. He, X.-H. Pei. NRMCS: Noise removing based on the MCS. 7th International Conference on Machine Learning and Cybernetics (ICMLA08). La Jolla Village (USA, 2008) 89-93. |
|
bib |
Class Conditional Instance Selection | CCIS-C | E. Marchiori. Class Conditional Nearest Neighbor for Large Margin Instance Selection. IEEE Transactions on Pattern Analysis and Machine Intelligence 32:2 (2010) 364-370. |
|
bib |
Mutual Neighborhood Value Condensed Nearest Neighbor | MNV-C | K. Chidananda-Gowda, G. Krishna. The Condensed Nearest Neighbor Rule Using Concept of Mutual Nearest Neighborhood. IEEE Transactions on Information Theory 25:4 (1979) 488-490. |
|
bib |
Encoding Length Explore | Explore-C | R.M. Cameron-Jones. Instance selection by encoding length heuristic with random mutation hill climbing. 8th Australian Joint Conference on Artificial Intelligence (AJCAI-95). (Australia, 1995) 99-106. |
| bib |
Prototipe Selection based on Gabriel Graphs | GG-C | J.S. Sánchez, F. Pla, F.J. Ferri. Prototype selection for the nearest neighbor rule through proximity graphs. Pattern Recognition Letters 18 (1997) 507-513. |
|
bib |
Prototipe Selection based on Relative Neighbourhood Graphs | RNG-C | J.S. Sánchez, F. Pla, F.J. Ferri. Prototype selection for the nearest neighbor rule through proximity graphs. Pattern Recognition Letters 18 (1997) 507-513. |
|
bib |
Nearest Centroid Neighbourhood Edition | NCNEdit-C | J.S. Sánchez, R. Barandela, A.I. Márques, R. Alejo, J. Badenas. Analysis of new techniques to obtain quality training sets. Pattern Recognition Letters 24 (2003) 1015-1022. |
|
bib |
Tabu Search for Instance Selection | ZhangTS-C | H. Zhang, G. Sun. Optimal reference subset selection for nearest neighbor classification by tabu search. Pattern Recognition 35 (2002) 1481-1490. |
|
bib |
Prototipe Selection by Relative Certainty Gain | PSRCG-C | M. Sebban, R. Nock, S. Lallich. Stopping Criterion for Boosting-Based Data Reduction Techniques: from Binary to Multiclass Problems. Journal of Machine Learning Research 3 (2002) 863-885. |
|
bib |
C-Pruner | CPruner-C | K.P Zhao, S.G. Zhou, J.H. Guan, A.Y. Zhou. C-Pruner: An improved instance prunning algorithm. Second International Conference on Machine Learning and Cybernetics (ICMLC'03). Xian (China, 2003) 94-99. |
|
bib |
Pattern by Ordered Projections | POP-C | J.C. Riquelme, J.S. Aguilar-Ruiz, M. Toro. Finding representative patterns with ordered projections. Pattern Recognition 36 (2003) 1009-1018. |
|
bib |
Reconsistent | Reconsistent-C | M.T. Lozano, J.S. Sánchez, F. Pla. Using the geometrical distribution of prototypes for training set condesing. 10th Conference of the Spanish Association for Artificial Intelligence (CAEPIA03). LNCS 3040, Springer 2003, Malaga (Spain, 2003) 618-627. |
|
bib |
Edited NRBF | ENRBF-C | M. Grochowski, N. Jankowski. Comparison of instance selection algorithms I. Algorithms survey. VII International Conference on Artificial Intelligence and Soft Computing (ICAISC'04). LNCS 3070, Springer 2004, Zakopane (Poland, 2004) 598-603. |
|
bib |
Modified Selective Subset | MSS-C | R. Barandela, F.J. Ferri, J.S. Sánchez. Decision boundary preserving prototype selection for nearest neighbor classification. International Journal of Pattern Recognition and Artificial Intelligence 19:6 (2005) 787-806. |
|
bib |
Edited Nearest Neighbor with Estimation of Probabilities Threshold | ENNTh-C | F. Vazquez, J.S. Sánchez, F. Pla. A stochastic approach to Wilson's editing algorithm. 2nd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA05). LNCS 3523, Springer 2005, Estoril (Portugal, 2005) 35-42. |
|
bib |
Support Vector based Prototype Selection | SVBPS-C | Y. Li, Z. Hu, Y. Cai, W. Zhang. Support vector vased prototype selection method for nearest neighbor rules. I International conference on advances in natural computation (ICNC05). LNCS 3610, Springer 2005, Changsha (Chine, 2005) 528-535. |
|
bib |
Backward Sequential Edition | BSE-C | J.A. Olvera-López, J.F. Martínez-Trinidad, J.A. Carrasco-Ochoa. Edition Schemes Based on BSE. 10th Iberoamerican Congress on Pattern Recognition (CIARP2004). LNCS 3773, Springer 2005, La Havana (Cuba, 2005) 360-367. |
|
bib |
Fast Condensed Nearest Neighbor | FCNN-C | F. Angiulli. Fast nearest neighbor condensation for large data sets classification. IEEE Transactions on Knowledge and Data Engineering 19:11 (2007) 1450-1464. |
|
bib |
Hit-Miss Network Iterative Editing | HMNEI-C | E. Marchiori. Hit Miss Networks with Applications to Instance Selection. Journal of Machine Learning Research 9 (2008) 997-1017. |
|
bib |
Generalized Condensed Nearest Neighbor | GCNN-C | F. Chang, C.C. Lin, C.-J. Lu. Adaptive Prototype Learning Algorithms: Theoretical and Experimental Studies. Journal of Machine Learning Research 7 (2006) 2125-2148. |
|
bib |
Improved KNN Condensation | IKNN-C | Y. Wu, K. Ianakiev, V. Govindaraju. Improved k-nearest neighbor classification. Pattern Recognition 35:10 (2002) 2311-2318. |
|
bib |
Template Reduction for KNN | TRKNN-C | H.A. Fayed, A.F. Atiya. A novel template reduction approach for the K-nearest neighbor method. IEEE Transactions on Neural Networks 20:5 (2009) 890-896. |
|
bib |
EVOLUTIONARY PROTOTYPE SELECTION | Full Name | Short Name | Reference | CHC Adaptative Search for Instance Selection | CHC-C | J.R. Cano, F. Herrera, M. Lozano. Using Evolutionary Algorithms As Instance Selection For Data Reduction In KDD: An Experimental Study. IEEE Transactions on Evolutionary Computation 7:6 (2003) 561-575. |
|
bib |
Generational Genetic Algorithm for Instance Selection | GGA-C | J.R. Cano, F. Herrera, M. Lozano. Using Evolutionary Algorithms As Instance Selection For Data Reduction In KDD: An Experimental Study. IEEE Transactions on Evolutionary Computation 7:6 (2003) 561-575. |
|
bib |
Steady-State Genetic Algorithm for Instance Selection | SGA-C | J.R. Cano, F. Herrera, M. Lozano. Using Evolutionary Algorithms As Instance Selection For Data Reduction In KDD: An Experimental Study. IEEE Transactions on Evolutionary Computation 7:6 (2003) 561-575. |
|
bib |
Cooperative Coevolutionary Instance Selection | CoCoIS-C | N. García-Pedrajas, J.A. Romero del Castillo, D. Ortiz-Boyer. A cooperative coevolutionary algorithm for instance selection for instance-based learning. Machine Learning 78:3 (2010) 381-420. |
|
bib |
Population-Based Incremental Learning | PBIL-C | J.R. Cano, F. Herrera, M. Lozano. Using Evolutionary Algorithms As Instance Selection For Data Reduction In KDD: An Experimental Study. IEEE Transactions on Evolutionary Computation 7:6 (2003) 561-575. |
|
bib |
Intelligent Genetic Algorithm for Edition | IGA-C | S.Y. Ho, C.C. Liu, S. Liu. Design of an optimal nearest neighbor classifier using an intelligent genetic algorithm. Pattern Recognition Letters 23 (2002) 1495-1503. |
|
bib |
Genetic Algorithm for Editing k-NN with MSE estimation, clustered crossover and fast smart mutation | GA_MSE_CC_FSM-C | R. Gil-Pita, X. Yao. Using a Genetic Algorithm for Editing k-Nearest Neighbor Classifiers. 8th International Conference on Intelligent Data Engineering and Automated Learning (IDEAL07). LNCS 4881, Springer 2007, Daejeon (Korea, 2007) 1141-1150. |
|
bib |
Steady-State Memetic Algorithm for Instance Selection | SSMA-C | S. García, J.R. Cano, F. Herrera. A Memetic Algorithm for Evolutionary Prototype Selection: A Scaling Up Approach. Pattern Recognition 41:8 (2008) 2693-2709. |
|
bib |
Coevolution of Instance selection and Weighting schemes for Nearest Neighbor classifiers | CIW_NN-C | J. Derrac, I. Triguero, S. García, F. Herrera. Integrating Instance Selection, Instance Weighting and Feature Weighting for Nearest Neighbor Classifiers by Co-evolutionary Algorithms. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 42:5 (2012) 1383-1397. |
|
bib |
Evolutionary Feature Selection for fuzzy Rough set based Prototype Selection | EFS_RPS-C | J. Derrac, N. Verbiest, S. García, C. Cornelis, F. Herrera. On the use of Evolutionary Feature Selection for Improving Fuzzy Rough Set Based Prototype Selection. Soft Computing 17:2 (2013) 223-238. |
|
bib |
Evolutionary Instance Selection enhanced by Rough set based Feature Selection | EIS_RFS-C | J. Derrac, C. Cornelis, S. García, F. Herrera. Enhancing Evolutionary Instance Selection Algorithms by means of Fuzzy Rough Set based Feature Selection. Information Sciences 186:1 (2012) 73-92. |
|
bib |
Instance and Feature Selection based on Coopertive Co-evolution | IFS_COCO-C | J. Derrac, S. García, F. Herrera. IFS-CoCo: Instance and Feature Selection based on Cooperative Coevolution with Nearest Neighbor Rule. Pattern Recognition 43:6 (2010) 2082-2105. |
|
bib |
FUZZY INSTANCE BASED LEARNING | Full Name | Short Name | Reference | Condensed Fuzzy K-Nearest Neighbors classifier | CFKNN-C | J.-H. Zhai, N. Li, M.-Y. Zhai. The condensed fuzzy k-nearest neighbor rule based on sample fuzzy entropy. Proceedings of the 2011 International Conference on Machine Learning and Cybernetics (ICMLC'2011). Guilin (China, 2011) 282-286. |
|
bib |
Dempster-Shafer theory based K-Nearest Neighbors classifier | D_SKNN-C | T. Denoeux. A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Transactions on Systems, Man, and Cybernetics 25:5 (1995) 804-813. |
