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Abstract

Prototype classifiers are a type of pattern classifiers, whereby a number of prototypes are designed for each class so as they act as
representatives of the patterns of the class. Prototype classifiers are considered among the simplest and best performers in classification
problems. However, they need careful positioning of prototypes to capture the distribution of each class region and/or to define the class
boundaries. Standard methods, such as learning vector quantization (LVQ), are sensitive to the initial choice of the number and the locations
of the prototypes and the learning rate. In this article, a new prototype classification method is proposed, namely self-generating prototypes
(SGP). The main advantage of this method is that both the number of prototypes and their locations are learned from the training set
without much human intervention. The proposed method is compared with other prototype classifiers such as LVQ, self-generating neural
tree (SGNT) and K-nearest neighbor (K-NN) as well as Gaussian mixture model (GMM) classifiers. In our experiments, SGP achieved
the best performance in many measures of performance, such as training speed, and test or classification speed. Concerning number of
prototypes, and test classification accuracy, it was considerably better than the other methods, but about equal on average to the GMM
classifiers. We also implemented the SGP method on the well-known STATLOG benchmark, and it beat all other 21 methods (prototype
methods and non-prototype methods) in classification accuracy.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The simplest and most intuitive approach in pattern clas-
sification is based on the concept of similarity [1,2]. Patterns
that are similar (in some sense) are assigned to the same
class. Prototype classifiers are one major group of classifiers
that are based on similarity. A number of prototypes are de-
signed so as they act as representatives of the typical pat-
terns of a specific class. When presenting a new pattern, the
nearest prototype determines the classification of the pattern.
Two extreme ends of the scale for prototype classifiers are
the nearest neighbor classifier, where each pattern serves as a
prototype, and the minimum distance classifier, where there

∗ Corresponding author. Tel.: +20 2 3354773.
E-mail addresses: h_fayed@eng.cu.edu.eg (H.A. Fayed),

shashem@ieee.org, shashem@mcit.gov.eg (S.R. Hashem),
amiratiya@link.net, amir@alumni.caltech.edu (A.F. Atiya).

0031-3203/$30.00 � 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2006.10.018

is only one prototype (the class center or mean) per class.
Practically speaking, the most successful prototype classi-
fiers are the ones that have a few prototypes per class, thus
economically summarizing all data points into a number of
key centers. Learning vector quantization (LVQ) [3] is prob-
ably the most well-known prototype classifier. Other meth-
ods also include self-generating neural tree (SGNT) [4,5],
which is a hierarchical tree structure, where all the training
patterns (or specifically the misclassified ones) are repeat-
edly presented to the tree until the method correctly classifies
all the patterns. Some other prototype classifiers have also
been developed such as methods that compactly cover each
class region by a set of hyperspheres [6,7] or ones that use
a set of hyperellipsoids [8] or a set of hyperrectangles [9].
Another prototype classifier is the Gaussian mixture model
(GMM), which is based on modeling the class-conditional
densities as a Gaussian mixture [1,10]. The well-known
EM algorithm is used to design such a classifier. Each
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Gaussian component will serve as a prototype. Many of the
prototype classifiers suffer from some drawbacks. For exam-
ple, in LVQ, the optimal number of prototypes is not known
a priori, and it has to be determined by re-running the al-
gorithm several times, each time with a different number of
prototypes. Also, the method is sensitive to the initial proto-
type locations. Consequently, each run with different initial
conditions can lead to a different final solution. The SGNT
method [4,5] is too sensitive to the order of presentation of
the patterns (the patterns presented first are too influential).
Moreover, it is also sensitive to the selected value of the dis-
tance threshold. To overcome these types of problems, a new
method is proposed in this paper. The distinctive feature of
the proposed method is that it does not require any prede-
fined parameters (except those often added to any algorithm
to avoid over-training in real/noisy data problems), and does
not depend on the order of the input patterns. In this method,
both the number of prototypes and their locations are learned
from the training patterns. We do not need to guess a suit-
able number of prototypes, or keep rerunning the algorithm
many times experimenting with different numbers of proto-
types, like in LVQ. The method keeps adding prototypes as
needed, until it stops with a suitable number of prototypes.
In addition, as the simulations show, the number of the re-
sulting prototypes for the proposed method turned out to
be usually less than those for other prototype classification
methods achieving the same accuracy. This also indicates a
more compact solution and a smaller model complexity for
the proposed method.

