
Pattern Recognition Letters 26 (2005) 1554–1567

www.elsevier.com/locate/patrec
A divide-and-conquer approach to the pairwise opposite
class-nearest neighbor (POC-NN) algorithm q

Thanapant Raicharoen *, Chidchanok Lursinsap

Advanced Virtual and Intelligent Computing Center (AVIC), Department of Mathematics, Faculty of Science,

Chulalongkorn University, Bangkok 10330, Thailand

Received 20 June 2004; received in revised form 15 October 2004

Available online 17 February 2005

Communicated by R.P.W. Duin
Abstract

This paper presents a new method based on divide-and-conquer approach to the selection and replacement of a set

of prototypes from the training set for the nearest neighbor rule. This method aims at reducing the computational time

and the memory space as well as the sensitivity of the order and the noise of the training data. A reduced prototype set

contains Pairwise Opposite Class-Nearest Neighbor (POC-NN) prototypes which are close to the decision boundary and

used instead of the training patterns. POC-NN prototypes are obtained by recursively iterative separation and analysis

of the training data into two regions until each region is correctly grouped and classified. The separability is determined

by the POC-NN prototypes essential to define the locations of all separating hyperplanes. Our method is fast and order

independent. The number of prototypes and the overfitting of the model can be reduced by the user. The experimental

results signify the effectiveness of this technique and its performance in both accuracy and prototype rate as well as in

training time to those obtained by classical nearest neighbor techniques.

� 2005 Elsevier B.V. All rights reserved.

Keywords: Pattern classification; Nearest neighbor rule; Prototype selection; Prototype replacement
0167-8655/$ - see front matter � 2005 Elsevier B.V. All rights reserv

doi:10.1016/j.patrec.2005.01.003

q Supported by the Thailand Research Fund (TRF)(PHD/

0173/2545).
* Corresponding author. Tel.: +66 9924 1924; fax: +66 2534

2483.

E-mail addresses: thanapant@avic.sc.chula.ac.th (T. Rai-

charoen), lchidcha@chula.ac.th (C. Lursinsap).
1. Introduction

The Nearest Neighbor (NN) rule was originally

proposed by Cover and Hart (Cover and Hart,
1967; Hart, 1966) in 1966 and has been shown to

be very effective in many applications of pat-

tern recognition. One reason for the use of this rule
ed.

mailto:thanapant@avic.sc.chula.ac.th
mailto:lchidcha@chula.ac.th

T. Raicharoen, C. Lursinsap / Pattern Recognition Letters 26 (2005) 1554–1567 1555
is its conceptual simplicity, which is easy to imple-

ment. Moreover, under some continuity assump-

tions on the underlying distributions, the

asymptotic error rate of this rule is at most twice

Bayes� probability of errors (Cover and Hart,
1967; Duda et al., 2001). However, it suffers from

various drawbacks. Firstly, it requires a large

memory space as the entire training data set has

to be stored and each test pattern has to be com-

pared with every training pattern. Secondly, it

requires a large computational time for finding

the neighbors. Thirdly, it is sensitive to the noisy

and/or outlier patterns. To alleviate these draw-
backs, two approaches, prototype selection and

prototype replacement are introduced (Kuncheva

and Bezdek, 1998). Both approaches aim at modi-

fying an original training pattern (prototype) in

order to reduce its size as well as to improve clas-

sification performance. One of the first and most

popularly used techniques of prototype selection

is the Condensing Nearest Neighbor (CNN) pro-
posed by Hart (1968). The main goal of the con-

densing method is to obtain the reduced and

consistent set of prototypes (Hart, 1968) to be used

with the 1-NN rule without error in the training set

or in with the k-NN rule without significantly

degrading its performance. The condensing

method proceeds by repeatedly selecting the proto-

types whenever they cannot be correctly classified
by the currently selected set. The whole process

is iterated until there are no changes in a complete

pass through the initial training set. However, the

method does not, in general, yield a minimal size

of the consistent subset, and the final size as well

as composition of the final condensed set may

strongly depend upon the order of presentation

data. Since the development of the CNN, other
methods were proposed successively, such as the

Reduced Nearest Neighbor (RNN) rule proposed

by Gates (1972). An algorithm for a Selective

Nearest Neighbor (SNN) decision rule was intro-

duced by Ritter et al. (1975). Tomek presented

the Two Modifications of the CNN by growing

the condensed set using only patterns close to the

decision boundary (Tomek, 1976). The way in
which pairs of prototypes are selected makes the

algorithm very good at preserving the original

decision boundaries. Chidananda Gowda and
Krishna introduced the concept of mutual nearest

neighbor neighborhood for selecting patterns close

to the decision bounderies (Chidananda Gowda

and Krishna, 1979). The position of a prototype

in the ordered list of neighbors of its nearest
neighbor from an opposite class is used as a way

to measure the closeness to boundaries. Several

theoretical results on CNN have been obtained in

(Devroye et al., 1996).

Another well known used technique of proto-

type selection is the editing method (Devijver and

Kittler, 1982) proposed by Wilson (1972). The

main goal of the editing method is to improve
the performance by discarding outliers and possi-

ble overlapping among classes rather than proto-

type reduction. However, the drawbacks of the

editing method are that it still leaves too many

prototypes in the edited set, and the complexity

of computing the edited subset is very high. There-

fore, Sanchez proposed the k-Nearest Centroid

Neighbors (k-NCN) in order to identify and elimi-
nate mislabelled, noisy and atypical training pat-

terns (Sanchez et al., 2003). Several editing

experiments are carried out and comparative re-

sults are presented in (Ferri et al., 1999). The

exploration and exploitation of the synergy among

the NN editing and condensing methods in order to

facilitate the use of NN techniques in real-world

applications was studied in (Dasarathy et al.,
2000).

For the prototype replacement approach, one

of the first methods, proposed by Chang (1974),

repeatedly merges the two nearest neighbors of

the same class as long as this merger does not

increase the error rate on the training set. One

drawback of this method is that it may yield the

prototypes that do not characterize the training
set well in terms of generalization (Toussaint,

2002).

In order to obstruct the undesirable property of

the order dependence of presentation data, several

attempts, for example in (Devi and Murty, 2002;

Alpaydin, 1997), were suggested to obtain selected

prototypes that are less sensitive to this property.