|
bib |
Fuzzy C-Means K-Nearest Neighbors classifier | FCMKNN-C | J. Bedzek, S.K. Chuah, D. Leep. Generalized k-nearest neighbor rules. Fuzzy Sets and Systems 18:3 (1986) 237-256. |
|
bib |
Fuzzy Edited K-Nearest Neighbors classifier | FENN-C | J. Bedzek, S.K. Chuah, D. Leep. Generalized k-nearest neighbor rules. Fuzzy Sets and Systems 18:3 (1986) 237-256. |
|
bib |
Fuzzy Rough K-Nearest Neighbors Approach | FRKNNA-C | H. Bian, L. Mazlack. Fuzzy-rough nearest neighbor classification approach. Proceedings of the 22th International Conference of the North American Fuzzy Information Processing Society (NAFIPS'03). Chicago (Illinois USA, 2003) 500-505. |
|
bib |
Fuzzy-Rough Nearest Neighbor algorithm | FRNN-C | M. Sarkar. Fuzzy-rough nearest neighbor algorithms in classification. Fuzzy Sets and Systems 158:19 (2007) 2134-2152. |
|
bib |
Fuzzy-Rough Nearest Neighbor classifier - Fuzzy Rough Sets | FRNN_FRS-C | R. Jensen, C. Cornelis. Fuzzy-rough nearest neighbour classification. In:
A. Skowron, J.F. Peters, C.-C. Chan, J.W. Grzymala-Busse, W. Ziarko (Eds.) Transactions on Rough Sets XIII, 2011, 56-72. |
|
bib |
Fuzzy-Rough Nearest Neighbor classifier - Vaguely Quantified Rough Sets | FRNN_VQRS-C | R. Jensen, C. Cornelis. Fuzzy-rough nearest neighbour classification. In:
A. Skowron, J.F. Peters, C.-C. Chan, J.W. Grzymala-Busse, W. Ziarko (Eds.) Transactions on Rough Sets XIII, 2011, 56-72. |
|
bib |
Fuzzy K-Nearest Neighbors classifier | FuzzyKNN-C | J.M. Keller, M.R. Gray, J.A. Givens. A fuzzy k-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics 15:4 (1985) 580-585. |
|
bib |
Fuzzy Nearest Prototype classifier | FuzzyNPC-C | J.M. Keller, M.R. Gray, J.A. Givens. A fuzzy k-nearest neighbor algorithm. IEEE Transactions on Systems, Man, and Cybernetics 15:4 (1985) 580-585. |
|
bib |
Genetic Algorithm for Fuzzy K-Nearest Neighbors classifier | GAFuzzyKNN-C | X. Hu, C. Xie. Improving fuzzy k-nn by using genetic algorithm. Journal of Computational Information Systems 1:2 (2005) 203-213. |
| bib |
Intuitionistic Fuzzy K-Nearest Neighbors classifier | IF_KNN-C | L.I. Kuncheva. An intuitionistic fuzzy k-nearest neighbors rule. Notes on Intuitionistic Fuzzy Sets 1:1 (1995) 56-60. |
|
bib |
Intuitionistic Fuzzy Sets K-Nearest Neighbors classifier | IFSKNN-C | S. Hadjitodorov. An intuitionistic fuzzy sets application to the k-nn method. Notes on Intuitionistic Fuzzy Sets 1:1 (1995) 66-69. |
|
bib |
Intuitionistic Fuzzy Version of K-Nearest Neighbors classifier | IFV-NP-C | S. Hadjitodorov. An intuitionistic fuzzy version of the nearest prototype classification method, based on a moving-of-pattern procedure. International Journal of General Systems 30:2 (2001) 155-165. |
|
bib |
Interval Type-2 Fuzzy K-Nearest Neighbors classifier | IT2FKNN-C | F.C.-H. Rhee, C. Hwang. An interval type-2 fuzzy k-nearest neighbor. Proceedings of the 12th IEEE International Conference on Fuzzy Systems (FUZZ'03). St Louis (Missouri USA, 2003) 802-807. |
|
bib |
Jozwik Fuzzy K-Nearest Neighbor algorithm | JFKNN-C | A. Jowik. A learning scheme for a fuzzy k-nn rule. Pattern Recoginiton Letters 1:5-6 (1983) 287-289. |
|
bib |
Pruned Fuzzy K-Nearest Neighbors classifier | PFKNN-C | M. Arif, M.U. Akram, F.A. Afsar, F.A.A. Minhas. Pruned fuzzy k-nearest neighbor classifier for beat classification. Journal of Biomedical Science and Engineering 3 (2010) 380-389. |
|
bib |
Intuitionistic Fuzzy Version of K-Nearest Neighbors classifier | IFV_NP-C | S. Hadjitodorov. An intuitionistic fuzzy version of the nearest prototype classification method, based on a moving-of-pattern procedure. International Journal of General Systems 30:2 (2001) 155-165. |
|
bib |
Possibilistic instance-based learning | PosIBL-C | E. Hullermeier. Possibilistic instance-based learning. Artificial Intelligence 148 (2003) 335-383. |
|
bib |
Variance Weighted Fuzzy K-Nearest Neighbors | VWFuzzyKNN-C | J.H. Han, Y.K. Kim. A fuzzy k-nn algorithm using weights from the variance of membership values. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE CVPR'99). (1999) 394-399. |
|
bib |
PROTOTYPE GENERATION | Full Name | Short Name | Reference | Prototype Nearest Neighbor | PNN-C | C-L. Chang. Finding Prototypes For Nearest Neighbor Classifiers. IEEE Transactions on Computers 23:11 (1974) 1179-1184. |
|
bib |
Learning Vector Quantization 1 | LVQ1-C | T. Kohonen. The Self-Organizative Map. Proceedings of the IEEE 78:9 (1990) 1464-1480. |
|
bib |
Learning Vector Quantization 2 | LVQ2-C | T. Kohonen. The Self-Organizative Map. Proceedings of the IEEE 78:9 (1990) 1464-1480. |
|
bib |
Learning Vector Quantization 2.1 | LVQ2_1-C | T. Kohonen. The Self-Organizative Map. Proceedings of the IEEE 78:9 (1990) 1464-1480. |
|
bib |
Learning Vector Quantization 3 | LVQ3-C | T. Kohonen. The Self-Organizative Map. Proceedings of the IEEE 78:9 (1990) 1464-1480. |
|
bib |
Generalized Editing using Nearest Neighbor | GENN-C | J. Koplowitz, T.A. Brown. On the relation of performance to editing in nearest neighbor rules. Pattern Recognition 13 (1981) 251-255. |
|
bib |
Decision Surface Mapping | DSM-C | S. Geva, J. Site. Adaptive nearest neighbor pattern classifier. IEEE Transactions on Neural Networks 2:2 (1991) 318-322. |
|
bib |
Vector Quantization | VQ-C | Q. Xie, C.A. Laszlo. Vector quantization technique for nonparametric classifier design. IEEE Transactions on Pattern Analysis and Machine Intelligence 15:12 (1993) 1326-1330. |
|
bib |
Chen Algorithm | Chen-C | C.H. Chen, A. Józwik. A sample set condensation algorithm for the class sensitive artificial neural network. Pattern Recognition Letters 17 (1996) 819-823. |
|
bib |
Bootstrap Technique for Nearest Neighbor | BTS3-C | Y. Hamamoto, S. Uchimura, S. Tomita. A bootstrap technique for nearest neighbor classifier design. IEEE Transactions on Pattern Analysis and Machine Intelligence 19:1 (1997) 73-79. |
|
bib |
MSE | MSE-C | C. Decaestecker. Finding prototypes for nearest neighbour classification by means of gradient descent and deterministic annealing. Pattern Recognition 30:2 (1997) 281-288. |
|
bib |
Learning Vector Quantization with Training Counter | LVQTC-C | R. Odorico. Learning vector quantization with training count (LVQTC). Neural Networks 10:6 (1997) 1083-1088. |
|
bib |
Modified Chang's Algorithm | MCA-C | J.C. Bezdek, T.R. Reichherzer, G.S. Lim, Y. Attikiouzel. Multiple prototype classifier design. IEEE Transactions on Systems, Man and Cybernetics C 28:1 (1998) 67-69. |
|
bib |
Generalized Modified Chang's Algorithm | GMCA-C | R.A. Mollineda, F.J. Ferri, E. Vidal. A merge-based condensing strategy for multiple prototype classifiers. IEEE Transactions on Systems, Man and Cybernetics B 32:5 (2002) 662-668. |
|
bib |
Integrated Concept Prototype Learner | ICPL-C | W. Lam, C.K. Keung, D. Liu. Discovering useful concept prototypes for classification based on filtering and abstraction. IEEE Transactions on Pattern Analysis and Machine Intelligence 14:8 (2002) 1075-1090. |
|
bib |
Depuration Algorithm | Depur-C | J.S. Sánchez, R. Barandela, A.I. Márques, R. Alejo, J. Badenas. Analysis of new techniques to obtain quaylity training sets. Pattern Recognition Letters 24 (2003) 1015-1022. |
|
bib |
Hybrid LVQ3 algorithm | HYB-C | S.-W. Kim, A. Oomenn. A brief taxonomy and ranking of creative prototype reduction schemes. Pattern Analysis and Applications 6 (2003) 232-244. |
|
bib |
High training set size reduction by space partitioning and prototype abstraction | RSP-C | J.S. Sánchez. High training set size reduction by space partitioning and prototype abstraction. Pattern Recognition 37 (2004) 1561-1564. |
|
bib |
Evolutionary Nearest Prototype Classifier | ENPC-C | F. Fernández, P. Isasi. Evolutionary design of nearest prototype classifiers. Journal of Heuristics 10:4 (2004) 431-454. |
|
bib |
Adaptive Vector Quantization | AVQ-C | C.-W. Yen, C.-N. Young, M.L. Nagurka. A vector quantization method for nearest neighbor classifier design. Pattern Recognition Letters 25 (2004) 725-731. |
|
bib |
Learning Vector Quantization with pruning | LVQPRU-C | J. Li, M.T. Manry, C. Yu, D.R. Wilson. Prototype classifier design with pruning. International Journal on Artificial Intelligence Tools 14:1-2 (2005) 261-280. |
|
bib |
Pairwise Opposite Class Nearest Neighbor | POC-NN-C | T. Raicharoen, C. Lursinsap. A divide-and-conquer approach to the pairwise opposite class-nearest neighbor (POC-NN) algorithm. Pattern Recoginiton Letters 26:10 (2005) 1554-1567. |
|
bib |
Adaptive Condensing Algorithm Based on Mixtures of Gaussians | MixtGauss-C | M. Lozano, J.M. Sotoca, J.S. Sánchez, F. Pla, E. Pekalska, R.P.W. Duin. Experimental study on prototype optimisation algorithms for prototype-based classification in vector spaces. Pattern Recognition 39:10 (2006) 1827-1838. |
|
bib |
Self-Generating Prototypes | SGP-C | H.A. Fayed, S.R. Hashem, A.F. Atiya. Self-generating prototypes for pattern classification. Pattern Recognition 40:5 (2007) 1498-1509. |
|
bib |
Adaptive Michigan PSO | AMPSO-C | A. Cervantes, I. Galván, P. Isasi. An Adaptive Michigan Approach PSO for Nearest Prototype Classification. 2nd International Work-Conference on the Interplay Between Natural and Artificial Computation (IWINAC07). LNCS 4528, Springer 2007, La Manga del Mar Menor (Spain, 2007) 287-296. |