This paper is organized as follows. The basic idea of
the proposed approach is introduced in the following sec-
tion. Section 3 presents experimental results that examine
the effectiveness of the proposed approach and compares
it to common prototype classification methods. Section 4
presents a discussion of the experimental results, and finally,
in Section 5 conclusions are given.

2. Self-generating prototypes (SGP)

The main idea of this method is to form a number of
groups, each of which contains some patterns of the same
class, and each group’s mean is used as a prototype for the
group. Initially, patterns of each class form a group and their
mean is computed as the initial group’s prototype. We then
successively split some groups, shift some patterns from
one group to another, and possibly merge some groups as a
pruning step. All operations performed are very simple and
can be classified according to the four possible situations
that might occur. These are described in details below:

• If for all patterns of a group the closest prototype is the
group prototype, then no modification is performed.

• If for all patterns of a group the closest prototypes is one
of an incorrect class, this often occurs when patterns of the
group are clustered into subgroups separated by patterns
of other classes, the group is split into two subgroups. This

is accomplished by separating the points by a hyperplane
which passes through the original group’s mean and which
is perpendicular to the first principal component of the
original group’s patterns.

• If for some patterns of a group the closest prototype is a
prototype of a different group but of the same class, these
patterns are shifted from the original group to the group
of that closest prototype.

• If for some patterns of a group the closest prototype is a
prototype of a different group and of an incorrect class,
these patterns are removed from the original group and
form a new group, and its mean is computed as a new
prototype.

In each case, each group mean is recomputed at the end
to update the locations of the prototypes. The whole process
is repeated until no change occurs to the groups. A merg-
ing step could be applied to reduce the number of proto-
types. Groups A and B are merged if both A and B have the
same class and the second closest prototype to the patterns
of group A is the prototype (mean) of group B (PB), and
the second closest prototype to patterns of group B is PA. A
pruning step could also be used to remove redundant proto-
types (whose removal will not affect the classification). In
this step, if the second closest prototypes of all patterns of
a certain group have the same class, the group and its pro-
totype are removed. We call the SGP algorithm that has no
merging and pruning steps as SGP1 and the one that has
the merging and pruning steps as SGP2. Steps of the SGP1
algorithm can be summarized as follows:

Algorithm (SGP1)
Input: N training patterns pairs {xj , C(xj )}, j =
1, 2, . . . , N where C(xj ) ∈ {1, 2, . . . , K} is the class
label for pattern xj .
Output: Prototype set {Pk}, k = 1, 2, . . . , M and their
corresponding class labels.
Method:

1. Set Gk = {xj : C(xj ) = k}, k = 1, 2, . . . , K .
2. Compute the initial prototypes as Pk=mean(Gk)

and its class label C(Pk) = k, k = 1, 2, . . . , K .
3. Set k = 1, M = K .
4. Compute djs = ‖xj − Ps‖2 ∀xj ∈ Gk, s =

1, 2, . . . , M .
5. Determine the index of the closest prototype to

each pattern xj as i∗j = arg mins (djs).
6. If i∗j = k, ∀xj ∈ Gk go to step 10.
7. If C(Pi∗j ) �= C(Pk), ∀xj ∈ Gk , set M = M + 1,

split group Gk into two subgroups Gk and GM

as described above, and update their means: Pk=
mean(Gk), PM = mean(GM), C(PM) = C(Pk),
go to step 4.

8. If C(Pi∗j )=C(Pk), Pi∗j �= Pk for some xj ∈ Gk ,
remove these patterns from Gk and include them
in group Gi∗j . Pk =mean(Gk), Pi∗j =mean(Gi∗j ).
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Pattern 2 3 4 5 6 9 101 7 8 11 12

Class 1 1 2 2 2 2 21 1 1 1 1

Fig. 1. Patterns and corresponding classes for example 1.