However, most of the improvements of NN meth-
ods cannot avoid overfitting for noisy and/or over-

lapping data, and do not consider any statistical

properties of training data.

1556 T. Raicharoen, C. Lursinsap / Pattern Recognition Letters 26 (2005) 1554–1567
This work is focused on developing a new

method for obtaining a set of selection prototypes

as well as replacement prototypes. Unlike all of

these above mentioned methods, our proposed

method is based on a divide-and-conquer approach.
That is the analogy to partition original training

patterns into smaller regions by finding POC-NN

prototypes for the regions, and then combine

POC-NN prototypes for the regions into a set of

selection prototypes. The rest of this paper is orga-

nized into five sections. Sections 2 and 3 present

our proposed POC-NN method for prototype

selection and replacement, respectively, including
its analysis. In Section 4, some experiments are

described and the performance of our method is

evaluated. Section 5 concludes the paper.

2. The methodology of the POC-NN for

prototype selection

The idea is to isolate a subset of the training set

that suffices for nearest neighbor predictions, and

throw away the remaining data. Intuitively, it

seems important to keep the training points (pat-

terns) that are close to the decision boundaries

and on the correct side of those boundaries, while

some points far from the boundaries should be dis-

carded. The bottom line of this idea is to find a
POC-NN pattern for a given two-class training

data set and then the remaining patterns can be

discarded.

2.1. Finding POC-NN pattern algorithm

Let S be a training set of n patterns composed

of two subsets S(1) and S(2) whose sizes are
jS(1)j = n(1) and jS(2)j = n(2). Both S(1) and S(2) are

in different classes, namely classes 1 and 2, respec-

tively, and S(1) \ S(2) = ;. The algorithm to find a

POC-NN pattern is given as follows.

Function FINDING-POC-NN (S: Dataset)

1. Let S(1) and S(2) be two training sets with

classes 1 and 2,

whose sizes are S(1) and S(2), respectively.
2. If n(1) P n(2)
Then
3. xm = mean of S(1).
3.1. Let xp2 2 S(2) be the nearest pattern to xm.
3.2. Let xp1 2 S(1) be the nearest pattern to xp2.
Else
4. xm = mean of S(2).

4.1. Let xp1 2 S(1) be the nearest pattern to xm.
4.2. Let xp2 2 S(2) be the nearest pattern to xp1.
Endif
5. Return (xp1,xp2) as a POC-NN pattern.

Fig. 1(a) shows an example of how finding

POC-NN algorithm works. There are two classes,

1 and 2. Each pattern in class 1 is denoted by the

symbol ‘‘+’’ and each pattern in class 2 is denoted
by the symbol ‘‘*’’. The mean of patterns (xm) in
class 1 is denoted by the symbol ‘‘�’’. The POC-

NN prototypes (xp1,xp2) are enclosed in circle sym-

bols ‘‘s’’. This POC-NN prototype is performed

during the training process and all considered pat-

terns in all classes are considered as the training

patterns. The identical POC-NN patterns as proto-

types are always obtained independent from the
different reordering of the training patterns. More-

over, the POC-NN patterns have the desirable

property similar to the Support Vectors (Cortes

and Vapnik, 1995; Vapnik, 1998) which induce

the optimal separating hyperplane. This is because

if all the training vectors are linearly independent,

the two closest patterns of opposite classes are sup-

port vectors. This proof can be found in (Roo-
baert, 2000). However, the POC-NN algorithm is

not guaranteed to find these support vectors. Fig.

1(b) and (c) show the prototypes created by using

the CNN method (Hart, 1968) which does not

guarantee the optimal solution. The condensed

prototypes are enclosed in square symbols ‘‘h’’.

The obtained prototypes strongly depend on

the order of presentation of the training patterns.
In this case, it depends on the first pattern of

each class. Fig. 1(d) also shows the prototypes by

using the CNN method which creates the prob-

lems of redundant prototypes and also slow

convergence.

Once POC-NN prototypes are found, a separat-

ing linear hyperplane is generated and orthogo-

nally placed in the middle of the distance
between these POC-NN prototypes. This hyper-

plane acts as a decision boundary (similar to a

Voronoi Diagram). The boundary of each region

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

X1

X
2

S(1) = Class 1 (2) = Class 2

Xm
Xp1

Xp2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

X1

X
2

S(1) = Class 1 (2) = Class 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

X1

X
2

S(1) = Class 1 (2) = Class 2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

X1

X
2

S(1) = Class 1 (2) = Class 2

S

SS

S

(a) (b)

(c) (d)

Fig. 1. This example shows how to select the prototypes: (a) our POC-NN; (b)–(d) CNN when reordering training patterns.

T. Raicharoen, C. Lursinsap / Pattern Recognition Letters 26 (2005) 1554–1567 1557
is defined by the corresponding hyperplane gener-

ated by the POC-NN prototype lying in each re-

gion. The following is the detail of prototype

selection by POC-NN algorithm.

2.2. Prototype selection by POC-NN algorithm

for two-class classification problem

In this section, we present our proposed algo-

rithm for two-class classification problem and in

the later subsection, we extend our algorithm for

multi-class classification problem.

Prototype selection by POC-NN algorithm for

two-class classification

Let S be a training set of n patterns composing

of two classes, and POC-NN-SET initially be an
empty POC-NN prototypes set.
Function SELECTING-POC-NN (S: Dataset)

1. Find a POC-NN prototype in S by using

(xp1,xp2) = FINDING-POC-NN (S).

2. Determine the center point c ¼ xp1þxp2
2

.

3. Create a separating hyperplane H:

{xjw Æ x � b = 0},

where w ¼ xp1�xp2
kxp1�xp2k and b = w Æ c.

4. Save (xp1,xp2) and coressponding H into the

POC-NN-SET.

5. Divide all patterns of S into two regions,

namely R1 and R2, where

R1 = {xi 2 Sjw Æ xi � b P 0}, and

R2 = {xi 2 Sjw Æ xi � b < 0},"i,i = 1, . . .,n.
6. Find any misclassification in both regions.

7. If any misclassification exists in region R1

Fig.