|
bib |
Prototype Selection Clonal Selection Algorithm | PSCSA-C | U. Garain. Prototype reduction using an artificial immune model. Pattern Analysis and Applications 11:3-4 (2008) 353-363. |
|
bib |
Particle Swarm Optimization | PSO-C | L. Nanni, A. Lumini. Particle swarm optimization for prototype reduction. Neurocomputing 72:4-6 (2009) 1092-1097. |
|
bib |
Nearest subclass classifier | NSC-C | C.J. Veenman, M.J.T. Reinders. The nearest subclass classifier: A compromise between the nearest mean and nearest neighbor classifier. IEEE Transactions on Pattern Analysis and Machine Intelligence 27:9 (2005) 1417-1429. |
|
bib |
Differential Evolution | DE-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Scale Factor Local Search in Differential Evolution | SFLSDE-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Self-Adaptive Differential Evolution | SADE-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Adaptive Differential Evolution with Optional External Archive | JADE-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Differential Evolution using a Neighborhood-Based Mutation Operator | DEGL-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Hybrid Iterative Case Filtering + Learning Vector Quantization 3 | ICFLVQ3-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Hybrid Iterative Case Filtering + Particle Swarm Optimization | ICFPSO-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Hybrid Iterative Case Filtering + Scale Factor Local Search in Differential Evolution | ICFSFLSDE-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Hybrid Steady-State Memetic Algorithm for Instance Selection + Learning Vector Quantization 3 | SSMALVQ3-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Hybrid Steady-State Memetic Algorithm for Instance Selection + Particle Swarm Optimization | SSMAPSO-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Hybrid Steady-State Memetic Algorithm for Instance Selection + Scale Factor Local Search in Differential Evolution | SSMASFLSDE-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Hybrid Decremental Reduction Optimization Procedure 3 + Learning Vector Quantization 3 | DROP3LVQ3-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Hybrid Decremental Reduction Optimization Procedure 3 + Particle Swarm Optimization | DROP3PSO-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Hybrid Decremental Reduction Optimization Procedure 3 + Scale Factor Local Search in Differential Evolution | DROP3SFLSDE-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
Iterative Prototype Adjustment based on Differential Evolution | IPLDE-C | I. Triguero, S. García, F. Herrera. IPADE: Iterative Prototype Adjustment for Nearest Neighbor Classification. IEEE Transactions on Neural Networks 21:12 (2010) 1984-1990. |
|
bib |
Opposition-Based Differential Evolution | OBDE-C | I. Triguero, S. García, F. Herrera. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 44:4 (2011) 901-916. |
|
bib |
R.S. Rahnamayan, H.R. Tizhoosh, M.M.A. Salama. Opposition-based differential evolution. IEEE Transactions on Evolutionary Computation 12:1 (2008) 64-79. |
|
bib |
LAZY LEARNING | Full Name | Short Name | Reference | K-Nearest Neighbors Classifier | KNN-C | T.M. Cover, P.E. Hart. Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory 13 (1967) 21-27. |
|
bib |
Adaptive KNN Classifier | KNNAdaptive-C | J. Wang, P. Neskovic, L.N. Cooper. Improving nearest neighbor rule with a simple adaptative distance measure.. Pattern Recognition Letters 28 (2007) 207-213. |
|
bib |
K * Classifier | KStar-C | J.G. Cleary, L.E. Trigg. K*: An instance-based learner using an entropic distance measure. Proceedings of the 12th International Conference on Machine Learning. (1995) 108-114. |
|
bib |
Lazy Decision Tree | LazyDT-C | J.H. Friedman, R. Kohavi, Y. Tun. Lazy decision trees. Proceedings of the Thirteenth National Conference on Artificial Intellgence. (1996) 717-724. |
|
bib |
Nearest Mean classifier | NM-C | T. Hastie, R. Tibshirani, J. Friedman. The elements of statistical learning: Data mining, inference, and prediction. Springer-Verlag, 2001. ISBN: 0-387-95284-5. |
| bib |
Cam weighted distance Nearest Neighbor Classifier | CamNN-C | C. Zhou, Y. Chen. Improving nearest neighbor classification with cam weighted distance. Pattern Recognition 39 (2006) 635-645. |
|
bib |
Center Nearest Neighbor Classifier | CenterNN | Q. Gao, Z. Wang. Center-based nearest neighbor classifier. Pattern Recognition 40 (2007) 346-349. |
|
bib |
K Symmetrical Nearest Neighbor Classifier | KSNN-C | R. Nock, M. Sebban, D. Bernard. A simple locally adaptive nearest neighbor rule with application to pollution forecasting. International Journal of Pattern Recognition and Artificial Intelligence 17 (2003) 1369-1382. |
|
bib |
Decision making by Emerging Patterns Classifier | Deeps-C | J. Li, G. Dong, K. Ramamohanarao, L. Wong. DeEPs: A New Instance-Based Lazy Discovery and Classification System. Machine Learning 54 (2004) 99-124. |
|
bib |
Decision making by Emerging Patterns Classifier + Nearest Neighbor Classifier | DeepsNN-C | J. Li, G. Dong, K. Ramamohanarao, L. Wong. DeEPs: A New Instance-Based Lazy Discovery and Classification System. Machine Learning 54 (2004) 99-124. |
|
bib |
Lazy Bayesian Rules classifier | LBR-C | Z. Zheng, G.I. Webb. Lazy Learning of Bayesian Rules. Machine Learning 41 (2000) 53-87. |
|
bib |
Integrated Decremental Instance Based Learning | IDIBL | D.R. Wilson, T.R. Martinez. An Integrated Instance-Based Learning Algorithm. Computational Intelligence 16:1 (2000) 1-28. |
|
bib |
Prototype weigthed classifier | PW-C | R. Paredes, E. Vidal. Learning weighted metrics to minimize nearest-neighbor classification error. IEEE Transactions on Pattern Analysis and Machine Intelligence 28:7 (2006) 1100-1110. |
|
bib |
Class weigthed classifier | CW-C | R. Paredes, E. Vidal. Learning weighted metrics to minimize nearest-neighbor classification error. IEEE Transactions on Pattern Analysis and Machine Intelligence 28:7 (2006) 1100-1110. |
|
bib |
Class and Prototype weigthed classifier | CPW-C | R. Paredes, E. Vidal. Learning weighted metrics to minimize nearest-neighbor classification error. IEEE Transactions on Pattern Analysis and Machine Intelligence 28:7 (2006) 1100-1110. |
|
bib |
NEURAL NETWORKS FOR CLASSIFICATION | Full Name | Short Name | Reference | Radial Basis Function Neural Network for Classification Problems | RBFN-C | D.S. Broomhead, D. Lowe. Multivariable Functional Interpolation and Adaptive Networks. Complex Systems 11 (1988) 321-355. |
|
bib |
Incremental Radial Basis Function Neural Network for Classification Problems | Incr-RBFN-C | J. Plat. A Resource Allocating Network for Function Interpolation. Neural Computation 3:2 (1991) 213-225. |
|
bib |
Self Optimizing Neural Networks | SONN-C | I.G. Smotroff, D.H. Friedman, D. Connolly. Self Organizing Modular Neural Networks. Seattle International Joint Conference on Neural Networks (IJCNN'91). Seattle (USA, 1991) 187-192. |
|
bib |
Multilayer Perceptron with Conjugate Gradient Based Training | MLP-CG-C | F. Moller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6 (1990) 525-533. |
|
bib |
B. Widrow, M.A. Lehr. 30 Years of Adaptive Neural Networks: Perceptron, Madaline, and Backpropagation. Proceedings of the IEEE 78:9 (1990) 1415-1442. |
|
bib |
Decremental Radial Basis Function Neural Network for Classification Problems | Decr-RBFN-C | D.S. Broomhead, D. Lowe. Multivariable Functional Interpolation and Adaptive Networks. Complex Systems 11 (1988) 321-355. |
|
bib |
Ensemble Neural Network for Classification Problems | Ensemble-C | N. García-Pedrajas, C. García-Osorio, C. Fyfe. Nonlinear Boosting Projections for Ensemble Construction. Journal of Machine Learning Research 8 (2007) 1-33. |
|
bib |
Learning Vector Quantization for Classification Problems | LVQ-C | J.C. Bezdek, L.I. Kuncheva. Nearest prototype classifier designs: An experimental study. International Journal of Intelligent Systems 16:12 (2001) 1445-1473. |
|
bib |
Evolutionary Radial Basis Function Neural Networks | EvRBFN-C | V.M. Rivas, J.J. Merelo, P.A. Castillo, M.G. Arenas, J.G. Castellano. Evolving RBF neural networks for time-series forecasting with EvRBF. Information Sciences 165:3-4 (2004) 207-220. |
|
bib |
Improved Resilient backpropagation Plus | iRProp+-C | C. Igel, M. Husken. Empirical evaluation of the improved Rprop learning algorithm. Neurocomputing 50 (2003) 105-123. |
|
bib |
L.R. Leerink, C.L. Giles, B.G. Horne, M.A. Jabri. Learning with Product Units. In:
D. Touretzky, T. Leen (Eds.) Advances in Neural Information Processing Systems, 1995, 537-544. |
|
bib |
Multilayer Perceptron with Backpropagation Training | MLP-BP-C | R. Rojas, J. Feldman. Neural Networks: A Systematic Introduction . Springer-Verlag, Berlin, New-York, 1996. ISBN: 978-3540605058. |
| bib |
EVOLUTIONARY NEURAL NETWORKS FOR CLASSIFICATION | Full Name | Short Name | Reference | Neural Network Evolutionary Programming for Classification | NNEP-C | F.J. Martínez-Estudillo, C. Hervás-Martínez, P.A. Gutiérrez, A.C. Martínez-Estudillo. Evolutionary Product-Unit Neural Networks Classifiers. Neurocomputing 72:1-3 (2008) 548-561. |
