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Abstract - This paper presents an interval type-2 fuzzy K- 
nearest neighbor (NN) algorithm that is an extension of the type- 
1 fuzzy K-NN algorithm proposed in [l]. In our proposed 
method, the membership values for each vector are 

'extended as interval type-2 fuzzy memberships by assigning 
uncertainty to the type-1 memberships. By doing so, the 
classification result obtained by the interval type-2 fuzzy K-NN 
is found to he more reasonable than that of the crisp and type-1 

effectiveness of our method. 

For this extension, we use initial K values in an appropriate 
r ~ , g e ,  ~ ~ ~ d l , ~ ~  of this uncertainty can decrease the 
contribution of an undesirable initial K on the classification 
process for the patterns. Hence, this can provide a more 
reasonable classification result by managing the uncertainty 
for the selected initial K ,  

possesses the following advantages. 
fumy K-". Experimental results are given to show the In Our proposed type-2 approach 

1. INTRODUCTION 

The conventional (crisp) K-NN is a simple algorithm that is 
used to assign patterns of unknown classification to the class 
of the majority of its K nearest neighbors of known 
classification according to a distance measure [3]. However, a 
major drawback of the method is that each of the patterns of 
known classification is considered equally important in the 
assignment of the pattern to be classified. This can cause 
difficulties in regions where pattern data overlap. To 
overcome this drawback, a fuzzy version of the K-NN was 
proposed [I]. In this method, the assigned memberships play 
a role in the amount of contribution of a pattern during the 
classification process. As a result, the selected pattern that 
has low membership suggests small contribution on the 
classification for the pattern [I]. Therefore, this can allow the 
misclassification rate to decrease even for class pattern data 
that overlap. However, the result may still he sensitive to the 
selection of K. Poor selection of K can result in an 
undesirable classification rate. Therefore, we focus on the 
uncertainty involved in the selection of K. This uncertainty is 
represented by an interval between the memberships that 
consider several values of K for the initial fuzzification 
process. As a result, we propose an interval type-2 fuzzy K- 
NN. 

The extension to the interval type-2 fuzzy case revises the 
initial fuzzification process in the fuzzy K-NN algorithm. In 
the type-l fuzzy case, only one initial K is selected to assign 
initial fuzzy memberships to the pattern data. If the selection 
of K is poor, an undesirable classification rate for the pattem 
data can be obtained. However, for the interval type-2 fuzzy 
approach, we need not select only one initial K. This is due to 
the extension of the pattern data into an interval type-2 fuzzy 
set. 

This work was supported by Hanyang University, Korea, made in the 
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I )  Due to the interval type-2 fuzzy extension, we need not 
choose only one initial K. 

2) By considering various initial K values for the pattern 
memberships, a more reasonable classification result may 
be obtained. 

The remainder of this paper is organized as follows. In 
Section 2, we briefly describe the crisp and fuzzy K-NN 
algorithms. In Section 3, we describe how to extend type-1 
fuzzy memberships to interval type-2 fuzzy memberships for 
use in our proposed method. In Section 4, we describe our 
interval type-2 fuzzy K-NN. Section 5 gives some 
experimental results that are applied to OUT method. Finally, 
Section 6 gives the conclusions. 

11. CRISP AND FUZZY K-NN 

Nearest neighbor classifiers require no preprocessing of the 
labeled pattern set prior to their use. The crisp I-nearest 
neighbor classification rule assigns a given input pattern, 
which is of unknown classification, to the class of its nearest 
neighbor [I], [3]. This idea can be extended to K-nearest 
neighbors with the given pattern being assigned to the class 
that is represented by a majority among the K-nearest 
neighbors. This can he summarized as follows. 

A. The crisp K-NN algorifhm 

Let W = { x , ,  .. ., x,} be a set of n labeled patterns; 

Inputy, of unknown classification 
Set K, 1 G S n  
Initialize i = I 
DO UNTIL (K-nearest neighbors are found) 

' 

BEGIN 

Compute distance from y to xi 
IF (iw THEN 

ELSE IF (xi is closer to y than any previous nearest 
Include xi in the set of K-nearest neighbors 

neighbor) THEN 
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Delete farthest pattem in the set of K-nearest 

Include xi in the set of K-nearest neighhors; 
neighbors; 