1558 T. Raicharoen, C. Lursinsap / Pattern Recognition Letters 26 (2005) 1554–1567
Then
8. Consider all data in this region R1 as a

new data set
Call SELECTING-POC-NN (R1).

Endif

9. If any misclassification exists in region R2
Then
10. Consider all data in this region R2 as a

new data set
Call SELECTING-POC-NN (R2).

Endif
11. If no more misclassification exists
Then

12. Return POC-NN-SET as a set of selected

prototypes.
Stop.

Endif
Fig. 2 shows an example of how the algorithm

works for non-linearly separable problems. The

initial separating line (H1) created by a POC-NN

(xp1,xp2) is shown in Fig. 2(a). However, this line

still creates misclassified training patterns lying

on the right side of this line. All the training pat-

terns lying on this side are considered as a new

data set. The second line (H2) as shown in Fig.

2(b) is introduced to resolve the previously mis-

classified patterns. After performing the algorithm,

a set of selecting prototypes corresponding to
the POC-NN-SET consisting of two pairs of

{(xp1,xp2)} is obtained. The patterns from S(1)
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

X1

X
2

Xp1
Xp2

Xm

H1

(a) (b

2. This example shows how the proposed algorithms works: (a
are separated into two regions (regions 1 and 2).

Each region has a prototype ({xp1}) representative
class labeled 1. The patterns from S(2) are not sep-

arated, however, they have two prototypes ({xp2})
representative class labeled 2.
2.3. Reducing complexity and sensitivity to noise

In order to reduce the complextity and sensitiv-

ity to noise as well as to avoid overfitting for over-

lapping data, we relax the separating condition. A

separating hyperplane can be considered as a slab

of width alpha (a), called acceptance interval. All
patterns lying within the acceptance interval of

the slab are considered as correctly classified pat-

terns, and also considered as noisy and/or outlier

patterns which can be ignored or discarded. Our

acceptance interval (a), is defined as follows.

Suppose S be a training data set of n points with

two classes and xi 2 S.

Definition 1. Let {xjw Æ x � b = 0} be a hyper-

plane (H). a is an acceptance interval if

jw Æ xi � bj < a, and a > 0 and all xi are correctly

classified.

The acceptance interval is proportional to the

distance d between two POC-NN prototypes, and

is defined priori to the training process. In the

other word, a is defined as ar · d for 0 < ar < 1.
This ar is called a-ratio.
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

X1

X
2

Xp1
Xp2

H1

H2

Xm

Xp1

Xp2

Class 1

Class 1

Region 1 of Class 2Region 1 of Class 1

Region 2 of Class 1

Class 2

)

) initial separating line (H1); (b) second separating line (H2).

T. Raicharoen, C. Lursinsap / Pattern Recognition Letters 26 (2005) 1554–1567 1559
These a values for each hyperplane are not

necessary the same values, but are dependent on

a-ratio and the distance between corresponding

POC-NN prototypes.

Fig. 3 shows an example of an acceptance inter-
val defined by giving the a-ratio 1:5 or 0.2 (a), and

1:10 or 0.1 (b) and (c). In Fig. 3(a), our algorithm

will stop after one iteration and generate two

POC-NN prototypes. Each POC-NN is a proto-

type representative for each class, even though

there are three missclassified patterns lying within

the acceptance interval. They are considered as

noisy and/or outlier patterns which are ignored.
In Fig. 3(b), there are only two instead of three

missclassified patterns lying within the acceptance
0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

2.5

X1

X
2

S(1) = Class 1

 13.1 = ecnatsiD + = 0.2

Xp1

Xp2

H

1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

X1

X
2

Xp2

Xp1

H

+ = 0.131

 13.1 = ecnatsiD

(a)

(b) (

Fig. 3. All points lying inside of the slab with radius alpha (a) are con
distance between corresponding POC-NN prototypes is pre-defined by

1:10(0.1).
interval and considered as noisy and/or outlier

patterns. One missclassified pattern is still there,

therefore, the algorithm will continue and generate

the other two POC-NN prototypes shown in

Fig. 3(c).

2.4. Analysis of the selecting POC-NN algorithm

There are some interesting consequences in

selecting POC-NN prototype worth discussing.

Given a training set S of n patterns (n > 1) in d

dimensions composing of two subsets S(1) and

S(2), whose sizes are n(1) and n(2). Both S(1)

and S(2) are in different classes, namely classes 1

and 2, respectively, and there never exist two
3.5 4 4.5 5 5.5

S(2) = Class 2

62

1 1.5 2 2.5 3 3.5 4 4.5 5

1

0.5

0

0.5

1

1.5

2

X1

X
2

S(1) = Class 1

S(2) = Class 2

H
 13.1 = ecnatsiD

+ = 0.131

Xp2

Xp1

 92
.1

 =
 ec

na
ts

i
D

+ = 0.129 H

S(1) = Class 1

c)

sidered as noisy patterns. The ratio between an a value and the

a user. (a) a-Ratio is equal to 1:5(0.2). (b,c) a-Ratio are equal to

1560 T. Raicharoen, C. Lursinsap / Pattern Recognition Letters 26 (2005) 1554–1567
patterns with different class label on the position

(S(1) \ S(2) = ;).

Property 1. The selecting POC-NN algorithm

converges after m iterations, where m is the

number of POC-NN patterns having the values

between 1 and n � 1.

Proof. We start our proof with n(1) and n(2) = 1, so

these two patterns are POC-NN pattern to each
other and its hyperplane can be constructed to

make them linearly separable. If we add a new pat-

tern into this space, we always have two cases:

Case 1: A new pattern lies on the correct side, so

all data are still linearly separable and correctly

classified. The algorithm stops after one iteration.

Case 2: A new pattern lies on the wrong side.

Here, we need to consider only the data lying on
the wrong side. A new pattern will become a new

POC-NN pattern and a new hyperplane that

makes these data linearly separable, is introduced.

The algorithm will stop after two iterations.

If we gradually add a new pattern until there are

n patterns of training set S, we still always have

two cases as before. The algorithm will stop after

n � 1 iterations.
Assume that the algorithm does not converge.

This would only be possible if no hyperplane could

be constructed. But note that the hyperplane

cannot be constructed if the nearest patterns of

the two classes in data group cannot be found. It

would only be possible if the data group has only

the same class data and that is also the stop

condition of our algorithm. This is a contradiction
and hence non-convergence does not occur. h

The consequence of this property yields that

all training patterns are separated into the regions
of correctly classified classes after convergence.