|
bib |
Genetic Algorithm with Neural Network | GANN-C | G.F. Miller, P.M. Todd, S.U. Hedge. Designing Neural Networks Using Genetic Algorithms. 3rd International Conference on Genetic Algorithm and Their Applications. George Mason University (USA, 1989) 379-384. |
| bib |
X. Yao. Evolving Artificial Neural Networks. Proceedings of the IEEE 87:9 (1999) 1423-1447. |
|
bib |
SUPPORT VECTOR MACHINES FOR CLASSIFICATION | Full Name | Short Name | Reference | C-SVM | C_SVM-C | C. Cortes, V. Vapnik. Support vector networks. Machine Learning 20 (1995) 273-297. |
|
bib |
NU-SVM | NU_SVM-C | B. Scholkopf, A.J. Smola, R. Williamson, P.L. Bartlett. New support vector algorithms. Neural Computation 12 (2000) 1207-1245. |
|
bib |
Sequential Minimal Optimization | SMO-C | J. Platt. Fast Training of Support Vector Machines using Sequential Minimal Optimization. In:
B. Schoelkopf, C. Burges, A. Smola (Eds.) Advances in Kernel Methods - Support Vector Learning, 1998, 185-208. |
|
bib |
S.S. Keerthi, S.K. Shevade, C. Bhattacharyya, K.R.K. Murthy. Improvements to Platt's SMO Algorithm for SVM Classifier Design. Neural Computation 13:3 (2001) 637-649. |
|
bib |
T. Hastie, R. Tibshirani. Classification by Pairwise Coupling. In:
M.I. Jordan, M.J. Kearns, S.A. Solla (Eds.) Advances in Neural Information Processing Systems, 1998, 451-471. |
|
bib |
STATISTICAL CLASSIFIERS | Full Name | Short Name | Reference | Naïve-Bayes | NB-C | P. Domingos, M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29 (1997) 103-137. |
|
bib |
M.E. Maron. Automatic Indexing: An Experimental Inquiry. Journal of the ACM (JACM) 8:3 (1961) 404-417. |
|
bib |
Linear Discriminant Analysis | LDA-C | G.J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. John Wiley and Sons, 2004. |
| bib |
R.A. Fisher. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7 (1936) 179-188. |
|
bib |
J.H. Friedman. Regularized Discriminant Analysis. Journal of the American Statistical Association 84 (1989) 165-175. |
|
bib |
Kernel Classifier | Kernel-C | G.J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. John Wiley and Sons, 2004. |
| bib |
Least Mean Square Linear Classifier | LinearLMS-C | J.S. Rustagi. Optimization Techniques in Statistics. Academic Press, 1994. |
| bib |
Quadratic Discriminant Analysis | QDA-C | G.J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. John Wiley and Sons, 2004. |
| bib |
R.A. Fisher. The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics 7 (1936) 179-188. |
|
bib |
J.H. Friedman. Regularized Discriminant Analysis. Journal of the American Statistical Association 84 (1989) 165-175. |
|
bib |
Least Mean Square Quadratic classifier | PolQuadraticLMS-C | J.S. Rustagi. Optimization Techniques in Statistics. Academic Press, 1994. |
| bib |
Multinomial logistic regression model with a ridge estimator | Logistic-C | S. le Cessie, J.C. van Houwelingen. Ridge Estimators in Logistic Regression. Applied Statistics 41:1 (1992) 191-201. |
|
bib |
Particle Swarm Optimization - Linear Discriminant Analysis | PSOLDA-C | S.W. Lin, S.C. Chen. PSOLDA: A particle swarm optimization approach for enhancing classification accuracy rate of linear discriminant analysis. Applied Soft Computing 9 (2009) 1008-1015. |
|
bib |
Regression Algorithms
FUZZY RULE LEARNING FOR REGRESSION | Full Name | Short Name | Reference | Fuzzy and Random Sets Based Modeling | FRSBM-R | L. Sánchez. A Random Sets-Based Method for Identifying Fuzzy Models. Fuzzy Sets and Systems 98:3 (1998) 343-354. |
|
bib |
Fuzzy Rule Learning, Wang-Mendel Algorithm | WM-R | L.X. Wang, J.M. Mendel. Generating Fuzzy Rules by Learning from Examples. IEEE Transactions on Systems, Man and Cybernetics 22:6 (1992) 1414-1427. |
|
bib |
EVOLUTIONARY FUZZY RULE LEARNING FOR REGRESSION | Full Name | Short Name | Reference | Iterative Rule Learning of TSK Rules | TSK-IRL-R | O. Cordón, F. Herrera. A Two-Stage Evolutionary Process for Designing TSK Fuzzy Rule-Based Systems. IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics 29:6 (1999) 703-715. |
|
bib |
Iterative Rule Learning of Mamdani Rules - Small Constrained Approach | MOGUL-IRLSC-R | O. Cordón, F. Herrera. A Three-Stage Evolutionary Process for Learning Descriptive and Approximate Fuzzy Logic Controller Knowledge Bases from Examples. International Journal of Approximate Reasoning 17:4 (1997) 369-407. |
|
bib |
Fuzzy Learning based on Genetic Programming Grammar Operators | GFS-GPG-R | L. Sánchez, I. Couso, J.A. Corrales. Combining GP Operators with SA Search to Evolve Fuzzy Rule Based Classifiers. Information Sciences 136:1-4 (2001) 175-191. |
|
bib |
Iterative Rule Learning of Mamdani Rules - High Constrained Approach | MOGUL-IRLHC-R | O. Cordón, F. Herrera. Hybridizing Genetic Algorithms with Sharing Scheme and Evolution Strategies for Designing Approximate Fuzzy Rule-Based Systems. Fuzzy Sets and Systems 118:2 (2001) 235-255. |
|
bib |
Learning TSK-Fuzzy Models Based on MOGUL | MOGUL-TSK-R | R. Alcalá, J. Alcala-Fdez, J. Casillas, O. Cordón, F. Herrera. Local Identification of Prototypes for Genetic Learning of Accurate TSK Fuzzy Rule-Based Systems.. International Journal of Intelligent Systems 22:9 (2007) 909-941. |
|
bib |
Fuzzy Learning based on Genetic Programming Grammar Operators and Simulated Annealing | GFS-SP-R | L. Sánchez, I. Couso, J.A. Corrales. Combining GP Operators with SA Search to Evolve Fuzzy Rule Based Classifiers. Information Sciences 136:1-4 (2001) 175-191. |
|
bib |
Genetic Fuzzy Rule Learning, Thrift Algorithm | Thrift-R | P. Thrift. Fuzzy logic synthesis with genetic algorithms. Proceedings of the Fourth International Conference on Genetic Algorithms (ICGA91). San Diego (United States of America, 1991) 509-513. |
|
bib |
Genetic-Based Fuzzy Rule Base Construction and Membership Functions Tuning | GFS-RB-MF-R | A. Homaifar, E. McCormick. Simultaneous Design of Membership Functions and Rule Sets for Fuzzy Controllers Using Genetic Algorithms. IEEE Transactions on Fuzzy Systems 3:2 (1995) 129-139. |
|
bib |
O. Cordón, F. Herrera. A Three-Stage Evolutionary Process for Learning Descriptive and Approximate Fuzzy Logic Controller Knowledge Bases from Examples. International Journal of Approximate Reasoning 17:4 (1997) 369-407. |
|
bib |
Iterative Rule Learning of Descriptive Mamdani Rules based on MOGUL | MOGUL-IRL-R | O. Cordón, F. Herrera. A Three-Stage Evolutionary Process for Learning Descriptive and Approximate Fuzzy Logic Controller Knowledge Bases from Examples. International Journal of Approximate Reasoning 17:4 (1997) 369-407. |
|
bib |
Symbiotic-Evolution-based Fuzzy Controller design method | SEFC-R | C.F. Juang, J.Y. Lin, C.-T. Lin. Genetic reinforcement learning through symbiotic evolution for fuzzy controller design. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 30:2 (2000) 290-302. |
|
bib |
Pittsburgh Fuzzy Classifier System #1 | P_FCS1-R | B. Carse, T.C. Fogarty, A. Munro. Evolving fuzzy rule based controllers using genetic algorithms. Fuzzy Sets and Systems 80:3 (1996) 273-293. |
|
bib |
DECISION TREES FOR REGRESSION | Full Name | Short Name | Reference | M5 | M5-R | J.R. Quinlan. Learning with Continuous Classes. 5th Australian Joint Conference on Artificial Intelligence (AI92). (Singapore, 1992) 343-348. |
|
bib |
I. Wang, I.H. Witten. Induction of model trees for predicting continuous classes. 9th European Conference on Machine Learning. Prague (Czech Republic, 1997) 128-137. |
|
bib |
Classification and Regression Tree | CART-R | L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone. Classification and Regression Trees. Chapman and Hall (Wadsworth, Inc.), 1984. |
| bib |
M5Rules | M5Rules-R | J.R. Quinlan. Learning with Continuous Classes. Proceedings of the 5th Australian Joint Conference on Artificial Intelligence. (1992) 343-348. |
|
bib |
I. Wang, I.H. Witten. Induction of model trees for predicting continuous classes. Poster papers of the 9th European Conference on Machine Learning. Prague (Czech Republic, 1997) 128-137. |
|
bib |
G. Holmes, M. Hall, E. Frank. Generating Rule Sets from Model Trees. Proceedings of the 12th Australian Joint Conference on Artificial Intelligence: Advanced Topics in Artificial Intelligence. Springer-Verlag. Sydney (Australia, 1999) 1-12. |
|
bib |
EVOLUTIONARY POSTPROCESSING FRBS: SELECTION AND TUNING | Full Name | Short Name | Reference | Global Genetic Tuning of the Fuzzy Partition of Linguistic FRBSs | GFS-Ling-T | O. Cordón, F. Herrera. A Three-Stage Evolutionary Process for Learning Descriptive and Approximate Fuzzy Logic Controller Knowledge Bases from Examples. International Journal of Approximate Reasoning 17:4 (1997) 369-407. |
|
bib |
Approximative Genetic Tuning of FRBSs | GFS-Aprox-T | F. Herrera, M. Lozano, J.L. Verdegay. Tuning Fuzzy Logic Controllers by Genetic Algorithms. International Journal of Approximate Reasoning 12 (1995) 299-315. |
|
bib |
Genetic Selection of Linguistic Rule Bases | GFS-RS-T | O. Cordón, F. Herrera. A Three-Stage Evolutionary Process for Learning Descriptive and Approximate Fuzzy Logic Controller Knowledge Bases from Examples. International Journal of Approximate Reasoning 17:4 (1997) 369-407. |