G1 2(1) 3(1) 7(2) 8(2) 11(2) 12(2)  Mean=6.29 Class=1

G2 4 10 Mean=6.8 Class=2 5 6 9

1(1)

Fig. 2. Initial groups and corresponding prototypes for example 1. Superscript numbers indicate the index of the closest prototype to the pattern. The
closest prototype to patterns 7, 8, 11, 12 is that of G2.

G1 1 2 3 Mean=2 Class=1 

G2 4(1)  5(2)  6(2) 9(3) 10(3)  Mean=6.8 Class=2 

G3  7 8 11 12 Mean=9.5 Class=1 

Fig. 3. Groups after manipulation of G1.

9. If C(Pi∗j ) �= C(Pk), for some xj ∈ Gk , set
M = M + 1, remove these patterns from Gk

and create a new group GM containing these
patterns. Update the means: Pk = mean(Gk),
PM = mean(GM).

10. If k = M and no change is made to the groups
or the prototypes, then STOP.

11. If k �= M , then set k = k + 1 and go to step 4.
12. If k = M , then set k = 1 and go to step 4.

2.1. Generalization capability

The SGP method, as described above obtains zero classi-
fication error on the training set. In practice, it is extremely
beneficial, from the generalization point of view, to allow for
a small training error in return for smaller model complexity
[1,2]. We implement this concept here on both SGP methods.
Two parameters are invoked namely, Rmin and Rmis. If the
size of a group divided by the size of the largest group is less
than a threshold Rmin, the group is discarded. (So the pat-
terns belonging to that group will not belong to any group.)
Also, if the number of misclassified patterns in a group di-
vided by the size of that group is less than a threshold Rmis,
the group is maintained unchanged. These parameters can
be estimated using any model assessment method such as
cross validation or bootstrapping. These modifications re-
sult in a much smaller number of prototypes, especially in
regions of overlap, hence a smaller complexity model and
less chance for overfitting.

2.2. Example 1

To illustrate the basic idea of the SGP methods, the SGP1
algorithm (without invoking Rmin and Rmis) is applied to
the following example. Consider the following patterns (see
Fig. 1) for a one-dimensional problem, where the white color
indicates class 1 and the gray color indicates class 2.

Initial groups G1 and G2 and their corresponding means
(prototypes) and classes are shown in Fig. 2. In manipulat-
ing G1, patterns 7, 8, 11, 12 are eliminated from group G1
because the nearest mean to them is that of G2 which cor-
responds to the other class. The eliminated patterns form a
new group G3 (Fig. 3). Similarly, in manipulating G2, pat-
terns 4, 9, 10 form a new group G4 (Fig. 4). In the same
way, in manipulating G3, patterns 7,8 form a new group G5
(Fig. 5). In manipulating G4, the nearest mean to pattern 4
is that of G2 which corresponds to the same class, hence
pattern 4 is shifted to group G2 (Fig. 6). Fifth group (G5)
manipulation necessitated no change. After the second iter-
ation for all groups, no change is made, thereby we stop and
the final prototypes for class 1 are: 2, 7.5, 11.5 and those for
class 2 are: 5, 9.5.

The resultant self-generating tree SGNT [4,5] (with re-
peated training until reaching correct classification) for the
above example is shown in Fig. 7. The prototypes for class 1
are: 1.4, 3, 7.43, 11.2 and those for class 2 are: 4, 5, 6, 9, 10.
It can be noticed that SGNT failed to infer the best clus-
ters. Moreover, SGNT prototypes are biased to some pat-
terns according to the order of presentation of patterns to
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G1  1 2 3 Mean=2 Class=1 

G2 5 6 Mean=5.5 Class=2 

G3 7(4) 8(4)  11 12 Mean=9.5 Class=1 

G4  4 9 10 Mean=7.67 Class=2 

Fig. 4. Groups after manipulation of G2.

G1  1 2 3 Mean=2 Class=1 

G2 5 6 Mean=5.5 Class=2 

G3 11 Mean=11.5 Class=1 

G4 4(2)  9(4)  10(4)  Mean=7.67 Class=2 

G5  7 8 Mean=7.5 Class=1 

12 

Fig. 5. Groups after manipulation of G3.

