
Selective Pre-processing of Imbalanced Data for
Improving Classification Performance

Jerzy Stefanowski1 and Szymon Wilk1,2

1 Institute of Computing Science, Poznań University of Technology,
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Abstract. In this paper we discuss problems of constructing classifiers
from imbalanced data. We describe a new approach to selective pre-
processing of imbalanced data which combines local over-sampling of
the minority class with filtering difficult examples from the majority
classes. In experiments focused on rule-based and tree-based classifiers
we compare our approach with two other related pre-processing methods
– NCR and SMOTE. The results show that NCR is too strongly biased
toward the minority class and leads to deteriorated specificity and over-
all accuracy, while SMOTE and our approach do not demonstrate such
behavior. Analysis of the degree to which the original class distribution
has been modified also reveals that our approach does not introduce so
extensive changes as SMOTE.

1 Introduction

Discovering classification knowledge from imbalanced data received much re-
search interest in recent years [2,4,11]. A data set is considered to be imbalanced
if one of the classes (further called a minority class) contains much smaller num-
ber of examples than the remaining classes (majority classes). The minority class
is usually of primary interest in a given application. The imbalanced distribution
of classes constitutes a difficulty for standard learning algorithms because they
are biased toward the majority classes. As a result examples from the majority
classes are classified correctly by created classifiers, whereas examples from the
minority class tend to be misclassified. As an overall classification accuracy is
not appropriate performance measure in this context, such classifiers are eval-
uated by measures derived from a binary confusion matrix, like sensitivity and
specificity. Sensitivity is defined as the ratio of the number of correctly recog-
nized examples from the minority class (also called positive examples) to the
cardinality of this class. On the other hand, specificity corresponds to ability
of classifying negative examples of the minority class, so it is defined the ratio
of correctly recognized examples from all the majority classes. Receiver Oper-
ating Characteristics curve and the area under this curve are also often used to
summarize performance of a classifier [2].
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Several methods have been proposed to improve classifiers learned from im-
balanced data, for a review see [4,11]. Re-sampling methods that modify the
original class distributions in pre-processing are the most popular approaches.
In particular, methods such as SMOTE, NCR or their combinations, were exper-
imentally shown to work well [1,3,10]. However, some of their properties can be
considered as shortcomings. Focused under-sampling methods, like NCR [6] or
one-side-sampling [5], may remove too many examples from the majority classes.
As a result, improved sensitivity is associated with deteriorated specificity. Ran-
dom introduction of synthetic examples by SMOTE [3] may be questionable or
difficult to justify in some domains, where it is important to preserve a link
between original data and a constructed classifier (e.g., to justify suggested deci-
sions). Moreover, SMOTE may blindly ”over-generalize” the minority area with-
out checking positions of the nearest examples from the majority classes and lead
to overlapping between classes. Finally, the number of synthetic samples has to
be globally parameterized, thus reducing the flexibility of this approach.

Our main research thesis is that focusing on improving sensitivity, which is
typical for many approaches to class imbalance, cannot cause too high decrease of
specificity at the same time. In many problems sufficiently accurate recognition
of the majority classes and preserving the overall accuracy of a classifier at an
acceptable level are still required. Moreover, we hypothesize that it is worth
to develop more flexible approaches based on analyzing local neighborhood of
“difficult” examples rather than using global approaches with fixed parameters.
Following these motivations we introduce our own approach to selective pre-
processing of imbalanced data. It combines filtering of these examples from the
majority classes, which may result in misclassifying some examples from the
minority class, with local over-sampling of examples from the minority class
that are located in ”difficult regions” (i.e., surrounded by examples from the
majority classes).

The main aim of this paper is to experimentally evaluate usefulness of our
approach combined with two different learning algorithms. Specifically we use
C4.5 for inducing decision trees and MODLEM [7] for decision rules. We compare
our approach to SMOTE and NCR – two methods that are closely related to
our proposal. The second aim of these experiments is to study how much all
compared methods change the class distribution (the numbers of examples in
the minority and majority classes).