|
bib |
H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka. Selecting Fuzzy If-Then Rules for Classification Problems Using Genetic Algorithms. IEEE Transactions on Fuzzy Systems 3:3 (1995) 260-270. |
|
bib |
Genetic Tuning of FRBSs Weights | GFS-Weight-T | R. Alcalá, O. Cordón, F. Herrera. Combining Rule Weight Learning and Rule Selection to Obtain Simpler and More Accurate Linguistic Fuzzy Models. In:
J. Lawry, J.G. Shanahan, A.L. Ralescu (Eds.) Modelling with Words, LNCS 2873, 2003, 44-63. |
|
bib |
Genetic Selection of rules and rules weight tuning of FRBSs | GFS-Weight-RS-T | R. Alcalá, O. Cordón, F. Herrera. Combining Rule Weight Learning and Rule Selection to Obtain Simpler and More Accurate Linguistic Fuzzy Models. In:
J. Lawry, J.G. Shanahan, A.L. Ralescu (Eds.) Modelling with Words, LNCS 2873, 2003, 44-63. |
|
bib |
Genetic-Based New Fuzzy Reasoning Model | GFS-GB-NFRM-T | D. Park, A. Kandel. Genetic-Based New Fuzzy Reasoning Model with Application to Fuzzy Control. IEEE Transactions on System, Man and Cybernetics, Part B: Cybernetics 24:1 (1994) 39-47. |
|
bib |
Local Genetic Lateral and Amplitude Tuning of FRBSs | GFS-LLA-T | R. Alcalá, J. Alcala-Fdez, M.J. Gacto, F. Herrera. Rule Base Reduction and Genetic Tuning of Fuzzy Systems based on the Linguistic 3-Tuples Representation. Soft Computing 11:5 (2007) 401-419. |
|
bib |
Local Genetic Lateral Tuning of FRBSs | GFS-LL-T | R. Alcalá, J. Alcala-Fdez, F. Herrera. A Proposal for the Genetic Lateral Tuning of Linguistic Fuzzy Systems and Its Interaction With Rule Selection. IEEE Transactions on Fuzzy Systems 15:4 (2007) 616-635. |
|
bib |
Local Genetic Lateral and Amplitude-Tuning with rule selection of FRBSs | GFS-LLARS-T | R. Alcalá, J. Alcala-Fdez, M.J. Gacto, F. Herrera. Rule Base Reduction and Genetic Tuning of Fuzzy Systems based on the Linguistic 3-Tuples Representation. Soft Computing 11:5 (2007) 401-419. |
|
bib |
Local Genetic Lateral Tuning with rule selection of FRBSs | GFS-LLRS-T | R. Alcalá, J. Alcala-Fdez, F. Herrera. A Proposal for the Genetic Lateral Tuning of Linguistic Fuzzy Systems and Its Interaction With Rule Selection. IEEE Transactions on Fuzzy Systems 15:4 (2007) 616-635. |
|
bib |
Global Genetic Lateral and Amplitude-Tuning of FRBSs | GFS-GLA-T | R. Alcalá, J. Alcala-Fdez, M.J. Gacto, F. Herrera. Rule Base Reduction and Genetic Tuning of Fuzzy Systems based on the Linguistic 3-Tuples Representation. Soft Computing 11:5 (2007) 401-419. |
|
bib |
Global Genetic Lateral Tuning of FRBSs | GFS-GL-T | R. Alcalá, J. Alcala-Fdez, F. Herrera. A Proposal for the Genetic Lateral Tuning of Linguistic Fuzzy Systems and Its Interaction With Rule Selection. IEEE Transactions on Fuzzy Systems 15:4 (2007) 616-635. |
|
bib |
Global Genetic Lateral and Amplitude-Tuning with rule selection of FRBSs | GFS-GLARS-T | R. Alcalá, J. Alcala-Fdez, M.J. Gacto, F. Herrera. Rule Base Reduction and Genetic Tuning of Fuzzy Systems based on the Linguistic 3-Tuples Representation. Soft Computing 11:5 (2007) 401-419. |
|
bib |
Global Genetic Lateral Tuning with rule selection of FRBSs | GFS-GLRS-TS | R. Alcalá, J. Alcala-Fdez, F. Herrera. A Proposal for the Genetic Lateral Tuning of Linguistic Fuzzy Systems and Its Interaction With Rule Selection. IEEE Transactions on Fuzzy Systems 15:4 (2007) 616-635. |
|
bib |
NEURAL NETWORKS FOR REGRESSION | Full Name | Short Name | Reference | Multilayer Perceptron with Conjugate Gradient Based Training | MLP-CG-R | F. Moller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6 (1990) 525-533. |
|
bib |
Radial Basis Function Neural Network | RBFN-R | D.S. Broomhead, D. Lowe. Multivariable Functional Interpolation and Adaptive Networks. Complex Systems 11 (1998) 321-355. |
|
bib |
Incremental Radial Basis Function Neural Network | Incr-RBFN-R | J. Plat. A Resource Allocating Network for Function Interpolation. Neural Computation 3:2 (1991) 213-225. |
|
bib |
Self Optimizing Neural Networks | SONN-R | I.G. Smotroff, D.H. Friedman, D. Connolly. Self Organizing Modular Neural Networks. Seattle International Joint Conference on Neural Networks (IJCNN'91). Seattle (USA, 1991) 187-192. |
|
bib |
Decremental Radial Basis Function Neural Network | Decr-RBFN-R | D.S. Broomhead, D. Lowe. Multivariable Functional Interpolation and Adaptive Networks. Complex Systems 11 (1988) 321-355. |
|
bib |
Multilayer Perceptron with Backpropagation Based Training | MLP-BP-R | R. Rojas, J. Feldman. Neural Networks: A Systematic Introduction . Springer-Verlag, Berlin, New-York, 1996. ISBN: 978-3540605058. |
| bib |
Improved Resilient backpropagation Plus | iRProp+-R | C. Igel, M. Husken. Empirical evaluation of the improved Rprop learning algorithm. Neurocomputing 50 (2003) 105-123. |
|
bib |
J.H. Wang, Y.W. Yu, J.H. Tsai. On the internal representations of product units. Neural Processing Letters 12:3 (2000) 247-254. |
|
bib |
Ensemble Neural Network for Regression Problems | Ensemble-R | N. García-Pedrajas, C. García-Osorio, C. Fyfe. Nonlinear Boosting Projections for Ensemble Construction. Journal of Machine Learning Research 8 (2007) 1-33. |
|
bib |
EVOLUTIONARY NEURAL NETWORKS FOR REGRESSION | Full Name | Short Name | Reference | Genetic Algorithm with Neural Network | GANN-R | G.F. Miller, P.M. Todd, S.U. Hedge. Designing Neural Networks Using Genetic Algorithms. 3rd International Conference on Genetic Algorithm and Their Applications. Fairfax (Virginia USA, 1989) 379-384. |
| bib |
X. Yao. Evolving Artificial Neural Networks. Proceedings of the IEEE 87:9 (1999) 1423-1447. |
|
bib |
Neural Network Evolutionary Programming | NNEP-R | A.C. Martínez-Estudillo, F.J. Martínez-Estudillo, C. Hervás-Martínez, N. García. Evolutionary Product Unit based Neural Networks for Regression. Neural Networks 19:4 (2006) 477-486. |
|
bib |
SUPPORT VECTOR MACHINES FOR REGRESSION | Full Name | Short Name | Reference | EPSILON-SVR | EPSILON_SVR-R | R.E. Fan, P.H. Chen, C.J. Lin. Working set selection using the second order information for training SVM. Journal of Machine Learning Research 6 (2005) 1889-1918. |
|
bib |
NU-SVR | NU_SVR-R | R.E. Fan, P.H. Chen, C.J. Lin. Working set selection using the second order information for training SVM. Journal of Machine Learning Research 6 (2005) 1889-1918. |
|
bib |
EVOLUTIONARY FUZZY SYMBOLIC REGRESSION | Full Name | Short Name | Reference | Symbolic Fuzzy Learning based on Genetic Programming Grammar Operators | GFS-GAP-Sym-R | L. Sánchez, I. Couso. Fuzzy Random Variables-Based Modeling with GA-P Algorithms. In:
B. Bouchon, R.R. Yager, L. Zadeh (Eds.) Information, Uncertainty and Fusion, 2000, 245-256. |
|
bib |
Symbolic Fuzzy Learning based on Genetic Programming Grammar Operators and Simulated Annealing | GFS-GSP-R | L. Sánchez, I. Couso. Fuzzy Random Variables-Based Modeling with GA-P Algorithms. In:
B. Bouchon, R.R. Yager, L. Zadeh (Eds.) Information, Uncertainty and Fusion, 2000, 245-256. |
|
bib |
L. Sánchez, I. Couso, J.A. Corrales. Combining GP Operators with SA Search to Evolve Fuzzy Rule Based Classifiers. Information Sciences 136:1-4 (2001) 175-191. |
|
bib |
Symbolic Fuzzy Learning based on Genetic Programming | GFS-GP-R | L. Sánchez, I. Couso. Fuzzy Random Variables-Based Modeling with GA-P Algorithms. In:
B. Bouchon, R.R. Yager, L. Zadeh (Eds.) Information, Uncertainty and Fusion, 2000, 245-256. |
|
bib |
Symbolic Fuzzy-Valued Data Learning based on Genetic Programming Grammar Operators and Simulated Annealing | GFS-SAP-Sym-R | L. Sánchez, I. Couso. Fuzzy Random Variables-Based Modeling with GA-P Algorithms. In:
B. Bouchon, R.R. Yager, L. Zadeh (Eds.) Information, Uncertainty and Fusion, 2000, 245-256. |
|
bib |
L. Sánchez, I. Couso, J.A. Corrales. Combining GP Operators with SA Search to Evolve Fuzzy Rule Based Classifiers. Information Sciences 136:1-4 (2001) 175-191. |
|
bib |
STATISTICAL REGRESSION | Full Name | Short Name | Reference | Least Mean Squares Linear Regression | LinearLMS-R | J.S. Rustagi. Optimization Techniques in Statistics. Academic Press, 1994. |
| bib |
Least Mean Squares Quadratic Regression | PolQuadraticLMS-R | J.S. Rustagi. Optimization Techniques in Statistics. Academic Press, 1994. |
| bib |
Imbalanced Classification
OVER-SAMPLING METHODS | Full Name | Short Name | Reference | Synthetic Minority Over-sampling TEchnique | SMOTE-I | N.V. Chawla, K.W. Bowyer, L.O. Hall, W.P. Kegelmeyer. SMOTE: Synthetic Minority Over-sampling TEchnique. Journal of Artificial Intelligence Research 16 (2002) 321-357. |
|
bib |
Synthetic Minority Over-sampling TEchnique + Edited Nearest Neighbor | SMOTE_ENN-I | G.E.A.P.A. Batista, R.C. Prati, M.C. Monard. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations 6:1 (2004) 20-29. |
|
bib |
Synthetic Minority Over-sampling TEchnique + Tomek's modification of Condensed Nearest Neighbor | SMOTE_TL-I | G.E.A.P.A. Batista, R.C. Prati, M.C. Monard. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations 6:1 (2004) 20-29. |
|
bib |