G1  1 2 3 Mean=2 Class=1 

G2 5 6 4 Mean=5 Class=2 

G3 11 Mean=11.5 Class=1 

G4 Mean=9.5 Class=2 

G5  7(5)  8(5)  Mean=7.5 Class=1 

9 10 

12 

Fig. 6. Groups after manipulation of G4.

1.4[1]

11.2[1] 9[2] 10[2] 4[2] 3[1]

5[2]
3.5610.3

6[2] 7.43[1]

6.39

Fig. 7. Resultant SGNT for example 1, first numbers represent the prototypes and the numbers in brackets represent the class label.
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Fig. 8. Resulting piecewise linear boundary of SGP2 to Parabola example.

the tree. On the other hand, SGP prototypes succeeded to
infer the best clusters of each class patterns and the final
prototypes are the groups’ means. It might be expected that
SGNT would perform poorly compared to a classification
algorithm, as can be seen from the results, since it was orig-
inated as a clustering algorithm and then adapted to handle
classification problems.

2.3. Example 2

We generated 100 uniformly randomly distributed points
in two dimensions and assigned two classes according to the
following predetermined parabolic boundary:

(x − y)2 − √
2(x + y) + 1 > 0 Class 1,

otherwise Class 2,
(1)

where both x and y ∈ [0, 1]. SGP2 algorithm results in 13
prototypes shown as circles in Fig. 8. An interesting result
can be noted that the resultant prototypes are somehow near
the boundary thus they approximate the boundary by the
equidistance lines between the adjacent prototypes of dif-
ferent classes.

3. Experimental results

To validate the proposed SGP methods, a number of
synthetic and real world data sets are tested using nearest
neighbor (1-NN) method, K-nearest neighbor (K-NN)
method, LVQ, SGNT, SGP1 and SGP2. Two types of GMM
are also compared: GMM1 that uses the spherical covariance
matrix (� = �2I ) and GMM2 that uses the full covariance
matrix. In our implementation we used MATLAB 6.5 [11]
on Windows 2000 operating system running on Intel PC
1.0 GHz 256 MB RAM. In all methods, the optimum values
for the parameters are determined using five-fold cross-
validation and early stopping is utilized to stop the training
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Fig. 9. Distributions of the DIAGONAL problem.

when the validation error begins to increase [1,2]. For the
K-NN method, suggested values for K are {1, 3, 5, . . . , 19}.
For the LVQ method, the number of prototypes (Pk) for
class k is selected as: � × Nk where � ∈ {0.01, 0.1, 0.2}, Nk

is the number of training patterns for class k and values sug-
gested for the learning rate (�) are: {0.01, 0.02, . . . , 0.1}. In
the SGNT method, suggested values for the distance thresh-
old are: {0.01, 0.02, . . . , 0.1}. In the SGP methods, values
suggested for Rmin and Rmis are {0.01, 0.02, . . . , 0.2}. For
GMM methods, the number of mixture components exam-
ined is 1–50 for large data sets (Thyroid, Letter) and 1–10
for the others. The number of mixture components is de-
termined using the Bayesian Information Criterion (BIC)
(see Ref. [2]). The performance measures tested are the
following:

• CPU time elapsed in training. That also includes the cross-
validation step to tune the parameters.

• CPU time elapsed in testing. By testing, we mean just
implementing the compared methods to obtain a classifi-
cation.

• Number of obtained prototypes (number of mixture com-
ponents for GMM methods).

• Classification error for the test set.

We now describe the data sets used in the comparison.

3.1. Synthetic data sets

3.1.1. Diagonal data set (DIAGONAL)
We have here a two-class data set generated using the

distributions used in Ref. [12]. Each class consists of two
normal distributions as follows:

p(x|w1) = 1
2 N(�11, I ) + 1

2 N(�12, I ),

p(x|w2) = 1
2 N(�21, I ) + 1

2 N(�22, I ),
(2)

where w1, w2 are the two classes and �11 = [0 0]T,
�12 =[� �]T, �21 =[0 �]T, �22 =[� 0]T and N(�, I ) is the
multivariate normal distribution with mean � and covari-
ance matrix equals to the identity matrix I. We used � = 3.5
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Table 1
Average CPU training time over all runs with different parameters for Diagonal data set