2 Related Works on Focused Re-sampling

Here we discuss only focused re-sampling methods, as they are most related to
our approach and further experiments – for reviews see [2,11]. In [5] one-side-
sampling is used to under-sample the majority classes in a focused way. Noisy and
borderline (i.e., lying on a border between decision classes) examples from the
majority classes are identified using Tomek links and deleted. Another approach
to the focused removal of examples from the majority class is the neighborhood
cleaning rule (NCR) introduced in [6]. It applies the edited nearest neighbor
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rule (ENNR) to the majority classes [12]. ENNR first uses the nearest neighbor
rule (NNR) to classify examples using a specific number of nearest neighbors
(NCR sets it to 3) and then removes incorrectly classified ones. Experiments
demonstrated that both above approaches provided better sensitivity than sim-
ple random over-sampling. According to [6] NCR performs better than one-side
sampling and processes noisy examples more carefully.

The Synthetic Minority Over-sampling Technique (SMOTE) selectively over-
samples the minority class by creating new synthetic (artificial) examples [3].
It considers each example from the minority class, finds its k-nearest neighbors
from the majority classes, randomly selects j of these neighbors and randomly
introduces new artificial examples along the lines joining it with the j-selected
neighbors. SMOTE can generate artificial examples with quantitative and qual-
itative attributes and a number of nearest neighbors depends on how extensive
over-sampling is required. Experiments showed that a combination of SMOTE
and under-sampling yielded the best AUC among tested techniques [3]. This was
confirmed in a comprehensive study [1], where various re-sampling methods were
evaluated with different imbalanced data sets. SMOTE was also used in combi-
nation with ensemble classifiers as SMOTEBoost [2]. Finally, there are other
proposals to focused over-sampling, e.g. Japkowicz used local over-sampling
of sub-clusters inside the minority class [4]. Our past research was concerned
with the use of rough set theory to detect inconsistent examples in order to
remove or relabel them [8]. This technique was combined with rule induction
algorithms and experimentally evaluated. Then, in our last paper [9] we prelim-
inary sketched the idea of the selective pre-processing based on ENNR which
forms the basis of the approach presented in the next section.

3 An Algorithm for Selective Pre-processing

Our approach uses the the “internal characteristic” of examples to drive their
pre-processing. We distinguish between two types of examples – noisy and safe.
Safe examples should be correctly classified by a constructed classifier, while
noisy ones are likely to be misclassified and require special processing. We dis-
cover the type of an example by applying NNR with the heterogeneous value
distance metric (HVDM) [12]. An example is safe if it is correctly classified by
its k nearest neighbors, otherwise it is noisy. We pre-process examples according
to their type, and handle noisy examples from the majority classes following the
principles of ENNR.

The approach is presented below in details in pseudo-code. We use C for
denoting the minority class and O for one majority class (i.e,. for simplicity we
group all the majority classes into one). We also use the flags safe or noisy to
indicate appropriate types of examples. Moreover, we introduce two functions:
classify knn(x, k) and knn(x, k, c, f). The first function classifies x using its k
nearest neighbors and returns information whether the classification is correct
or not. The second function identifies k nearest neighbors of x and returns a set
of those that belong to class c and are flagged as f (the returned set may be
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empty if none of the k neighbors belongs to c or is flagged as f). Finally, we
assume |·| returns the number of items in a set.