Therefore, a set of patterns in each region is a con-

sistent set. However, the whole set of the selected

POC-NN prototypes may not be a consistent set.

This proof can be shown by giving a counterexam-

ple that the obtained set of prototypes generated

by our algorithm does not give 100% accuracy

on the training set by using 1-NN rule. Similar to
the Tomek�s algorithm, the consistency is not

guaranteed. A counterexample has been shown

in (Toussaint, 1994). However, there is no theoret-
ical evidence on how the consistency of the con-

densed set relates to the generalization abilities.

It may have an arbitrarily poor performance when

applied to unseen patterns as shown by some

experimental examples in Section 4.

Property 2. The time complexity of the selecting

POC-NN algorithm is O(dn2m).

Proof. The upper bound of the time complexity
is derived step by step in the following analysis.

In step 1 of the selecting POC-NN algorithm, the

calculation for finding a POC-NN prototype takes

in worst case O(dn2), and in steps 5 and 6, the

calculation takes O(dn). The time complexity

is bounded by O(dn2 + dn) after one iteration.

If the algorithm does not converge, step 1 of the

algorithm will continue with at most in worst case
(n � 1) patterns. The time complexity is bounded

by O(d(n � 1)2 + d(n � 1)) after two iterations.

From the property 1, our algorithm converges

after m iterations, therefore, the total time com-

plexity after m iterations is bounded by O(dn2 +

dn) + O(d(n � 1)2 + d(n � 1)) + � � � + O(d12 + d1)

which is equal to O(dn2m). h

Comparison with Condensing and Editing NN

algorithm, the complexity of computing the con-

densed subset and edited subset are O(dn3) and

Oðd3n½d=2� ln nÞ, respectively (Toussaint, 2002;
Duda et al., 2001). Both time complexities are

higher than the selecting POC-NN�s. In addition,

the comparison with the other two modified con-

densing methods which attempt to keep only pro-

totypes close to the decision boundary, Tomek�s
algorithm (Tomek, 1976) and Gowda–Krishna�s
algorithm (Chidananda Gowda and Krishna,

1979), the computational complexity of both algo-
rithms is considerable higher than the original

CNN algorithm. In case of Tomek�s algorithm,

only the step for finding a special subset, called

Gabriel Neighbors (Toussaint, 1994), already takes

O(n3) time. For a large number n such as that in

OCR applications shown by USPS data (USPS,

1994) experimental example in Section 4, it is not

feasible. Gowda–Krishna�s algorithm takes more
time than Tomek�s algorithm in some cases as

shown in (Chidananda Gowda and Krishna,

1979), since it requires a preprocess for finding

T. Raicharoen, C. Lursinsap / Pattern Recognition Letters 26 (2005) 1554–1567 1561
the Mutual Neighborhood Value (MNV) of each

pattern to order the patterns according to MNV,

and a post-process for reducing the number of

condensed set of prototypes.

Property 3. The selecting POC-NN algorithm is

order independent.

Proof. The training set can have n! permutations

order of how to present the data. In steps 3 and
4 of the finding a POC-NN pattern algorithm,

the centroid or mean of a set of points (patterns)

is calculated. The addition remains invariant to

the order of the data elements. Thus, the mean

operation is order independent. Finding the near-

est point to the centroid is also order independent,

since the centroid and the distances between the

centroid and all points from different classes are
fixed values. The shortest distance is found and

the corresponding point is selected as the represen-

tative prototype. If there is a tie between two or

more points for the closest distance from the cen-

troid, the point with the smallest value of the mean

of its feature is selected. If this is the same, the

point with the smaller value of feature 1 is selected.

If this is still the same, the point with the smaller
value of feature 2 is selected etc. So the distance

measure is order independent and the minimum

of these distances remains the same no matter

what the order of the presentation data is. The

other steps in the algorithm are obviously order

independent, thus the selecting POC-NN algo-

rithm is order independent. h
2.5. Algorithm for multi-class classification problem

In this section, we extend our proposed algo-
rithm for multi-class classification problem by

using a combination of many two-class classifiers

into a multi-class classifier. In contrast to the stan-

dard approach to the k-class problem by a �one-
against-rest� (1 � v � r) like scheme, we use the

alternative approach, so called �one-against-one�
(1 � v � 1) scheme using pairwise classification

with kðk�1Þ
2

binary classifiers.
We classify all k-class training data into pair-

wise two-class training sets and perform our select-

ing POC-NN algorithm on each two-class training
set. It is possible that the same pattern becomes a

POC-NN prototype more than once, when it has

been selected by another combination of pairwise

two-class training set. However, it is still the same

representative prototype for its class label. After
performing our algorithm for each two-class

pair, we obtain POC-NN prototypes represen-

tative for each class. The time complexity for

multi-class classification will be increased to

O kðk�1Þ
2

ðdn2mÞ
� �

, where n is the number of patterns

with two classes and m is the number of POC-NN

prototypes.
3. The methodology of POC-NN for prototype

replacement

After performing our prototype selection by
POC-NN algorithm on a training set, this training

set is separated into many regions of correctly clas-

sified classes. Each region has representative POC-

NN prototypes being elements of a reference set.

In this section, the original training data set are

replaced by a number of prototypes that do not

necessarily coincide with any pattern in training

set. Our POC-NN method for prototype replace-
ment is applied by replacing all POC-NN proto-

types in each region with the mean of patterns

in its region. Since, in the statistical principle, the

mean of a data set is the bestunderstood measure

of central tendency for a quantitative data set

(McClave et al., 2001), therefore the mean can

be a good representative pattern for all patterns

in its region. In consequence, the number of
replacement prototypes in general will be

decreased when compared with the number of

selection prototypes.
3.1. Prototype replacement by POC-NN

algorithm for two-class classification problem

We propose our prototype replacement by
POC-NN algorithm by modification of the proto-

type selection by POC-NN algorithm for Two-

Class Classification as follows.