Training set size K-NN LVQ SGNT SGP1 SGP2 GMM1 GMM2

100 0.10 0.84 1.57 0.04 0.05 0.07 0.12
200 0.29 0.89 1.94 0.05 0.07 0.10 0.39
300 0.55 1.68 7.39 0.07 0.09 0.11 0.93
400 1.04 2.25 9.76 0.07 0.09 0.12 1.10
500 1.61 1.72 10.69 0.09 0.12 0.14 1.93
600 2.24 1.15 16.15 0.11 0.15 0.17 1.98
700 3.46 1.50 17.83 0.10 0.13 0.15 2.15
800 4.47 1.86 20.54 0.15 0.20 0.20 1.93
900 5.58 1.46 26.08 0.13 0.17 0.21 3.42

1000 6.81 1.92 29.50 0.15 0.16 0.25 3.59

Table 2
CPU test classification time for Diagonal data set

Training set size 1-NN K-NN LVQ SGNT SGP1 SGP2 GMM1 GMM2

100 0.78 1.85 0.16 22.30 0.04 0.04 0.08 0.07
200 1.61 2.53 0.26 26.70 0.07 0.06 0.08 0.09
300 2.39 3.63 0.53 29.55 0.04 0.04 0.08 0.10
400 3.18 4.17 0.67 31.09 0.04 0.04 0.09 0.09
500 4.03 4.95 0.92 32.70 0.04 0.04 0.10 0.08
600 4.84 5.60 0.36 35.10 0.04 0.04 0.09 0.11
700 5.52 10.59 2.32 34.01 0.04 0.04 0.11 0.09
800 6.17 11.98 0.46 34.96 0.04 0.04 0.10 0.08
900 11.77 14.76 0.96 35.77 0.04 0.04 0.12 0.10

1000 25.69 57.30 0.56 35.77 0.04 0.04 0.10 0.10

Table 3
Number of prototypes for Diagonal data set

Training set size 1-NN or K-NN LVQ SGNT SGP1 SGP2 GMM1 GMM2

100 100 20 53 4 4 7 4
200 200 40 106 16 12 8 5
300 300 90 131 4 4 9 6
400 400 120 166 4 4 8 5
500 500 150 295 4 4 8 5
600 600 60 250 4 4 9 6
700 700 210 248 4 4 9 5
800 800 80 427 4 4 8 5
900 900 180 438 4 4 10 6

1000 1000 100 446 4 4 9 6

in our experiments, 10,000 testing examples and a varying
number of training examples: 100, 200, 300, . . . , 1000. The
distribution is shown in Fig. 9. Tables 1 and 2 show the
CPU time elapsed in training and testing for the different
methods respectively. Tables 3 and 4 show comparison
of the number of prototypes and the test classification er-
ror respectively. The test classification errors for different
methods are shown in Fig. 10.

3.1.2. I–I Data set (I–I)
Here we considered a higher-dimensional data set used in

Refs. [12,13]. We generated the data points of the two classes

from the n-dimensional normal distributions N(�i , �i ), i =
1, 2. The parameters are: �1 = [00 . . . 0]T, �2 = [�0 . . . 0]T,
�1 = �2 = I . The value of � controls the degree of overlap
between the two distributions. We used six-dimensional nor-
mal distributions and set �=2.56 in the experiments, 10,000
testing examples and a varying number of training exam-
ples: 100, 200, 300, . . . , 1000. Tables 5 and 6 show CPU
time elapsed in training and testing for different methods re-
spectively. Tables 7 and 8 show comparison of the number
of prototypes and the test classification error, respectively.
The test classification errors for different methods are shown
in Fig. 11.
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Table 4
Test classification error (%) for Diagonal data set

Training set size 1-NN K-NN LVQ SGNT SGP1 SGP2 GMM1 GMM2

100 9.8 8.3 10.6 11.7 9.4 9.4 8.9 9.2
200 10.4 8.6 11.2 12.3 9.3 9.6 8.0 8.4
300 10.5 8.4 10.8 11.1 8.0 8.3 8.1 8.1
400 10.8 8.6 10.4 11.4 8.1 8.1 8.2 8.5
500 11.2 8.4 10.7 11.4 7.9 7.9 8.1 8.7
600 10.6 8.2 10.9 11.4 8.1 8.1 8.2 8.3
700 10.4 8.4 10.4 11.1 8.2 8.2 8.1 8.3
800 10.7 8.0 10.6 11.5 8.5 8.5 8.1 8.1
900 10.7 8.3 10.3 10.4 8.0 8.0 8.0 8.2

1000 10.9 8.2 10.2 10.8 8.1 8.1 8.0 8.1

Bold numbers indicate the minimum test classification error while underlined numbers indicate the second minimum.
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Fig. 10. Test classification error comparison of different methods for Diagonal data set.