END IF 
Increment i 

END DO UNTIL 
Determine the majority class represented i the set of K- 

IF (a tie exists) THEN 
nearest neighbors 

Compute sum of distances of neighbors in each class 

IF (no tie occurs) THEN 

ELSE 

END IF 

Classifyy in the majority class 

that tied 

Classify y in the class of minimum sum 

Classifyy in the class of last minimum found 

ELSE 

END IF 
END 

B. Thefuzry K-NN algorithm 

The fuzzy K-nearest neighbor algorithm assigns class 
membership to a pattem rather than assigning the pattem to a 
particular class. The membership values for the pattem 
should provide a level of assurance to accompany the 
resultant classification. The basis of the algorithm is to assign 
membership as a function of the pattem distance kom its K- 
nearest neighhors and those neighbors’ memberships in the 
possible classes [ I ] .  The assigned membership of the pattem 
x is computed as 

k 1.A 
\ ’  ” 

U j ( X )  = 
J=‘ 

AI 11, 

where ug is the membership in the ith class of the jth pattem 
of the labeled pattem set. 

As seen in (I), the assigned memberships of pattem x are 
influenced by the inverse of the distances from the nearest 
neighbors and their class memberships. The inverse distance 
provides more weight to a pattem’s membership if it is closer 
and less if it is farther from the pattem under consideration. 
In addition, the labeled pattems can he assigned class 
memberships in several ways. As in [l], a reasonable 
membership assignment in each class can be computed as 

0.51+(njIK)*0.49, i f j = i  
(nj lK)*0.49, i f j  # i’ 

.-={ 
(2) 

where nj denotes the number of neighbors which belong to 
the j th class. 

The fuzzy algorithm is similar to the crisp version in the 
sense that it must also search the labeled pattem set for the K- 
nearest neighhors. Beyond obtaining these K pattems, the 

procedures differ considerably. The algorithm can be 
summarized as follows. 

Let W={xl,,,,~n} be a set of n labeled pattems. The 
algorithm is as follows [I]: 

BEGIN 
Input x ,  of unknown classification 
Set K, 1 %Sn 
Initialize i = 1 
DO UNTIL (K-nearest neighhors to x found) 

Compute distance from x to xi 
IF (iw THEN 

END IF 
END DO UNTIL 
Initialize i = 1 
DO UNTIL (x assigned membership in all classes) 

Include xi in the set of K-nearest neighbors 

Compute U@) using (1) 
Increment i 

END DO UNTIL 
END 

111. EXTENSION TO INTERVAL TYPE-2 FUZZY SET 

In Fuzzy K-NN, we extend the pattem set to fuzzy set 
before attempting this method. For this, it is necessary to 
select an appropriate initial K for the initialization process. 
Unfortunately, it is difficult to determine which K is most 
desirable for the given pattem set. This suggests that 
uncertainty is present in the selected initial K. In [l], various 
results can he obtained by varying K. As shown by various 
results, selection of an undesirable initial K can cause an 
undesirable misclassification rate. In this paper, several initial 
K values are used to manage and control the uncertainty [2], 
[4]- [6] .  From this point. of view, we extend the pattem data to 
interval type-2 fuzzy sets. At first, we assign several primary 
membership values to a given pattem set. For this, we 
consider several number of initial K value for the 
initialization process, namely, fuzzy K-INIT’[l]. This is used 
for determining the elements of primary memberships on 
interval type-2 fuzzy set. 

In this process, we cannot obtain N primary membership 
values although we use N numbers of initial K. This is due to 
regions of non-overlapping pattems. If we select initial K 
value in an appropriate range, a given pattem guaranteed to 
have full membership for any initial K value is selected. The 
following example illustrates this. 

In Fig. 1, suppose that pattem “square” belongs to class 1 
and “triangle” belongs to class 2. For the pattem that is 
indicated as “x,,” it always has full membership for class 1, 
and zero membership for class 2 when initial K is 1 or 2. In 
this case, the primary membership sets for pattem “x,,” 
becomes 

( 3) u,(xJ = U.O}> u, (x , )  = {O.OI 

Although we use 2 values for initial K ,  we can respectively 
obtain a primary membership element for each class. 
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Fig. 1. An example of membership assignment by selecting 
initial Kvalue and location of pattern 

However, for another pattern that is indicated as “xz,” a 
different result is obtained when initial K is chosen as 2 .  As 
seen in Fig. 1, the pattern has full membership for class 1 
when initial K is 1. However, by increasing the initial K, the 
membership of the pattern for class 1 decreases and the 
membership of the pattern for class 2 increases. Therefore, 
when we use several initial K values to extend to interval 
type-?. fuzzy sets, we can be obtained several primary 
membership values for each class. For example, we can 
obtain the following result for the pattern “xz,” if we use 
initialK=l, 2 , 3 .  