Let MOR-NN-SET initially be an empty set of

mean of region prototypes.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
1

1.5

2

2.5

3

3.5

4

4.5

5

X1

X
2

Class 1 Class 2

Xmor

Region 1 of Class 2Region 1 of Class 1

Region 2 of Class 1 Class 1

Xmor

Xmor

Fig. 4. This example shows MOR-NN prototypes indicated by

the symbol ‘‘�’’.

1562 T. Raicharoen, C. Lursinsap / Pattern Recognition Letters 26 (2005) 1554–1567
Function REPLACING-POC-NN (S: Dataset)

1. Find a POC-NN prototype in S by using

(xp1,xp2) = FINDING-POC-NN (S).

2. Determine the center point c ¼ xp1þxp2
2

.

3. Create a separating hyperplane H:

{xjw Æ x � b = 0},

where w ¼ xp1�xp2
kxp1�xp2k

and b = w Æ c.

4. Save (xp1,xp2) and coressponding H into the

POC-NN-SET.

5. Divide all patterns of S into two regions,

namely R1 and R2, where

R1 = {xi 2 Sjw Æ xi � b P 0}, and
R2 = {xi 2 Sjw Æ xi � b < 0},"i,i = 1, . . .,n.

6. Find any misclassification in both regions.

7. If any misclassification exists in region R1
Then
8. Consider all data in this region R1 as a

new data set
call REPLACING-POC-NN (R1).

Else

9. Save xmor being the mean of R1 into the

MOR-NN-SET.
Endif
10. If any misclassification exists in region R2
Then
11. Consider all data in this region R2 as a

new data set
call REPLACING-POC-NN (R2).
Else
12. Save xmor being the mean of R2 into the

MOR-NN-SET.
Endif
13. If no more misclassification exists
Then
14. Save xmor being the mean of R1 into the

MOR-NN-SET, and

Save xmor being the mean of R2 into the

MOR-NN-SET.
15. Return MOR-NN-SET as a set of replace-

ment prototypes.
Stop.

Endif
Fig. 4 shows an example of how the prototype
replacement algorithm works on the same data

set shown in Fig. 2. After the algorithm converges,
the training set is separated into three regions of

correctly classified classes. Therefore, we obtain

three MOR-NN prototypes (xmor) used to replace

the previous four POC-NN prototypes shown in

Fig. 2(b). Normally, the number of MOR-NN pro-

totypes is less than the number of POC-NN

prototypes.

3.2. Analysis of the replacing POC-NN algorithm

Property 4. The replacing POC-NN algorithm is

order independent.

Proof. As shown in Property 3, the selecting POC-

NN algorithm is order independent. The replacing

POC-NN algorithm is almost identical except that

it additionally calculates the mean of each region.
Since the mean operation is order independent,

our replacing POC-NN algorithm is also order

independent. h
4. Experimental results

Our algorithms are tested and evaluated on a

number of standard classification datasets of

benchmarks, both artificial and real. These data

sets are taken from UCI Repository of machine
learning databases (Murphy and Aha, 1994)

Table 1

Properties of the data sets used

Datasets No. of

features

No. of

classes

No. of trg.

patterns

No. of test

patterns

1. USPS 256 10 7291 2007

2. DNA 180 3 2000 1186

3. Sonar 60 2 104 104

4. Vowel 10 11 528 462

5. Wine 9 7 118 60

6. Liver 6 2 230 115

7. Thyroid 5 3 143 72

8. Iris 4 3 100 50

9. Spiral 2 2 129 65

T. Raicharoen, C. Lursinsap / Pattern Recognition Letters 26 (2005) 1554–1567 1563
except for the first and second ones which are the
USPS data (USPS, 1994) and DNA from Statlog

(Michie et al., 1994). The properties of the datasets

are given in Table 1. In the first four data sets, the

training and test sets are separated. In the others,

we separated the original data sets into training

and test sets (2:1 ratio) by using the following cri-

teria. The first pattern belongs to the test set, and

the second and third patterns belong to the train-
ing set. The fourth pattern again belongs to the

test set, and the fifth and sixth patterns belong to

the training set, and so on. We use Euclidean dis-

tance (L2-norm) to measure the dissimilarity and

1 � NN rule to test the results in all experiments.

The results obtained on these datasets are re-

ported in Table 2. The prototype rate (PR%) com-

puted from the percentage of prototypes to all
Table 2

The comparison results of S-POC-NN, R-POC-NN, CNN, Tomek, G

Datasets S-POC-NN R-POC-NN CNN

PR% AR% PR% AR% PR% AR

1. USPS 28.20 93.42** 29.79 93.57*** 11.84 91

2. DNA 60.70 74.37 58.65 87.77*** 44.30 72

3. Sonar 60.58 80.77 51.92 90.38 62.50 90

4. Vowel 50.19 54.11** 56.82 57.14*** 19.69 47

5. Wine 43.22 71.67 38.13 58.33 44.07 66

6. Liver 58.69 54.78 43.47 53.04 56.52 53

7. Thyroid 20.27 88.89 15.38 91.67 20.97 88

8. Iris 17.00 98.00 16.00 96.00 20.00 98

9. Spiral 56.59 95.38* 35.66 92.31 37.98 89

Best accuracy rates (AR%) among these algorithms except NN are bo

and DNA, because they require unacceptable time to run on these d

significant difference to CNN at the level 99%, 95% and 90%, respect
training patterns, and the accuracy rate (AR%)

computed from the percentage of correctly pre-

dicted test patterns to all test patterns obtained

using the selecting (S-) and replacing (R-) POC-

NN, the Condensed Nearest Neighbor (CNN), the
Tomek�s algorithm (Tomek), the Gowda–Krishna�s
algorithm (GKA), and the accuracy rate (AR%) ob-

tained using all prototypes (NN) are given for each

data set. The number of prototypes correspond-

ing to the PR% obtained using the R-POC-NN

algorithm normally is less than the number of pro-

totypes obtained from using the S-POC-NN algo-

rithm. N/A (for not applicable/available) in the
Table 2 signifies that the learning scheme did not

finish training. If learning could not be completed

within the time period of two weeks then it was

terminated and marked N/A.