1: for each x ∈ O ∪ C do
2: if classify knn(x, 3) is correct then
3: flag x as safe
4: else
5: flag x as noisy
6: D ← all y ∈ O and flagged as noisy
7: if weak amplification then
8: for each x ∈ C and flagged as noisy do
9: amplify x by creating its |knn(x, 3,O, safe)| copies

10: else if weak amplification and relabeling then
11: for each x ∈ C and flagged as noisy do
12: amplify x by creating its |knn(x, 3,O, safe)| copies
13: for each x ∈ C and flagged as noisy do
14: for each y ∈ knn(x, 3, O, noisy) do
15: relabel y by changing its class from O to C
16: D ← D \ {y}
17: else {strong amplification}
18: for each x ∈ C and flagged as safe do
19: amplify x by creating its |knn(x, 3,O, safe)| copies
20: for each x ∈ C and flagged as noisy do
21: if classify knn(x, 5) is correct then
22: amplify x by creating its |knn(x, 3,O, safe)| copies
23: else
24: amplify x by creating its |knn(x, 5,O, safe)| copies
25: remove all y ∈ D

Our approach consists of two phases. In the first phase (lines 1–5) we identify
the type of each example by applying NNR and flagging it accordingly. Following
the suggestion from [6] we set the number of the nearest neighbors to 3. Then,
in the second phase (lines 6–25) we process examples according to their flags.
As we want to preserve all examples from C, we assume only examples from O
may be removed (lines 6 and 25, where we apply the principles of ENNR). On
the other hand, unlike previously described methods, we want to modify O more
carefully, therefore, we preserve all safe examples from this class (NCR removes
some of them if they are too close to noisy examples from C ). We propose three
different techniques for the second phase: weak amplification, weak amplification
and relabeling, and strong amplification. They all involve modification of the
minority class, however, the degree and scope of changes varies.

Weak amplification (lines 7–9) is the simplest technique. It focuses on noisy
examples from C and amplifies them by adding as many of their copies as there
are safe examples from O in their 3-nearest neighborhoods. Thus, the amplifi-
cation is limited to “difficult” examples from C, surrounded by safe members of
O (if there are no such safe neighbors, then an example is not amplified). This
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increases the “weight” of such difficult examples and enables learning algorithms
to capture them, while they could be discarded as noise otherwise.

The second technique – weak amplification and relabeling (lines 10–16) – re-
sults from our previous positive experience with changing class labels of selected
examples from O [8]. It is also focused on noisy examples from C and extends
the first technique with an additional relabeling step. In the first step (lines
11–12) noisy examples from C surrounded by safe examples from O are weakly
amplified. In the next step (lines 13–16) noisy examples from O located in the 3-
nearest neighborhoods of noisy examples from C are relabeled by changing their
class assignment is from O to C (relabeled examples are no longer removed –
they are excluded from removal in line 16). Thus, we expand the “cover” around
selected noisy examples from C, what further increases their chance of being cap-
tured by learned classifiers. Such increasing of density in similar to the technique
employed by SMOTE, however, instead of introducing new artificial examples,
we use relabeled ones from O.

Strong amplification (lines 17–24) is the most sophisticated technique. It fo-
cuses on all examples from C – safe and noisy. First, it processes safe examples
from C and amplifies them by adding as many copies as there are safe exam-
ples from O in their 3-nearest neighborhoods (lines 17–18). Then, it switches to
noisy examples from C (lines 19–23). Each such example is reclassified using an
extended neighborhood (i.e., 5 nearest neighbors). If an example is reclassified
correctly, it is amplified according to its regular neighborhood (i.e., by adding
as many of its copies as there are safe examples from O in its 3-nearest neigh-
borhood), as it should be sufficient to form a “strong” classification pattern.
However, if an example is reclassified incorrectly, its amplification is stronger
and the number of copies is equal to the number of safe examples from O in
the 5-nearest neighborhood. Such more aggressive intervention is caused by the
limited number of examples from C in the considered extended neighborhood
and it is necessary to strengthen a classification pattern.

4 Experiments

Our approach for selective pre-processing was experimentally compared to NCR
and SMOTE. We combined all tested approaches with two learning algorithms –
Quinlan’s C4.5 for inducing decision trees and MODLEM [7] for decision rules.
We focused on these two algorithms because they are both sensitive to the imbal-
anced distribution of classes. Moreover, MODLEM was introduced by one of the
authors and successfully applied to many tasks including our previous research
on improving sensitivity of classifiers [8,9].