ADAptive SYNthetic Sampling | ADASYN-I | H. He, Y. Bai, E.A. Garcia, S. Li. ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning. 2008 International Joint Conference on Neural Networks (IJCNN08). Hong Kong (Hong Kong Special Administrative Region of the Peo, 2008) 1322-1328. |
|
bib |
Borderline-Synthetic Minority Over-sampling TEchnique | Borderline_SMOTE-I | H. Han, W.Y. Wang, B.H. Mao. Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. 2005 International Conference on Intelligent Computing (ICIC05). LNCS 3644, Springer 2005, Hefei (China, 2005) 878-887. |
|
bib |
Safe Level Synthetic Minority Over-sampling TEchnique | Safe_Level_SMOTE-I | C. Bunkhumpornpat, K. Sinapiromsaran, C. Lursinsap. Safe-level-SMOTE: Safe-level-synthetic minority over-sampling technique for handling the class imbalanced problem. Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD09). LNCS 5476, Springer 2009, Bangkok (Thailand, 2009) 475-482. |
|
bib |
Random over-sampling | ROS-I | G.E.A.P.A. Batista, R.C. Prati, M.C. Monard. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations 6:1 (2004) 20-29. |
|
bib |
Adjusting the Direction Of the synthetic Minority clasS examples | ADOMS-I | S. Tang, S. Chen. The Generation Mechanism of Synthetic Minority Class Examples. 5th Int. Conference on Information Technology and Applications in Biomedicine (ITAB 2008). Shenzhen (China, 2008) 444-447. |
|
bib |
Selective Preprocessing of Imbalanced Data | SPIDER-I | J. Stefanowski, S. Wilk. Selective pre-processing of imbalanced data for improving classification performance. 10th International Conference in Data Warehousing and Knowledge Discovery (DaWaK2008). LNCS 5182, Springer 2008, Turin (Italy, 2008) 283-292. |
|
bib |
Aglomerative Hierarchical Clustering | AHC-I | G. Cohen, M. Hilario, H. Sax, S. Hugonnet, A. Geissbuhler. Learning from imbalanced data in surveillance of nosocomial infection. Artificial Intelligence in Medicine 37 (2006) 7-18. |
|
bib |
Selective Preprocessing of Imbalanced Data 2 | SPIDER2-I | K. Napierala, J. Stefanowski, S. Wilk. Learning from Imbalanced Data in Presence of Noisy and Borderline Examples. 7th International Conference on Rough Sets and Current Trends in Computing (RSCTC2010). Warsaw (Poland, 2010) 158-167. |
|
bib |
Hybrid Preprocessing using SMOTE and Rough Sets Theory | SMOTE_RSB-I | E. Ramentol, Y. Caballero, R. Bello, F. Herrera. SMOTE-RSB*: A Hybrid Preprocessing Approach based on Oversampling and Undersampling for High Imbalanced Data-Sets using SMOTE and Rough Sets Theory. Knowledge and Information Systems 33:2 (2012) 245-265. |
|
bib |
UNDER-SAMPLING METHODS | Full Name | Short Name | Reference | Tomek's modification of Condensed Nearest Neighbor | TL-I | I. Tomek. Two modifications of CNN. IEEE Transactions on Systems, Man and Cybernetics 6 (1976) 769-772. |
|
bib |
Condensed Nearest Neighbor | CNN-I | P.E. Hart. The Condensed Nearest Neighbour Rule. IEEE Transactions on Information Theory 14:5 (1968) 515-516. |
|
bib |
Random under-sampling | RUS-I | G.E.A.P.A. Batista, R.C. Prati, M.C. Monard. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations 6:1 (2004) 20-29. |
|
bib |
One Sided Selection | OSS-I | M. Kubat, S. Matwin. Addressing the curse of imbalanced training sets: one-sided selection. 14th International Conference on Machine Learning (ICML97). Tennessee (USA, 1997) 179-186. |
|
bib |
Condensed Nearest Neighbor + Tomek's modification of Condensed Nearest Neighbor | CNNTL-I | G.E.A.P.A. Batista, R.C. Prati, M.C. Monard. A study of the behavior of several methods for balancing machine learning training data. SIGKDD Explorations 6:1 (2004) 20-29. |
|
bib |
Neighborhood Cleaning Rule | NCL-I | J. Laurikkala. Improving Identification of Difficult Small Classes by Balancing Class Distribution . 8th Conference on AI in Medicine in Europe (AIME01). LNCS 2001, Springer 2001, Cascais (Portugal, 2001) 63-66. |
|
bib |
Undersampling Based on Clustering | SBC-I | S. Yen, Y. Lee. Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset. International Conference on Intelligent Computing (ICIC06). Kunming (China, 2006) 731-740. |
|
bib |
Class Purity Maximization | CPM-I | K. Yoon, S. Kwek. An unsupervised learning approach to resolving the data imbalanced issue in supervised learning problems in functional genomics. 5th International Conference on Hybrid Intelligent Systems (HIS05). Rio de Janeiro (Brazil, 2005) 303-308. |
|
bib |
ALGORITHMIC MODIFICATIONS FOR CLASS IMBALANCE | Full Name | Short Name | Reference | Genetic Programming-based learning of COmpact and ACcurate fuzzy rule-based classification systems for High-dimensional problems Hierarchical | GP-COACH-H-I | V. López, A. Fernández, M.J. del Jesus, F. Herrera. A Hierarchical Genetic Fuzzy System Based On Genetic Programming for Addressing Classification with Highly Imbalanced and Borderline Data-sets. Knowledge-Based Systems 38 (2013) 85-104. |
|
bib |
COST-SENSITIVE CLASSIFICATION | Full Name | Short Name | Reference | C4.5 Cost-Sensitive | C45CS-I | K.M. Ting. An instance-weighting method to induce cost-sensitive trees. IEEE Transactions on Knowledge and Data Engineering 14:3 (2002) 659-665. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Multilayer Perceptron with Backpropagation Training Cost-Sensitive | NNCS-I | Z.-H. Zhou, X.-Y. Liu. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering 18:1 (2006) 63-77. |
|
bib |
R. Rojas, J. Feldman. Neural Networks: A Systematic Introduction . Springer-Verlag, Berlin, New-York, 1996. ISBN: 978-3540605058. |
| bib |
C-SVM Cost-Sensitive | C_SVMCS-I | K. Veropoulos, N. Cristianini, C. Campbell. Controlling the sensitivity of support vector machines. 16th International Joint Conferences on Artificial Intelligence (IJCAI99). Stockholm (Sweden, 1999) 281-288. |
|
bib |
Y. Tang, Y.-Q. Zhang, N.V. Chawla. SVMs modeling for highly imbalanced classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 39:1 (2009) 0-288. |
|
bib |
ENSEMBLES FOR CLASS IMBALANCE | Full Name | Short Name | Reference | Cost Sensitive Boosting with C4.5 Decision Tree as Base Classifier | AdaC2-I | Y. Sun, M. Kamel, A. Wong, Y. Wang. Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition 40 (2007) 3358-3378. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Adaptive Boosting with C4.5 Decision Tree as Base Classifier | AdaBoost-I | Y. Freund, R.E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55:1 (1997) 119-139. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Adaptive Boosting First Multi-Class Extension with C4.5 Decision Tree as Base Classifier | AdaBoostM1-I | R.E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning 37 (1999) 297-336. |
|
bib |
Y. Freund, R.E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55:1 (1997) 119-139. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Adaptive Boosting Second Multi-Class Extension with C4.5 Decision Tree as Base Classifier | AdaBoostM2-I | R.E. Schapire, Y. Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning 37 (1999) 297-336. |
|
bib |
Y. Freund, R.E. Schapire. A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences 55:1 (1997) 119-139. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Bootstrap Aggregating with C4.5 Decision Tree as Base Classifier | Bagging-I | L. Breiman. Bagging predictors. Machine Learning 24 (1996) 123-140. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
BalanceCascade Ensemble with C4.5 Decision Tree as Base Classifier | BalanceCascade-I | X.-Y. Liu, J. Wu, Z.-H. Zhou. Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B 39:2 (2009) 539-550. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Boosting with Data Generation for Imbalanced Data with C4.5 Decision Tree as Base Classifier | DataBoost-IM-I | H. Guo, H.L. Viktor. Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach. SIGKDD Explorations 6:1 (2004) 30-39. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
EasyEnsemble Ensemble with C4.5 Decision Tree as Base Classifier | EasyEnsemble-I | X.-Y. Liu, J. Wu, Z.-H. Zhou. Exploratory undersampling for class-imbalance learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B 39:2 (2009) 539-550. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Integrating Selective Pre-processing of Imbalanced Data with Ivotes Ensemble with C4.5 Decision Tree as Base Classifier | IIVotes-I | J. Blaszczynski, M. Deckert, J. Stefanowski, S. Wilk. Integrating selective pre-processing of imbalanced data with ivotes ensemble. 7th International Conference on Rough Sets and Current Trends in Computing (RSCTC2010). LNCS 6086, Springer 2010, Warsaw (Poland, 2010) 148-157. |
|
bib |
L. Breiman. Pasting small votes for classification in large databases and on-line. Machine Learning 36 (1999) 85-103. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Modified Synthetic Minority Over-sampling TEchnique Bagging with C4.5 Decision Tree as Base Classifier | MSMOTEBagging-I | S. Wang, X. Yao. Diversity analysis on imbalanced data sets by using ensemble models. IEEE Symposium Series on Computational Intelligence and Data Mining (IEEE CIDM 2009). Nashville TN (USA, 2009) 324-331. |
|
bib |
M. Galar, A. Fernández, E. Barrenechea, H. Bustince, F. Herrera. A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews (2011) In press.