U, (x,) = {I .0,0.755,0.674}, u,(x,) = {0,0.245,0.326) (4) 

From this result, we can derive a specific relation between 
initial K and primary membership as 

N 

(5) 
12 e lementnumberofUu( j ,K, ,x , )~  N 

whereK,={K,,...,K,,) 

In ( S ) ,  u ( j , K , ~ ~ )  represents the primary membership of the 

Extension to interval type-2 fuzzy sets by this method bas 

A pattern in a non-fizzy framework remains as a w e - 1  
fuzzy set. and a pattern in fuzzy framework extends to an 
interval type-2fizzy set. 

Fig. 2 represents the extension to an interval type-2 fuzzy 
set for each pattern in a fuzzy framework. As seen by Fig. 2, 
we should use various initial K values in an appropriate range 
for a given xk. Next, we perform union operation by the 
membership values for a given xk. In this process, we can 
reduce redundant primary membership values. After that, we 
can obtain primary memberships for a given xk. Finally, we 
should consider secondary grade of each primary 
membership value. However, since we use an interval type-2 
fuzzy set, we-need not consider secondary grade. That is 
always 1.0. Through this method, we can extend fuzzy set to 
an interval type-2 fuzzy set for xk. 

,SI 

ith pattern in class j when initial K is selected as K,. 

the following property. 

Fig. 2. An example of extension to interval type-2 f u m  set 
for a pattern in the fuzzy domain 

Iv. INTERVAL TYPE-2 FUZZY K-NN 

Basically, we perform K-NN after extension to interval 
type-2 fuzzy set on initialization process. Therefore, when 
assigning interval type-2 fuzzy memberships for a given 
pattern, the membership assignment for each class [ 2 ] ,  [4], 
[6] can be modified as 

where (6), i, represents the interval type-2 fuzzy 

membership of x for class i. In addition, 17, represent initial 
interval type-2 fuzzy membership of xj, which is the j th  
nearest neighbor to x in class i. For calculating (6), we can 
consider embedded interval type-2 fuzzy sets. This is 
explained as follows. 

Suppose we consider K = 2 then for two patterns that’are 
nearest to a given x, we can obtain embedded interval type-2 
fuzzy sets between the primary memberships of the 2 patterns. 
This follows the literature explained in [Z], [4]. 

XI x2 

Fig. 3. An example of embedded interval type-2 fuzzy Sets 
for the 2 pattems that are nearest to x. (i.e., K=2) 
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Now, when we assume that each pattern has n, number of 
primary memberships, we can derive an equation which gives 
the number of primary membership for xk with the number of 
primary memberships for K nearest neighbor patterns as 

(7) 

where k denotes the pattern number and I denotes class 

From (7), we can represent the primary memberships of 

number 

each pattern as 

Now, we can extend to an interval type-2 fuzzy set for 
given pattern xk with the secondary membership of each 
primary membership as 

a x ,  ) = f(u, , ,  )/U,, + " ' + f ( u ,  )/Uq* 

From (8) and (9), the given pattern remains as an interval 
type-2 fuzzy set. For the classification process by assigning 
memberships for a given pattern, the type-reduction process 
needs to be applied before defuzzification. For the type- 
reduction process, the type-reduced membership of xk in class 
i can be expressed as 

where q ( x , )  is type-reduced membership ofx, in class i 

In ( IO) ,  we need not consider the secondary grade since 
the secondary grade is always 1.0. Therefore, it is 
approximately the average of primary memberships of 
interval type-2 fuzzy set. In here, the membership ofxk is no 
longer an interval type-2 fuzzy set, we can estimate the 
degree of the pattem membership. we can classify a given 
pattern xk by membership values. 

In the interval type-2 fuzzy K-NN, we can recognize that 
this method is equal to fuzzy K-NN method when a single 
initial K is used. Also, when we set initial K and K equal to 1, 
interval type-2 fuzzy K-NN is equivalent to the crisp NN 
method. Therefore, we can consider the interval type-2 fuzzy 
K-NN a s a  generalizing form of K-NN. 