Both algorithms were run in their unpruned versions to get more precise
description of the minority class. To obtain baseline results, we also run them
without any prior pre-processing of data. For NCR and our approach the nearest
neighborhood was calculated with k = 3, as suggested in [6]. Moreover, to find
the best over-sampling degree for SMOTE, we tested it with different values from
100% to 600% [3] and selected the best one in terms of obtained sensitivity and
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Table 1. Characteristics of evaluated data sets (N – the number of examples, NA –
the number of attributes, C – the minority class, NC – the number of examples in the
minority class, NO – the number of examples in the majority class, RC = NC/N – the
ratio of examples in the minority class)

Data set N NA C NC NO RC

Acl 140 6 with knee injury 40 100 0.29
Breast cancer 286 9 recurrence-events 85 201 0.30
Bupa 345 6 sick 145 200 0.42
Cleveland 303 13 positive 35 268 0.12
Ecoli 336 7 imU 35 301 0.10
Haberman 306 3 died 81 225 0.26
Hepatitis 155 19 die 32 123 0.21
New-thyroid 215 5 hyper 35 180 0.16
Pima 768 8 positive 268 500 0.35

specificity. We implemented MODLEM and all tested pre-processing approaches
in WEKA. We also used an implementation of C4.5 available in this environment.

The experiments were carried out on 9 data sets listed in Table 1. They were
either downloaded from from the UCI repository or provided by our medical
partners (acl). We selected data sets that were characterized by varying degrees
of imbalance and that were used in related works (e.g. in [6]). Several data sets
originally included more than two classes, however, to simplify calculations we
decided to collapse all the majority classes into one.

During experiments we evaluated sensitivity, specificity and overall accuracy
– see Tables 2, 3 and 4 respectively (for easier orientation the best result for each
data set and classifier is marked with boldface and italics, and the second best
with italics). All these measures were estimated in the 10-fold cross validation
repeated 5 times. Such a selection of evaluation measures allowed us to observe
the degree of trade-off between abilities to recognize the minority and majority
classes for the tested pre-processing approaches, what was the primary goal of
our experiments. According to it we wanted to examine precisely the decrease of
specificity and accuracy at the same time, which is not directly visible in ROC
analysis. This is also the reason why we did not report values of AUC. Following
the secondary goal of experiments, we observed a degree of changes in class
distributions introduced by all approaches – see Table 5. It was evaluated in a
single pass of pre-processing. In all tables with results we use base for denoting
the baseline approach (without any pre-processing), weak for weak amplification,
relabel for weak amplification and relabeling, and strong for strong amplification.

In order to compare a performance of pairs of approaches with regard to results
on all data sets we used the Wilcoxon Signed Ranks Test (confidence α = 0.05).
Considering sensitivity (Table 2), the baseline with both learning algorithms
was significantly outperformed by all other approaches (only for new-thyroid the
baseline with C4.5 performed best). NCR led to the highest gain of sensitivity,
especially for haberman (0.386), bupa (0.353) and breast cancer (0.319). NCR
improved sensitivity of both learning algorithms, although relative improvements
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Table 2. Sensitivity

MODLEM C4.5

Data set Base SMOTE NCR Weak Relabel Strong Base SMOTE NCR Weak Relabel Strong

Acl 0.805 0.850 0.900 0.830 0.835 0.825 0.855 0.840 0.920 0.835 0.835 0.850
Breast can. 0.319 0.468 0.638 0.437 0.554 0.539 0.387 0.463 0.648 0.500 0.576 0.531
Bupa 0.520 0.737 0.873 0.799 0.838 0.805 0.491 0.662 0.755 0.710 0.720 0.700
Cleveland 0.085 0.245 0.343 0.233 0.245 0.235 0.237 0.260 0.398 0.343 0.395 0.302
Ecoli 0.400 0.632 0.683 0.605 0.643 0.637 0.580 0.730 0.758 0.688 0.687 0.690
Haberman 0.240 0.301 0.626 0.404 0.468 0.483 0.410 0.572 0.608 0.657 0.694 0.660
Hepatitis 0.383 0.382 0.455 0.385 0.438 0.437 0.432 0.537 0.622 0.513 0.580 0.475
New-thyr. 0.812 0.917 0.842 0.860 0.877 0.865 0.922 0.898 0.873 0.897 0.897 0.913
Pima 0.485 0.640 0.793 0.685 0.738 0.738 0.601 0.739 0.768 0.718 0.751 0.715