|
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Modified Synthetic Minority Over-sampling TEchnique Boost with C4.5 Decision Tree as Base Classifier | MSMOTEBoost-I | S. Hu, Y. Liang, L. Ma, Y. He. MSMOTE: Improving classification performance when training data is imbalanced. 2nd International Workshop on Computer Science and Engineering (WCSE 2009). Qingdao (China , 2009) 13-17. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Over-sampling Minority Classes Bagging with C4.5 Decision Tree as Base Classifier | OverBagging-I | S. Wang, X. Yao. Diversity analysis on imbalanced data sets by using ensemble models. IEEE Symposium Series on Computational Intelligence and Data Mining (IEEE CIDM 2009). Nashville TN (USA, 2009) 324-331. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Over-sampling Minority Classes Bagging 2 with C4.5 Decision Tree as Base Classifier | OverBagging2-I | S. Wang, X. Yao. Diversity analysis on imbalanced data sets by using ensemble models. IEEE Symposium Series on Computational Intelligence and Data Mining (IEEE CIDM 2009). Nashville TN (USA, 2009) 324-331. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Random Under-Sampling Boosting with C4.5 Decision Tree as Base Classifier | RUSBoost-I | C. Seiffert, T. Khoshgoftaar, J. Van Hulse, A. Napolitano. Rusboost: A hybrid approach to alleviating class imbalance. IEEE Transactions on Systems, Man and Cybernetics, Part A 40:1 (2010) 185-197. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Synthetic Minority Over-sampling TEchnique Bagging with C4.5 Decision Tree as Base Classifier | SMOTEBagging-I | S. Wang, X. Yao. Diversity analysis on imbalanced data sets by using ensemble models. IEEE Symposium Series on Computational Intelligence and Data Mining (IEEE CIDM 2009). Nashville TN (USA, 2009) 324-331. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Synthetic Minority Over-sampling TEchnique Boosting with C4.5 Decision Tree as Base Classifier | SMOTEBoost-I | N.V. Chawla, A. Lazarevic, L.O. Hall, K.W. Bowyer. SMOTEBoost: Improving prediction of the minority class in boosting. 7th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2003). Cavtat Dubrovnik (Croatia, 2003) 107-119. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Under-sampling Minority Classes Bagging with C4.5 Decision Tree as Base Classifier | UnderBagging-I | R. Barandela, R.M. Valdovinos, J.S. Sánchez. New applications of ensembles of classifiers. Pattern Analysis and Applications 6 (2003) 245-256. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Under-sampling Minority Classes Bagging 2 with C4.5 Decision Tree as Base Classifier | UnderBagging2-I | R. Barandela, R.M. Valdovinos, J.S. Sánchez. New applications of ensembles of classifiers. Pattern Analysis and Applications 6 (2003) 245-256. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Under-sampling Minority Classes Bagging to Over-sampling Minority Classes Bagging with C4.5 Decision Tree as Base Classifier | UnderOverBagging-I | S. Wang, X. Yao. Diversity analysis on imbalanced data sets by using ensemble models. IEEE Symposium Series on Computational Intelligence and Data Mining (IEEE CIDM 2009). Nashville TN (USA, 2009) 324-331. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Adaptive Boosting Negative Correlation Learning Extension with C4.5 Decision Tree as Base Classifier | AdaBoost.NC-I | S. Wang, X. Yao. Multiclass Imbalance Problems: Analysis and Potential Solutions. IEEE Transactions on Systems, Man and Cybernetics Part B 42:4 (2012) 1119-1130. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Ensemble learning classifier with undersampling preprocessing with C4.5 Decision Tree as Base Classifier | EUSBoost-I | M. Galar, A. Fernández, E. Barrenechea, F. Herrera. EUSBoost: Enhancing Ensembles for Highly Imbalanced Data-sets by Evolutionary Undersampling. Pattern Recognition 46:12 (2013) 3460-3471. |
|
bib |
J.R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kauffman, 1993. |
| bib |
Semi-Supervised Learning
MULTIPLE-CLASSIFIER METHODS | Full Name | Short Name | Reference | ADE Coforest | ADE_CoForest | C. Deng, M. Zuo Guo. A new co-training-style random forest for computer aided diagnosis. Journal of Intelligent Information Systems 36:3 (2011) 253-281. |
|
bib |
CLCC | CLCC | T. Huang, Y. Yu, G. Guo, K. Li. A classification algorithm based on local cluster centers with a few labeled training examples. Knowledge Based Systems 26:6 (2010) 563-571. |
|
bib |
CoBC | CoBC | M. Hady, F. Schwenker, G. Palm. Semi-supervised learning for tree-structured ensembles of RBF networks with Co-Training. Neural Networks 23 (2010) 497-509. |
|
bib |
CoForest | CoForest | M. Li, Z.H. Zhou. Improve Computer-Aided Diagnosis With Machine Learning Techniques Using Undiagnosed Samples. Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions on 37:6 (2007) 1088-1098. |
|
bib |
CoTraining | CoTraining | A. Blum, T. Mitchell. Combining labeled and unlabeled data with co-training. Proceedings of the annual ACM conference on computational learning theory. (1998) 92-100. |
|
bib |
Differential Evolution TriTraining | DE_TriTraining | C. Deng, M. Guo. Tri-training and data editing based semi-supervised clustering algorithm. MICAI 2006: Advances in Artificial Intelligence (MICAI 2006). (2006) 641-651. |
|
bib |
Random subspace method for co-training | RASCO | J. Wang, S. Luo, X. Zeng. A random subspace method for co-training. IEEE international joint conference on computational intelligence. (2008) 195-200. |
|
bib |
Co-training with relevant random subspaces | Rel_RASCO | Y. Yaslan, Z. Cataltepe. Co-training with relevant random subspaces. Neurocomputing 73 (2010) 1652-1661. |
|
bib |
TriTraining | TriTraining | Z.H. Zhou, M. Li. Tri-training: exploiting unlabeled data using three classifiers. IEEE Transactions on Knowledge and Data Engineering 17 (2005) 1529-1541. |
|
bib |
Democratic co-learning | Democratic | Y. Zhou, S. Goldman. Democratic co-learning. IEEE international conference on tools with artificial intelligence. (2004) 594-602. |
|
bib |
SINGLE-CLASSIFIER METHODS | Full Name | Short Name | Reference | APSSC | APSSC | A. Halder, S. Ghosh, A. Ghosh. Aggregation pheromone metaphor for semi-supervised classification. Pattern Recognition 46 (2013) 2239-2248. |
|
bib |
Self Training | SelfTraining | D. Yarowsky. Unsupervised word sense disambiguation rivaling supervised methods. 33rd Annual Meeting of the Association for Computational Liguistics. (1995) 189-196. |
|
bib |
Self Training with Editing | SETRED | M. Li, Z.-H. Zhou. SETRED: self-training with editing. Advances in Knowledge Discovery and Data Mining. LNCS 3518, Springer 2005 (2005) 611-621. |
|
bib |
Self-training nearest neighbor rule using cut edges | SNNRCE | Y. Wang, X. Xu, H. Zhao, Z. Hua. Semi-supervised learning based on nearest neighbor rule and cut edges. Knowledge-Based Systems 23:6 (2010) 547-554. |
|
bib |
SUPERVISED METHODS | Full Name | Short Name | Reference | C4.5 Semi Supervised Learning | C4.5SSL | J.R. Quinlan. Programs for Machine Learning.. Morgan Kauffman (1993) In press.
|
| bib |
Naive Bayes Classifier Algorithm for SSL | NBSSL | P. Domingos, M. Pazzani. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning 29 (1997) 103-137. |
|
bib |
Nearest Neighbor Algorithm for SSL | NNSSL | G.J. McLachlan. Discriminant Analysis and Statistical Pattern Recognition. Wiley Series in Probability and Mathematical Statistics, 2004. |
| bib |
SMO for Semi Supervised Learning | SMOSSL | J.C. Platt. Fast training of support vector machines using sequential minimal optimization. MIT Press, 1999. |
| bib |
Subgroup Discovery
SUBGROUP DISCOVERY | Full Name | Short Name | Reference | CN2 Algorithm for Subgroup Discovery | CN2-SD | N. Lavrac, B. Kavsek, P. Flach, L. Todorovski.. Subgroup Discovery with CN2-SD. Journal of Machine Learning Research 5 (2004) 153-188. |
|
bib |
Apriori Algorithm for Subgroup Discovery | Apriori-SD | B. Kavsek, N. Lavrac. APRIORI-SD: Adapting Association Rule Learning to Subgroup Discovery. Applied Artificial Intelligence 20:7 (2006) 543-583. |
|
bib |
Subgroup Discovery Algorithm | SD-Algorithm-SD | D. Gambergr, N. Lavrac. Expert-Guided Subgroup Discovery: Methodology and Application. Journal of Artificial Intelligence Research 17 (2002) 501-527. |
|
bib |
Subgroup Discovery Iterative Genetic Algorithms | SDIGA-SD | M.J. del Jesus, P. González, F. Herrera, M. Mesonero. Evolutionary Fuzzy Rule Induction Process for Subgroup Discovery: A case study in marketing. IEEE Transactions on Fuzzy Systems 15:4 (2007) 578-592. |
|
bib |
Non-dominated Multi-Objective Evolutionary algorithm for Extracting Fuzzy rules in Subgroup Discovery | NMEEF-SD | C.J. Carmona, P. González, M.J. del Jesus, F. Herrera. Non-dominated Multi-objective Evolutionary algorithm based on Fuzzy rules extraction for Subgroup Discovery. 4th International Conference on Hybrid Artificial Intelligence Systems (HAIS09). LNCS 5572, Springer 2009, Salamanca (Spain, 2009) 573-580. |
|
bib |
MESDIF for Subgroup Discovery | MESDIF-SD | F.J. Berlanga, M.J. del Jesus, P. González, F. Herrera, M. Mesonero. Multiobjective Evolutionary Induction of Subgroup Discovery Fuzzy Rules: A Case Study in Marketing. 6th Industrial Conference on Data Mining. LNCS 4065, Springer 2006, Leipzig (Germany, 2006) 337-349. |
|
bib |
M.J. del Jesus, P. González, F. Herrera. Multiobjective Genetic Algorithm for Extracting Subgroup Discovery Fuzzy Rules. IEEE Symposium on Computational Intelligence in Multicriteria Decision Making. (2007) 0-57. |
|
bib |
SD-Map algorithm | SDMap-SD | M. Atzmueller, F. Puppe. SD-Map - A Fast Algorithm for Exhaustive Subgroup Discovery. 17th European Conference on Machine Learning and 10th European Conference on Principles and Practice of Knowledge Discovery in Databases (ECML/PKDD 2006). LNCS 4213, Springer 2006, Berlin (Germany, 2006) 6-17. |
|
bib |
Multi Instance Learning
MULTI INSTANCE LEARNING | Full Name | Short Name | Reference | Citation K-Nearest Neighbor classifier | CitationKNN-M | J. Wang, J.D. Zucker. Solving the Multiple-Instance Problem: A Lazy Learning Approach. 17th International Conference on Machine Learning (ICLM2000). Stanford (USA, 2000) 1119-1126. |
|
bib |
Diverse Denstiy algorithm | DD-M | O. Maron, T. Lozano-Pérez. A framework for multiple-instance learning. Neural Information Processing Systems (NIPS97). Denver (USA, 1997) 570-576. |
|
bib |
Expectation Maximization Diverse Density | EMDD-M | J. Wang, J.D. Zucker. Solving the Multiple-Instance Problem: A Lazy Learning Approach. 17th International Conference on Machine Learning (ICLM2000). Stanford (USA, 2000) 1119-1126. |
|
bib |
K-Nearest Neighbors for Multiple Instance Learning | KNN-MI-M | J. Wang, J.D. Zucker. Solving the Multiple-Instance Problem: A Lazy Learning Approach. 17th International Conference on Machine Learning (ICLM2000). Stanford (USA, 2000) 1119-1126. |
|
bib |
Grammar-Guided Genetic Programming for Multiple Instance Learning | G3P-MI-M | A. Zafra, S. Ventura. G3P-MI: A genetic programming algorithm for multiple instance learning. Information Sciences 180:23 (2010) 4496-4513. |
|
bib |
Axis Parallel Rectangle using Iterated Discrimination | APR_IteratedDiscrimination-M | T.G. Dietterich, R.H. Lathrop, T. Lozano-Pérez. Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence 89 (1997) 31-71. |