Our results are mostly better than the results

obtained by the CNN, especially, the accuracy

rates using POC-NN are better than CNN in all

cases, and better than Tomek and GKA in all cases
except Liver and Thyroid. However, the prototype

rates using POC-NN are better than the other

algorithms in some cases. In the cases of wine, thy-

roid and iris data, the selecting POC-NN shows

better results in both accuracy and prototype rates

than the results from the CNN. In the cases of

sonar, thyroid and spiral data, the replacing

POC-NN also shows better results in both accu-
racy and prototype rates than results from the

CNN. Moreover, in case of vowel and thyroid
KD, and NN

Tomek GKA NN

% PR% AR% PR% AR% PR% AR%

.58 N/A N/A N/A N/A 100.00 94.37

.30 N/A N/A N/A N/A 100.00 76.39

.38 56.73 88.46 50.00 87.50 100.00 91.34

.19 20.83 51.52 18.56 55.84 100.00 56.28

.67 42.37 68.33 38.98 68.33 100.00 68.33

.91 55.65 58.26 50.00 57.39 100.00 59.91

.89 16.08 95.83 15.38 90.28 100.00 91.67

.00 18.00 98.00 16.00 98.00 100.00 98.00

.23 37.98 93.85 34.11 89.23 100.00 96.92

ld-faced. Tomek and GKA are not applicable (N/A) on USPS

ata. The symbols ‘‘***’’, ‘‘**’’ and ‘‘*’’ indicate the statistically

ively.

Table 3

The results comparisons of POC-NN and the other algorithms by conducting the three-fold (K = 3) and five-fold (K = 5) cross-

validation

K-Fold Datasets S-POC-NN R-POC-NN CNN Tomek GKA

PR% AR% PR% AR% PR% AR% PR% AR% PR% AR%

K = 3 Wine 43.82 73.05 37.67 58.43 41.86 71.37 40.45 73.05 38.20 72.50

Liver 57.35 60.64** 44.83 57.76 59.81 58.07 57.78 57.19 50.06 57.46

Thyroid 18.15 90.25 14.42 88.38 19.53 90.24 16.05 93.49 14.42 90.23

Iris 20.67 96.00 17.67 98.67 16.00 94.00 14.67 98.00 13.00 92.00

Spiral 58.50 96.39 37.88 91.75 38.40 92.79 38.14 93.82 35.56 91.78

K = 5 Wine 42.42 71.86 37.08 64.60 40.45 73.59 37.93 73.57 36.52 73.57

Liver 58.91 60.29** 46.74 55.65 58.70 59.42 58.26 59.13 53.12 60.00

Thyroid 16.05 89.77 13.02 91.63* 16.86 89.77 16.05 94.42 14.19 93.49

Iris 8.42 99.00* 7.17 98.67 7.50 96.33 13.83 98.67 12.00 94.00

Spiral 60.17 97.41 36.46 90.74 33.89 96.90 34.79 97.41 34.67 94.35

Best accuracy rates (AR%) are bold-faced.

Table 4

The results comparisons of S-POC-NN by using without a-ratio (ar = 0) and with different-ratio (ar < > 0), and using CNN

Datasets S-POC-NN (ar = 0) S-POC-NN (ar < > 0) CNN

Prototypes AR% ar ratio Prototypes AR% Prototypes AR%

% # % # %

1. USPS 2056 28.20 93.42** 0.25 631 8.66 89.16 863 11.84 91.58

2. DNA 1214 60.70 74.37* 0.05 793 39.65 73.19 886 44.30 72.30

3. Sonar 63 60.58 80.77 0.05 58 55.77 80.77 65 62.50 90.38

4. Vowel 265 50.19 54.11** 0.8 103 19.51 50.22 104 19.69 47.19

5. Wine 51 43.22 71.67 0.3 49 41.53 71.67 52 44.07 66.67

6. Liver 135 58.69 54.78 0.5 95 41.30 54.78 130 56.52 53.91

7. Thyroid 29 20.27 88.89 0.25 22 15.38 88.89 30 20.97 88.89

8. Iris 17 17.00 98.00 0.5 14 14.00 98.00 20 20.00 98.00

9. Spiral 73 56.59 95.38* 0.1 72 55.81 95.38* 49 37.98 89.23

Best accuracy and prototype rates between S-POC-NN and CNN are bold-faced. The symbol ‘‘**’’ and ‘‘*’’ indicate the statistically

significant difference to CNN at the level 95% and 90%, respectively.

Table 5

The time comparisons of POC-NN, and the others in second

Datasets Training time is second

S-POC-NN R-POC-NN CNN Tomek GKA

1. USPS 297,650 298,700 560,370 N/A N/A

2. DNA 109,277 11,048 74,474 N/A N/A

3. Sonar 8.94 9.03 90.20 925.32 882.68

4. Vowel 55.18 55.78 81.29 14,045.00 2873.77

5. Wine 3.29 3.32 20.15 101.51 189.63

6. Liver 4.49 4.57 38.07 620.41 1021.83

7. Thyroid 1.38 1.42 6.65 56.54 24.89

8. Iris 0.80 0.81 2.56 30.42 8.87

9. Spiral 0.66 0.69 8.77 41.81 33.12

Tomek and GKA algorithm are not applicable (N/A) of USPS and DNA, since they require unacceptable time (more than two weeks)

to run on these data set.

1564 T. Raicharoen, C. Lursinsap / Pattern Recognition Letters 26 (2005) 1554–1567

T. Raicharoen, C. Lursinsap / Pattern Recognition Letters 26 (2005) 1554–1567 1565
data, the replacing POC-NN even gives better

accuracy rate than NN by using all the training

set as prototypes. So the higher accuracy rate of

the training data cannot guarantee to obtain a bet-

ter accuracy rate of test (untrained) data. The con-
sistent set is not necessary related to the

generalization abilities.

From these results, we formulated the hypothe-

sis that using the POC-NN algorithm is more effec-

tive than using CNN algorithm. To determine if

this hypothesis was statistically significant, we ana-

lyzed the results using a test of significance involv-
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

Values of α

)
%(

R
A

&)
%(

R P

AR(%) & PR(%) vs. Values of α Ratio

USPS Data Set ∆ = AR(%)

° = PR(%)

0 0.05 0.1 0.15 0.2 0.
0

10

20

30

40

50

60

70

80

90

100

Values of

)
%(eta

R ycarucc
A

&)
% (

eta
R epyt otorP

AR(%) & PR(%) vs.