were better for MODLEM – for C4.5 the opportunity for improvement was
limited (the baseline results were better than for MODLEM). Relabeling and
strong amplification was the second best after NCR for 7 data sets (all except
acl and haberman). Two other variants of our approach – weak and strong
amplification – resulted in worse sensitivity than the former one, but still they
were better than SMOTE on the majority of data sets. The tested approaches
demonstrated a similar performance when combined with C4.5.

Table 3. Specificity

MODLEM C4.5

Data set Base SMOTE NCR Weak Relabel Strong Base SMOTE NCR Weak Relabel Strong

Acl 0.942 0.914 0.890 0.934 0.922 0.930 0.940 0.922 0.898 0.924 0.908 0.918
Breast can. 0.804 0.657 0.523 0.710 0.621 0.606 0.767 0.676 0.525 0.630 0.609 0.614
Bupa 0.820 0.568 0.308 0.453 0.473 0.459 0.775 0.611 0.415 0.524 0.459 0.532
Cleveland 0.957 0.887 0.884 0.934 0.919 0.927 0.899 0.870 0.849 0.877 0.864 0.887
Ecoli 0.969 0.951 0.924 0.958 0.953 0.962 0.959 0.921 0.920 0.931 0.916 0.941
Haberman 0.816 0.782 0.658 0.746 0.720 0.713 0.805 0.747 0.698 0.597 0.565 0.591
Hepatitis 0.933 0.927 0.894 0.918 0.907 0.908 0.873 0.851 0.823 0.822 0.807 0.803
New-thyr. 0.987 0.986 0.984 0.990 0.990 0.984 0.973 0.984 0.974 0.971 0.972 0.976
Pima 0.856 0.778 0.658 0.774 0.720 0.698 0.814 0.716 0.656 0.681 0.667 0.687

In case of specificity (Table 3), the baseline for both learning algorithms was
significantly better than all other approaches. Specificity attained by NCR was
significantly the lowest comparing to other methods. NCR combined with MOD-
LEM led to the lowest specificity for all data sets. In particular the highest de-
creases for occurred for bupa (0.512), breast cancer (0.282), pima (0.200) and
haberman (0.152) – these are also the sets for which we noted large increase of
sensitivity. Slightly smaller loss of specificity occurred for C4.5. Our approach
with weak amplification combined with MODLEM was able to preserve satis-
factory specificity for most of the data sets. SMOTE with MODLEM behaved
similarly on selected data sets (acl, ecoli, haberman, hepatitis and pima). On
the other hand, SMOTE with C4.5 was slightly better than our approach.

Similar observations hold for overall accuracy (Table 4) – the baseline was
usually the best, then there were SMOTE and our approach. In particular, the
variant with weak amplification combined with MODLEM managed to maintain
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Table 4. Overall accuracy [in %]