|
bib |
Axis Parallel Rectangle using positive vectors covering eliminating negative instances | APR_GFS_AllPositive-M | T.G. Dietterich, R.H. Lathrop, T. Lozano-Pérez. Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence 89 (1997) 31-71. |
|
bib |
Axis Parallel Rectangle eliminating negative instances | APR_GFS_ElimCount-M | T.G. Dietterich, R.H. Lathrop, T. Lozano-Pérez. Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence 89 (1997) 31-71. |
|
bib |
Axis Parallel Rectangle eliminating negative instances based on a kernel density estimate | APR_GFS_Kde-M | T.G. Dietterich, R.H. Lathrop, T. Lozano-Pérez. Solving the multiple instance problem with axis-parallel rectangles. Artificial Intelligence 89 (1997) 31-71. |
|
bib |
Clustering Algorithms
CLUSTERING ALGORITHMS | Full Name | Short Name | Reference | ClusterKMeans | KMeans-CL | J.B. MacQueen. Some Methods for Classification and Analysis of Multivariate Observations. 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley (USA, 1967) 281-297. |
|
bib |
Association Rules
ASSOCIATION RULES | Full Name | Short Name | Reference | Apriori | Apriori-A | R. Srikant, R. Agrawal. Mining quantitative association rules in large relational tables. ACM SIGMOD International Conference on Management of Data. Montreal Quebec (Canada, 1996) 1-12. |
|
bib |
C. Borgelt. Efficient implementations of Apriori and Eclat. Workshop of Frequent Item Set Mining Implementations (FIMI 2003). Florida (USA, 2003) 280-296. |
|
bib |
Association Rules Mining by means of a genetic algorithm proposed by Alatas et al. | Alatasetal-A | B. Alatas, E. Akin. An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules. Soft Computing 10 (2006) 230-237. |
|
bib |
Evolutionary Association Rules Mining with Genetic Algorithm | EARMGA-A | X. Yan, Ch. Zhang, S. Zhang. Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support. Expert Systems with Applications 36:2 (2009) 3066-3076. |
|
bib |
Equivalence CLAss Transformation | Eclat-A | M.J. Zaki. Scalable Algorithms for Association Mining. IEEE Transactions on Knowledge and Data Engineering 12:3 (2000) 372-390. |
|
bib |
C. Borgelt. Efficient implementations of Apriori and Eclat. Workshop of Frequent Item Set Mining Implementations (FIMI 2003). Florida (USA, 2003) 280-296. |
|
bib |
Frequent Pattern growth | FPgrowth-A | J. Han, J. Pei, Y. Yin, R. Mao. Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery 8:1 (2004) 53-87. |
|
bib |
Genetic Association Rules | GAR-A | J. Mata, J.L. Alvarez, J.C. Riquelme. Discovering numeric association rules via evolutionary algorithm. Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD). Springer, Heidelberg. Hong Kong (China, 2001) 40-51. |
|
bib |
J. Mata, J.L. Alvarez, J.C. Riquelme. An evolutionary algorithm to discover numeric association rules. ACM Symposium on Applied Computing. Madrid (Spain, 2002) 0-594. |
|
bib |
GENetic Association Rules | GENAR-A | J. Mata, J.L. Alvarez, J.C. Riquelme. Mining numeric association rules with genetic algorithms. 5th International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA). Taipei (Taiwan, 2001) 264-267. |
|
bib |
Alcala et al Method | Alcalaetal-A | J. Alcala-Fdez, R. Alcalá, M.J. Gacto, F. Herrera. Learning the membership function contexts for mining fuzzy association rules by using genetic algorithms. Fuzzy Sets and Systems 160 (2009) 905-921. |
|
bib |
Fuzzy Apriori | FuzzyApriori-A | T.-P. Hong, C.-S. Kuo, S.-C. Chi. Trade-off between computation time and number of rules for fuzzy mining from quantitative data. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 9:5 (2001) 587-604. |
|
bib |
Genetic Fuzzy Apriori | GeneticFuzzyApriori-A | T.-P. Hong, C.-H. Chen, Y.-L. Wu, Y.-C. Lee. A GA-based fuzzy mining approach to achieve a trade-off between number of rules and suitability of membership functions. Soft Computing 10:11 (2006) 1091-1101. |
|
bib |
Genetic-Fuzzy Data Mining With Divide-and-Conquer Strategy | GeneticFuzzyAprioriDC-A | T.-P. Hong, C.-H. Chen, Y.-C. Lee, Y.-L. Wu. Genetic-Fuzzy Data Mining With Divide-and-Conquer Strategy. IEEE Transactions on Evolutionary Computation 12:2 (2008) 252-265. |
|
bib |
ARMMGA | ARMMGA-A | H.R. Qodmanan, M. Nasiri, B. Minaei-Bidgoli. Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence. Expert Systems with Applications 38 (2011) 288-298. |
|
bib |
Multi-objective differential evolution algorithm for mining numeric association rules | MODENAR-A | B. Alatas, E. Akin, A. Karci. MODENAR: Multi-objective differential evolution algorithm for mining numeric association rules. Applied Soft Computing 8 (2008) 646-656. |
|
bib |
Multi-objective rule mining using genetic algorithms | MOEA_Ghosh-A | A. Ghosh, B. Nath. Multi-objective rule mining using genetic algorithms. Information Sciences 163 (2004) 123-133. |
|
bib |
Multi-Objective Evolutionary Algorithm for Mining a Reduced Set of Interesting Positive and Negative Quantitative Association Rules | MOPNAR-A | D. Martin, A. Rosete, J. Alcala-Fdez, F. Herrera. A New Multi-Objective Evolutionary Algorithm for Mining a Reduced Set of Interesting Positive and Negative Quantitative Association Rules. IEEE Transaction on Evolutionary Computation 18:1 (2014) 54-69. |
|
bib |
QAR_CIP_NSGAII | QAR_CIP_NSGAII-A | D. Martin, A. Rosete, J. Alcala-Fdez, F. Herrera. QAR-CIP-NSGA-II: A new multi-objective evolutionary algorithm to mine quantitative association rules. Information Sciences 258 (2014) 1-28. |
|
bib |
Niching genetic algorithm to mine positive and negative quantitative association rules | NICGAR-A | D. Martin, J. Alcala-Fdez, A. Rosete, F. Herrera. NICGAR: a Niching Genetic Algorithm to Mine a Diverse Set of Interesting Quantitative Association Rules. Information Sciences 355356 (2016) 208-228. |
|
bib |
Statistical Tests
TEST ANALYSIS | Full Name | Short Name | Reference | 5x2 Cross validation F-test | 5x2CV-ST | T.G. Dietterich. Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation 10:7 (1998) 1895-1923. |
|
bib |
Wilcoxon signed ranks test (for a single data-set) | Single-Wilcoxon-ST | F. Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics 1 (1945) 80-83. |
|
bib |
J.P. Royston. Algorithm AS 181. Applied Statistics 31:2 (1982) 176-180. |
|
bib |
T-test | T-test-ST | D.R. Cox, D.V. Hinkley. Theoretical Statistics. Chapman and Hall, 1974. |
| bib |
Snedecor F-test | SnedecorF-ST | G.W. Snedecor, W.G. Cochran. Statistical Methods. Iowa State University Press, 1989. |
| bib |
Normality Shapiro-Wilk test | ShapiroWilk-ST | S.S. Shapiro, M.B. Wilk. An Analysis of Variance Test for Normality (complete samples). Biometrika 52:3-4 (1965) 591-611. |
|
bib |
Mann-Whitney U-test | MannWhitneyU-ST | H.B. Mann, D.R. Whitney. On a Test of Whether One of Two Random Variables is Stochastically Larger Than The Other. Annals of Mathematical Statistics 18 (1947) 50-60. |
|
bib |
Wilcoxon Signed-Rank Test | Wilcoxon-ST | F. Wilcoxon. Individual Comparisons by Ranking Methods. Biometrics 1 (1945) 80-83. |
|
bib |
J.P. Royston. Algorithm AS 181. Applied Statistics 31:2 (1982) 176-180. |
|
bib |
Friedman Test and Post-Hoc Procedures | Friedman-ST | D. Sheskin. Handbook of parametric and nonparametric statistical procedures. Chapman and Hall/CRC, 2003. |
| bib |
M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 32:200 (1937) 675-701. |
|
bib |
Quade Test and Post-Hoc Procedures | Quade-ST | D. Quade. Using weighted rankings in the analysis of complete blocks with additive block effects. Journal of the American Statistical Association 74 (1979) 680-683. |
|
bib |
W.J. Conover. Practical Nonparametric Statistics. Wiley, 1998. |
| bib |
Friedman Aligned Test and Post-Hoc Procedures | FriedmanAligned-ST | J.L. Hodges, E.L. Lehmann. Ranks methods for combination of independent experiments in analysis of variance. Annals of Mathematical Statistics 33 (1962) 482-497. |
|
bib |
W.W. Daniel. Applied Nonparametric Statistics. Houghton Mifflin Harcourt, 1990. |
| bib |
Friedman Test for Multiple Comparisons and Post-Hoc Procedures | Multiple-Test-ST | R.G.D. Steel. A multiple comparison sign test: treatments versus control. Journal of American Statistical Association 54 (1959) 767-775. |
|
bib |
D. Sheskin. Handbook of parametric and nonparametric statistical procedures. Chapman and Hall/CRC, 2003. |
| bib |
M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 32:200 (1937) 675-701. |
|
bib |
Contrast estimation | Contrast-Test-ST | K. Doksum. Robust procedures for some linear models with one observation per cell. Annals of Mathematical Statistics 38 (1967) 878-883. |
|
bib |
POST-HOC PROCEDURES FOR 1 X N TESTS | Name | Applicable Statistical Tests | Reference | Bonferroni-Dunn Post Hoc procedure for 1xN Statistical Tests | Friedman-ST, FriedmanAligned-ST, Quade-ST | O. Dunn. Multiple comparisons among means. Journal of the American Statistical Association 56 (1961) 52-64. |
|
bib |
Holm Post Hoc procedure for 1xN Statistical Tests | Friedman-ST, FriedmanAligned-ST, Quade-ST | S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6 (1979) 65-70. |
| bib |
Hochberg Post Hoc procedure for 1xN Statistical Tests | Friedman-ST, FriedmanAligned-ST, Quade-ST | Y. Hochberg. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75 (1988) 800-803. |
|
bib |
Hommel Post Hoc procedure for 1xN Statistical Tests | Friedman-ST, FriedmanAligned-ST, Quade-ST | G. Hommel. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75 (1988) 383-386. |
|
bib |
Holland Post Hoc procedure for 1xN Statistical Tests | Friedman-ST, FriedmanAligned-ST, Quade-ST | B.S. Holland, M.D. Copenhaver. An improved sequentially rejective Bonferroni test procedure. Biometrics 43 (1987) 417-423. |
|
bib |
Rom Post Hoc procedure for 1xN Statistical Tests | Friedman-ST, FriedmanAligned-ST, Quade-ST | D.M. Rom. A sequentially rejective test procedure based on a modified Bonferroni inequality. Biometrika 77 (1990) 663-665. |
| bib |
Finner Post Hoc procedure for 1xN Statistical Tests | Friedman-ST, FriedmanAligned-ST, Quade-ST | H. Finner. On a monotonicity problem in step-down multiple test procedures. Journal of the American Statistical Association 88 (1993) 920-923. |
|
bib |
Li Post Hoc procedure for 1xN Statistical Tests | Friedman-ST, FriedmanAligned-ST, Quade-ST | J. Li. A two-step rejection procedure for testing multiple hypotheses. Journal of Statistical Planning and Inference 138 (2008) 1521-1527. |
|
bib |
POST-HOC PROCEDURES FOR N X N TESTS | Name | Applicable Statistical Tests | Reference | Nemenyi Post Hoc procedure for NxN Statistical Tests | Multiple-Test-ST | P.B. Nemenyi. Distribution-free Multiple Comparisons. PhD thesis, Princeton University (1963) -. |
| bib |
Holm Post Hoc procedure for NxN Statistical Tests | Multiple-Test-ST | S. Holm. A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6 (1979) 65-70. |
| bib |
Shaffer Post Hoc procedure for NxN Statistical Tests | Multiple-Test-ST | J.P. Shaffer. Modified sequentially rejective multiple test procedures. Journal of the American Statistical Association 81:395 (1986) 826-831. |
|
bib |
Bergman Post Hoc procedure for NxN Statistical Tests | Multiple-Test-ST | G. Bergmann, G. Hommel. Improvements of general multiple test procedures for redundant systems of hypotheses. In:
P. Bauer, G. Hommel, E. Sonnemann (Eds.) Multiple Hypotheses Testing, 1988, 100-115. |
| bib |
|
|