DNA Da

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

Values of α Ratio

)
%(eta

R ycar uc c
A

&)
%(

eta
R ep yto tor P

AR(%) & PR(%) vs. Values of α Ratio

Vowel Data Set ∆ = AR(%)

° = PR(%)

0 0.05 0.1 0.15 0.2 0.2
0

10

20

30

40

50

60

70

80

90

100

Values of

)
%(eta

R ycarucc
A

&)
%(

eta
R epytotorP

AR(%) & PR(%) vs. V

Wine Dat

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

Values of α Ratio

)
%(eta

R ycar uc c
A

&)
% (

eta
R ep ytot or P

AR(%) & PR(%) vs. Values of α Ratio

Thyroid Data Set ∆ = AR(%)

° = PR(%)

0 0.05 0.1 0.15 0.2 0.2
0

10

20

30

40

50

60

70

80

90

100

Values of

)
%(eta

R ycar ucc
A

&)
%(

eta
R epy tot or P

AR(%) & PR(%) vs. V

Iris Data

(a) (b)

(d) (e)

(g) (h)

Fig. 5. Prototype rate (PR%) and accuracy rare (AR%) as a function

(f) liver, (g) thyroid, (h) iris and (i) spiral.
ing differences of proportions (Hayter, 2002). In

the Table 2, this test shows that the level of signi-

ficance of the hypothesis is 0.01, 0.05 and 0.1

indicated by symbols ‘‘***’’, ‘‘**’’ and ‘‘*’’, which

provide a 99%, 95% and 90%, respectively, confi-
dence level according to one-tailed proportions

of the normal curve that it is correct.

To increase statistical significance of the results

on the data set whose training and test sets are not

separated, we conduct the K-fold cross-validation

technique which probably is the simplest and most

widely used method for estimating prediction error
25 0.3 0.35 0.4 0.45 0.5
 α Ratio

Values of α Ratio

ta Set ∆ = AR(%)

° = PR(%)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

Values of α Ratio

)
%(eta

R ycar ucc
A

&)
%(

eta
R epy tot orP

AR(%) & PR(%) vs. Values of α Ratio

Sonar Data Set ∆ = AR(%)

° = PR(%)

5 0.3 0.35 0.4 0.45 0.5
α Ratio

alues of α Ratio

a Set ∆ = AR(%)

° = PR(%)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

Values of α Ratio

)
%(eta

R ycarucc
A

&)
%(

eta
R epytoto rP

AR(%) & PR(%) vs. Values of α Ratio

Liver Data Set ∆ = AR(%)

° = PR(%)

5 0.3 0.35 0.4 0.45 0.5
 α Ratio

alues of α Ratio

 Set ∆ = AR(%)

° = PR(%)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

10

20

30

40

50

60

70

80

90

100

Values of α Ratio

)
%(eta

R yc arucc
A

&)
%(

e ta
R ep yto torP

AR(%) & PR(%) vs. Values of α Ratio

Spiral Data Set ∆ = AR(%)

° = PR(%)

(c)

(f)

(i)

of a-ratio: (a) USPS, (b) DNA, (c) sonar, (d) vowel, (e) wine,

1566 T. Raicharoen, C. Lursinsap / Pattern Recognition Letters 26 (2005) 1554–1567
(Hastie et al., 2001), and report the average cross-

validation estimate of prototype and accuracy rate

as shown in Table 3. Comparison with the results

in Table 2, for the three-fold cross-validation

(K = 3), the S-POC-NN still shows better results
in accuracy rate than results from the CNN in all

cases, and shows the best results in accuracy rate

in three cases. For the five-fold cross-validation

(K = 5), the S-POC-NN still shows better results

in accuracy rate than the others in all cases except

the Wine. The symbols ‘‘**’’ and ‘‘*’’ also indicate

95% and 90%, respectively, confidence interval

for estimating the difference between accuracies
of S-POC-NN, R-POC-NN and CNN using a

one-tailed paired t-test (Mitchell, 1997).

In order to reduce the number of prototypes,

the concept of acceptance interval (a) is considered.
Table 4 shows the results performed on the same

datasets by using the S-POC-NN with different

a-ratio and CNN. Most accuracy rates remain

the same by reducing the number of prototypes.
In many cases, the S-POC-NN with a-ratio gives

better both accuracy and prototype rates than

the CNN. In the case of DNA, sonar and vowel,

there is a significant reduction in the number of

prototypes used. So the reduced set of prototypes

is very useful. By using the concept of acceptance

interval (a), we can regulate the value of a in order

to control the complexity and avoid the overfitting
of our model. Fig. 5 shows that the number of

POC-NN prototypes and also the prototype rate

that depend on choosing a prior value of an

a-ratio. The a-ratio can also be employed to

define the prototype and accuracy rates. In most

cases, the accuracy and prototype rates decrease

when the a-ratio increases. However, in cases of

Sonar and Liver, we obtain the better accuracy
rate with lesser prototype rate, even though the

a-ratio is increased.

We also compare the training and testing time

required for the results shown in Table 2. The less

require computational time the more efficiency for

an algorithm, even though it is carried out offline.

The time comparisons are summerized in Table 5.

All experiments were done on the same Pentium
III-1GHz computer with 256 MB RAM, and all

algorithms were implemented in MatLab version

6.5.We implemented these five different training
algorithms in different training programs used to

obtain the prototype set in each data set. The

selecting POC-NN algorithm has the best training

time for all datasets. In case of sonar, the POC-

NN�s training time is approximately 10 times faster
than the CNN�s training time, and approximately

100 times faster than the Tomek�s and the GKA�s
training time. The Tomek and the GKA algorithms

require very high the computational time and are

not applicable for some real world problems, such

as USPS and DNA. The time and space complex-

ity of our POC-NN method are very competitive.
5. Conclusion

A new POC-NN method based on divide-and-

conquer approach to the selection and replacement

of a set of prototypes has been proposed. For a fi-

nite number of training data, our algorithm always

converges with all patterns separated into the
regions of correctly classified classes. The time

complexity required to execute our algorithm is

in the order of O(dn2m). Our method is fast as well

as simple, and moreover, it can overcome the

undesirable property of the order dependence

and the sensitivity of noisy data. The prototype

and accuracy rates can also be regulated by a

user-defined parameter, called an acceptance inter-
val ratio (ar). The prototype and accuracy rates

obtained have been compared with CNN, Tomek,

GKA, and NN with all the training patterns. For

most of the results, our method showed better per-

formances in both prototype and accuracy rates

than the results from the others. For all the above

mentioned results, our method showed the best

training time. The relationship between the ar
and the average distance among data as well as

its variance are not studied here. The value of ar
should be locally adaptive, according to the distri-

bution nature of the data. This issue is essential

and worth for further investigation.
References

Alpaydin, E., 1997. Voting over multiple condensed nearest

neighbors. Artificial Intell. Rev. 11, 115–132.