Fig. 4. Relationship between the crisp, fuzzy, and interval 
type-2 fuzzy approaches 

ciusinruh afx by T Y ~ R & U ~  
Mombemblp Vdur 

Lzrz==! 
Fig. 5. Block diagram of the interval type-2 fuzzy K-NN 

Fig. 5 summarizes our interval type-2 fuzzy K-NN 
algorithm. As seen in Fig. 5, the algorithm consists of 2 
stages. In the first stage, we perform interval type-2 fuzzy K- 
INIT to extend pattem set to interval type-2 fuzzy sets. In the 
next stage, we perform interval type-2 fuzzy K-NN with 
interval type-2 fuzzy set. In this part, we assign interval type- 
2 fuzzy membership for a given pattern using the embedded 
interval type-2 fuzzy operation. Finally, when we classify 
pattem by membership grade, we perform type-reduction and 
defuzzification. 

V. EXPERIMENTAL RESULTS 

In this section, we first show an example using "twoclass" 
data by comparing results of the fuzzy and interval type-2 
fuzzy K-NN methods. In doing so, we choose initial K values 
{ 1, 3, 5 ,  7, 9) and assign initial memberships for the pattem 
set. Also, we choose K={l ,  2, 3, 4, 5, 6, 7, 8, 9) for each K- 
NN method. in other words, we perform the fuzzy K-NN 
method 5 times for each K, and interval type-2 fuzzy K-NN 
method 26 times for each K. As shown table I, we have 26 
combination of the initial K for interval type-2 fuzzy K-NN. 

TABLE I 
COMBNATION OF INTERVAL TYPE-2 FUZZY K-h? 
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Fig. 6 show the average number of misclassifications for 
"two class" data for the fuzzy and interval type-2 fuzzy K-NN. 
As shown in Fig. 6, the interval type-2 fuzzy K-NN shows 
slightly better performance than the fuzzy K-NN. This 
classification result for the interval type-2 fuzzy K-NN can be 
obtained by .the relatively low influence of the undesirable 
initial K. For this, we use several initial K values for the 
interval type-2 fuzzy K-NN. 

, I , . l . I I I P  

Fig. 6. Average number of misclassification for "twoclass" 
data 

L 
1 2 1 4 1 1 1 1 1 9  

Fig. 7. Minimum misclassification rate using a fixed value for 
initial K 

I 1 , I I O B P  

Fig. 8. Maximum misclassification rate using a fixed value 
for initial K 

Fig. 7(8) shows the minimum (maximum) misclassification 
rate when we fix initial K to a specified value. 

We now show a more reliable classification result in our 
next example. Fig. 9 shows the scatter plot of the "T-shape" 
data used for our example. 

0 ,  e. ( I8 0 8  

Fig. 9. Scatter plot of "T-shape" data 

For this example, we choose initial K values (9, 11, 13, 15, 
17) and assign initial memberships for the pattern set. Also, 
we choose K = ( 3 , 5 , 7 , 9 ,  1 I )  for each K-NN method. 

Fig. 10 show the average number of misclassifications for 
"T-shape" data for the fuzzy and interval type-2 fuzzy X-NN. 
As shown in Fig. IO, the interval type-2 fuzzy K-NN 
outperformed the fuzzy K-NN. 

i j  - 
,. / I (  

Fig. IO.  Average misclassification rate for "T-shape" data 

TABLE II 
CONFUSION MATRIX FOR MINIMUM ERROR RATE 

Fuzzy lntcrval typc-2 
"T-shape" data 

Class I Class2 Class I Class 2 

Class I 219 9 220 8 

Class 2 32 I87 30 I89 

Table I1 shows the confusion matrix for the minimum error 
rate. As shown in the table, an improvement of a 
classification rate of 0.7% is achieved when we compare the 
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best classification resdt”for the fuzzy K-NN and interval. 

‘From the above graphs, we can conclude that the interval 
type-2 fuzzy K-NN is more desirable when we vary K. In 
other words, we may suggest that the classification result of 
interval type-2 fuzzy K-NN is more reliable than the fuzzy K- 
NN regardless of what value of initial K we select. 

fuzzy K-NN. 

VI. CONCLUSION 

In this paper, we presented an interval type-2 fuzzy K-NN 
algorithm that is an extension of the fuzzy K-NN algorithm 
that was proposed in [I]. In OUT proposed method, the 
membership values for each pattem were extended’as interval 
type-2 fuzzy memberships by using several initial K. As a 
result, this method can handle and manage uncertainty that 
exist in choosing initial K. To show the effective of our 
method, we gave several results using the “twoclass” and “T- 
shape’’ data. As a further study, we plan to examine various 
data and also try to extend type-1 fuzzy memberships to the 
type-2 fuzzy memberstiips for various secondary grades. 
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