Table 5
Average CPU training time over all runs with different parameters for I–I data set

Training set size K-NN LVQ SGNT SGP1 SGP2 GMM1 GMM2

100 0.13 0.27 1.20 0.02 0.03 0.10 0.16
200 0.30 0.55 2.98 0.03 0.04 0.13 0.41
300 0.60 0.38 3.93 0.03 0.04 0.15 0.88
400 1.06 0.52 4.88 0.04 0.06 0.13 1.16
500 1.66 0.63 11.07 0.06 0.07 0.14 1.92
600 2.33 0.72 16.50 0.05 0.08 0.17 2.42
700 3.47 0.84 11.79 0.05 0.08 0.19 1.88
800 4.76 1.00 27.74 0.07 0.10 0.19 2.66
900 7.99 0.85 26.00 0.09 0.12 0.17 3.74

1000 7.97 1.29 25.40 0.10 0.11 0.19 3.22

3.2. Real-world data sets

3.2.1. Letter recognition (STATLOG database)
This dataset is a well-known benchmark, constructed by

David J. Slate of Odesta Corporation, Evanston, Illinois.
The objective here is to classify each of a large number of

black and white rectangular pixel displays as one of the 26
capital letters of the English alphabet. The character images
produced were based on 20 different fonts and each let-
ter within these fonts was randomly distorted to produce a
file of 20,000 unique images. For each image, 16 numerical
attributes were calculated using edge counts and measures
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Table 6
CPU test classification time for I–I data set

Training set size 1-NN K-NN LVQ SGNT SGP1 SGP2 GMM1 GMM2

100 0.82 2.13 0.24 26.62 0.06 0.06 0.08 0.08
200 1.61 2.72 0.52 33.19 0.05 0.04 0.08 0.07
300 2.40 3.39 0.23 35.64 0.05 0.05 0.08 0.08
400 3.21 4.29 0.28 38.55 0.04 0.04 0.08 0.08
500 4.05 5.15 0.35 43.42 0.07 0.07 0.08 0.09
600 4.90 5.84 1.35 45.89 0.04 0.04 0.09 0.08
700 5.65 6.58 1.20 45.34 0.05 0.04 0.09 0.09
800 6.37 8.24 1.75 50.39 0.05 0.05 0.09 0.08
900 11.22 32.11 1.92 51.00 0.04 0.04 0.08 0.08

1000 34.22 31.40 2.31 50.22 0.04 0.04 0.08 0.08

Table 7
Number of prototypes for I–I data set

Training set size 1-NN or K-NN LVQ SGNT SGP1 SGP2 GMM1 GMM2

100 100 30 50 4 4 3 2
200 200 80 83 3 2 3 2
300 300 30 154 3 3 3 2
400 400 40 238 2 2 3 2
500 500 50 256 6 6 3 2
600 600 240 301 2 2 3 2
700 700 210 323 3 2 3 2
800 800 320 418 3 3 3 2
900 900 360 512 2 2 3 2

1000 1000 300 450 2 2 3 2

Table 8
Test classification error (%) for I–I data set

Training set size 1-NN K-NN LVQ SGNT -SGP1 SGP2 GMM1 GMM2

100 19.2 13.6 19.0 20.6 15.6 15.6 10.7 14.3
200 17.2 11.7 18.0 19.0 11.3 11.0 10.3 11.3
300 15.4 11.1 18.0 16.2 10.4 10.4 9.9 10.2
400 15.6 10.9 16.8 18.6 10.0 10.0 9.9 10.6
500 15.3 10.4 13.0 16.9 12.1 12.0 9.8 10.3
600 14.8 10.7 16.1 16.2 10.1 10.1 9.8 10.2
700 14.9 10.6 14.7 16.7 10.2 10.3 9.9 10.1
800 14.9 10.4 15.1 16.9 10.8 10.8 9.9 10.1
900 15.6 11.1 17.2 17.7 10.0 10.0 9.9 10.1