Chang, C.L., 1974. Finding prototypes for nearest neighbor

classifiers. IEEE Trans. Computer 23 (11), 1179–1184.

T. Raicharoen, C. Lursinsap / Pattern Recognition Letters 26 (2005) 1554–1567 1567
Chidananda Gowda, K., Krishna, G., 1979. The condensed

nearest neighbor rule using the concept of mutual nearest

neighborhood. IEEE Trans. Inform. Theory 25 (4), 488–

490.

Cortes, C., Vapnik, V.N., 1995. Support Vector Networks.

Mach. Learn. 20 (3), 273–297.

Cover, T.M., Hart, P.E., 1967. Nearest neighbor pattern

classification. IEEE Trans. Inform. Theory 13, 21–27.

Dasarathy, B.V., Sanchez, J.S., Townsend, S., 2000. Nearest

neighbor editing and condensing tools-synergy exploitation.

Pattern Anal. Appl. 3, 19–30.

Devi, V.S., Murty, M.N., 2002. An incremental prototype set

building technique. Pattern Recognit. 35, 505–513.

Devijver, P.A., Kittler, J., 1982. Pattern Recognition: A

Statistical Approach. Prentice-Hall, Englewood Cliffs, NJ.

Devroye, L., Gyorfi, L., Lugosi, G., 1996. A Probabilistic

Theory of Pattern Recognition. Springer-Verlag, Inc, New

York.

Duda, R.O., Hart, P.E., Stock, D.G., 2001. Pattern Classifica-

tion. John Wiley and Sons, Inc.

Ferri, F.J., Albert, J.V., Vidal, E., 1999. Considerations about

sample-size sensitivity of a family of edited nearest neighbor

rules. IEEE Trans. Systems Man Cybernet. B 29 (5), 667–

672.

Gates, G.W., 1972. The reduced nearest neighbor rule. IEEE

Trans. Inform. Theory 18, 431–433.

Hart, P.E., 1966. An asymptotic analysis of the nearest-

neighbor decision rule. Stanford Electron. Lab., Stanford,

Calif., Tech. Rep., SEL-66-016, 1828-2.

Hart, P.E., 1968. The condensed nearest neighbor rule. IEEE

Trans. Inform. Theory 14 (3), 515–516.

Hastie, T., Tibshirani, R., Friedman, J., 2001. The Elements of

Statistical Learning. Springer Series in Statistics, Springer-

Verlag.

Hayter, A.J., 2002. Probability and Statistics for Engineers and

Scientists. Duxbury.

Kuncheva, L.I., Bezdek, J.C., 1998. Nearest prototype classi-

fication: Clustering, genetic algorithm, or random search?

IEEE Trans. Systems Man Cybernet. C 28 (1), 160–164.
McClave, J.T., Benson, P.G., Sincich, T., 2001. Statistics for

Business and Economics. Prentice Hall.

Michie, D., Spiegelhalter, D.J., Taylor, C.C., 1994. Machine

learning, neural and statistical classification. Available from

<ftp://ftp.ncc.up.pt/pub/statlog>.

Mitchell, T., 1997. Machine Learning. McGraw Hill.

Murphy, P.M., Aha, D.W., 1994. UCI Repository of machine

learning databases [http://www.ics.uci.edu/

mlearn/MLRepository.html], Department of Infor-

mation and Computer Science, University of California,

Irvine, CA.

Ritter, G.L., Woodruff, H.B., Lowry, S.R., Isenhour, T.L.,

1975. An algorithm for a selective nearest neighbor rule.

IEEE Trans. Inform. Theory 23, 1179–1184.

Roobaert, D., 2000. DirectSVM: A simple support vector

machine perceptron. In: Proceedings of IEEE International

Workshop on Neural Networks for Signal Processing,

Sydney, Australia.

Sanchez, J.S., Barandela, R., Marques, A.I., Alejo, R., Bade-

nas, J., 2003. Analysis of new techniques to obtain quality

training sets. Pattern Recognit. Lett. 24, 1015–1022.

Tomek, I., 1976. Two modifications of CNN. IEEE Trans.

Systems Man Cybernet. Cybernet. 2, 769–772.

Toussaint, G.T., 1994. A counterexample to Tomek�s consis-

tency theorem for a condensed nearest neighbor. Pattern

Recognit. Lett. 15, 797–801.

Toussaint, G., 2002. Proximity Graphs for Nearest Neighbor

Decision Rules: Recent Progress. In: Proceedings of 34 th

Symposium on Computing and Statistics, Montreal,

Canada.

USPS, 1994. Machine learning, neural and statistical classifica-

tion. Available from <fpt://ftp.kyb.tuebingen.

mpg.de/pub/bs/data/>.

Vapnik, V.N., 1998. Statistical Learning Theory. Wiley, New

York.

Wilson, D.L., 1972. Asymtotic properties of nearest neighbor

rules using edited data. IEEE Trans. Systems Man Cyber-

net. Cybernet. 2, 408–420.

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html

	A divide-and-conquer approach to the pairwise opposite class-nearest neighbor (POC-NN) algorithm
	Introduction
	The methodology of the POC-NN for�prototype selection
	Finding POC-NN pattern algorithm
	Prototype selection by POC-NN algorithm�for two-class classification problem
	Reducing complexity and sensitivity to noise
	Analysis of the selecting POC-NN algorithm
	Algorithm for multi-class classification problem

	The methodology of POC-NN for prototype replacement
	Prototype replacement by POC-NN�algorithm for two-class classification problem
	Analysis of the replacing POC-NN algorithm

	Experimental results
	Conclusion
	References