1000 15.5 10.5 16.4 17.3 10.0 10.0 9.9 10.0

Bold numbers indicate the minimum test classification error while underlined numbers indicate the second minimum.

of statistical moments. The attributes were scaled and dis-
cretized into a range of integer values from 0 to 15. The
size of the training set is the first 15,000 items and the re-
sulting model is used to predict the letter category for the
remaining 5000. This data set is one of the data sets used in
the STATLOG project. For more details and description of
methods applied to this data set, see Ref. [14]. In this study
the results of different methods applied to this data set in
the STATLOG project are summarized in Table 9 and results
of SGP1, SGP2, GMM1 and GMM2 methods are shown in
Table 10.

3.2.2. Cancer data set
In this breast cancer data set, the goal is to classify a

tumor as benign or malignant based on cell descriptions
gathered by microscopic examination. Input attributes are
for instance the clump thickness, the uniformity of cell
size and cell shape, the amount of marginal adhesion and
the frequency of bare nuclei. The data set consists of nine
inputs, one binary output and 699 examples; 65.5% of the
examples are benign, 525 examples were used for training
and the remaining 174 examples were used for testing. This
data set was obtained from cancer1.dt file from Proben1
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Fig. 11. Test classification error comparison of different methods for I–I
data set.

Table 9
Results of different methods used in STATLOG project for Letter data set

Method Classification error (%)

Train Test

Alloc80 6.5 6.4
K-NN 0.0 6.8
LVQ 5.7 7.9
QuaDisc 10.1 11.3
Cn2 2.1 11.5
BayTree 1.5 12.4
NewId 0.0 12.8
IndCart 1.0 13.0
C4.5 4.2 13.2
Dipol92 16.7 17.6
Radial 22.0 23.3
LogDisc 23.4 23.4
Ac2 0.0 24.5
Castle 23.7 24.5
Kohonen 21.8 25.2
Cal5 15.8 25.3
Smart 28.7 29.5
Discrim 29.7 30.2
BackProp 32.3 32.7
Bayes 51.6 52.9
Itrule 58.5 59.4

Table 10
Results of SGP and GMM methods applied to Letter data set

Method Average CPU time Number of prototypes Test classification
error (%)

Train Test

SGP1 25.38 9.39 1546 5.94
SGP2 72.11 4.59 1338 6.68
GMM1 2.33 21.72 502 12.70
GMM2 1.46 2.62 61 7.18

database [15], which was created based on the “breast can-
cer Wisconsin” problem data set from the UCI repository
of machine learning databases [16].

3.2.3. Diabetes data set
This data set is about the diagnosis of diabetes of Pima

Indians. Based on personal data (age, number of times preg-
nant) and the results of medical examinations (e.g. blood
pressure, body mass index, result of glucose tolerance test,
etc.), the goal is to classify a Pima Indian individual as di-
abetes positive or negative. The data set consists of eight
inputs, one binary output, and 768 examples; 65.1% of the
examples are diabetes negative, 576 examples were used
for training and the remaining 192 examples were used for
testing. This data set was obtained from diabetes1.dt file
from Proben1 database [15], which was created based on
the “Pima Indians Diabetes” problem data set from the UCI
repository of machine learning databases [16].

3.2.4. Thyroid data set
This data set is about the diagnosis of thyroid hypofunc-

tion. Based on patient query data and patient examination
data, the task is to decide whether the patient’s thyroid has
overfunction, normal function, or underfunction. The data
set consists of 21 inputs, one discrete output, 7200 exam-
ples. The class probabilities are 5.1%, 92.6% and 2.3%, re-
spectively; 5400 examples were used for training and the re-
maining 1800 examples were used for testing. This data set
was obtained from thyroid1.dt file from Proben1 database
[15], which was created based on the “ann” version of the
“thyroid disease” problem data set from the UCI repository
of machine learning databases [16].

Tables 11 and 12 show the CPU time elapsed in train-
ing and testing for different methods, respectively, while
Tables 13 and 14 show comparison of the number of proto-
types and the test classification error, respectively.

4. Discussion

It can be noted from the above results that SGP1 and
SGP2 require less computational effort and thus are faster
than the other methods, both for training and actual clas-
sification, with the exception of the STATLOG experiment
where GMM2 was somewhat ahead. The improvement in
speed compared to all methods other than the GMM meth-
ods is almost one order of magnitude in general. Concern-
ing the resulting number of prototypes, SGP2 and GMM2
were mostly better (i.e. they resulted in a smaller number of
prototypes). However, SGP1 was not far behind. The classi-
fication accuracy of SGP1 and SGP2 is significantly better
than LVQ, 1-NN and SGNT, a little better than K-NN, and
almost tie with GMM1 and GMM2. This is perhaps because
the other lagging methods lead to much more prototypes
and hence a higher complexity classifier. Not only did the
SGP methods beat other prototype methods, but they beat
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Table 11
Average CPU training time over all runs with different parameters for Real World data sets

Data set K-NN LVQ SGNT SGP1 SGP2 GMM1 GMM2

Cancer 2.21 5.21 6.51 0.01 0.03 0.32 0.03
Diabetes 2.56 0.68 8.34 0.20 0.23 0.24 0.21
Thyroid 25.87 185.12 94.82 5.00 5.16 22.7 0.14

Table 12
CPU test time for Real World data sets

Data set 1-NN K-NN LVQ SGNT SGP1 SGP2 GMM1 GMM2

Cancer 0.11 0.10 0.03 0.59 0.01 < 0.01 < 0.01 0.01
Diabetes 0.10 0.11 0.06 0.75 < 0.01 < 0.01 0.01 0.01
Thyroid 7.44 10.99 1.50 6.9 0.03 < 0.01 0.55 0.43

Table 13
Number of prototypes for Real World data set

Data set 1-NN or K-NN LVQ SGNT SGP1 SGP2 GMM1 GMM2

Cancer 525 52 141 3 2 18 2
Diabetes 576 288 392 22 22 8 3
Thyroid 5400 2700 1112 9 1 41 3

Table 14
Test classification error (%) for Real World data set

Data set 1-NN K-NN LVQ SGNT SGP1 SGP2 GMM1 GMM2

Cancer 2.90 1.70 5.17 4.02 1.15 1.15 1.15 1.72
Diabetes 30.20 27.60 30.73 31.25 27.08 28.13 27.08 31.77
Thyroid 7.00 6.30 13.83 9.33 7.28 7.28 14.83 7.28

Bold numbers indicate the minimum test classification error while underlined numbers indicate the second minimum.

(at least SGP1) all 21 classification methods documented
in the well-known STATLOG comparison in terms of test
classification accuracy, and were among the top ones in
terms of training and testing times. Note that STATLOG
is one of the few large-scale comparisons of classification
performance. An interesting result can be observed for the
mixture of Gaussian Diagonal data set. The four prototypes
result from SGP method represent an approximation for the
Gaussian means (Fig. 12). So, overall, the SGP methods are
among the best in almost all performance measures, with
the GMM methods competitive with them.

5. Conclusions

In this article, we proposed new prototype methods
(SGP1, SGP2) for pattern classification problems. The main
advantage of these methods is that they learn the number of
prototypes required to represent each class region and the
prototypes’ locations from the training patterns. The idea of
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Gaussian mean

Fig. 12. Resulting prototypes of SGP compared to the Gaussian means
for the Diagonal data set for 500 training patterns.
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the proposed methods is to start with one group/prototype
per class, and successively split groups, shift patterns from
one group to another, merge groups, etc according to a
proposed algorithm. The proposed approaches have sig-
nificantly reduced the number of prototypes compared to
K-NN without sacrificing the classification accuracy. More-
over, they achieve superior performance in terms of clas-
sification accuracy, classification speed and number of
prototypes compared to LVQ. In addition, the SGP meth-
ods achieve superior performance or competitive with the
GMM methods in terms of many criteria such as accuracy,
speed and the number of prototypes.
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