MODLEM C4.5

Data set Base SMOTE NCR Weak Relabel Strong Base SMOTE NCR Weak Relabel Strong

Acl 90.3 89.6 89.3 90.4 89.7 90.0 91.6 89.9 90.4 89.9 88.7 89.9
Breast can. 66.0 60.0 55.6 62.9 60.1 58.6 65.4 61.2 56.1 59.1 59.9 58.9
Bupa 69.4 63.9 54.5 59.8 57.9 60.4 65.6 63.2 55.7 60.2 56.8 60.2
Cleveland 85.6 81.3 82.1 85.3 84.0 84.6 82.3 79.9 79.7 81.5 81.0 81.9
Ecoli 91.0 91.8 90.0 92.2 92.1 92.8 91.9 90.1 90.4 90.6 89.2 91.5
Haberman 66.3 65.4 64.9 65.5 65.2 65.1 70.1 70.0 67.4 61.3 59.9 60.9
Hepatitis 81.9 81.5 80.4 81.0 81.0 81.2 78.5 78.9 78.2 75.9 76.2 73.7
New-thyr. 95.8 97.4 96.2 96.9 97.1 96.5 96.5 97.0 95.8 95.9 96.0 96.6
Pima 72.7 73.0 70.6 74.3 72.7 71.2 74.0 72.4 69.5 69.4 69.6 69.7

high (i.e., the best or second best) accuracy for 6 data sets (acl, breast cancer,
cleveland, ecoli, haberman and pima). SMOTE with C4.5 demonstrated similar
behavior also for 6 data sets (breast cancer, bupa, haberman, hepatitis, new-
thyroid and pima). Finally, overall accuracy achieved by NCR was the worst.

Table 5. Changes in the class distribution (NC – the number of examples in the
minority class, NO – the number of examples in the majority class NO , NR – the
number of relabeled examples, NA – the number of amplified examples)

SMOTE NCR Weak Relabel Strong

Data set NC NO NC NO NC NO NC NO NR NA NC NO

Acl 120 100 40 83 57 98 59 98 2 17 67 98
Breast cancer 255 201 85 101 173 167 197 167 24 88 253 167
Bupa 290 200 145 81 236 145 271 145 35 91 309 145
Cleveland 245 268 35 198 102 255 110 255 8 67 147 255
Ecoli 210 301 35 266 58 288 69 288 11 23 77 288
Haberman 162 225 81 121 162 182 193 182 31 81 223 182
Hepatitis 64 123 32 90 61 113 68 113 7 29 88 113
New-thyroid 175 180 35 174 40 179 40 179 0 5 47 179
Pima 536 500 268 280 430 409 493 409 63 162 573 409

Analysis of changes in class distributions (Table 5), showed that NCR removed
the largest number of examples from the majority class, in particular for breast
cancer, bupa, haberman and pima it was about 50% of this class. None of the
other approaches was such “greedy”. On the other hand, SMOTE increased the
cardinality of the minority class on average by 250% by introducing new random
artificial examples. For cleveland and ecoli it led to the highest increase of cardi-
nality of the minority class (by 600% and 500% respectively). Our approach was
in the middle, only the variant with strong amplification increased cardinality
of the minority class for 4 data sets (bupa, breast, haberman and pima) to the
level similar to SMOTE. For our approach with relabeling, the number of weakly
amplified examples was usually higher than the number of relabeled examples. It
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may signal that difficult noisy examples of the minority class (located inside the
majority class) occurred more frequently than noisy examples on the borderline.
This was somehow confirmed by introducing many additional examples by the
variant with strong amplification as a result of considering a wider neighborhood
for amplification. Also when analyzing the changes in the class distribution ratio,
we noticed that usually larger changes led to better classification performance
(e.g., for cleveland, breast cancer and haberman).

Finally, we would like to note that in our on-going experiments we also
consider two additional pre-processing approaches (random under- and over-
sampling) and one additional rule learning algorithm (Ripper), however, due
to limited space we can only say that the Ripper’s performance was between
the performance of MODLEM and C4.5, only for cleveland it gave the high-
est observed sensitivity at the cost of specificity and overall accuracy. Under-
and over-sampling demonstrated performance do not outperform the remaining
pre-processing approaches.

5 Conclusions

The main research idea in our study focused on improving sensitivity of the
minority class while preserving sufficiently accurate recognition of the majority
classes. This was our main motivation to introduce the new selective approach
for pre-processing imbalanced data and to carry out its experimental compari-
son with other related methods. The results of experiments clearly showed that
although NCR led to the highest increase of sensitivity of induced classifiers, it
was obtained at a cost of significantly decreased specificity and consequently de-
teriorated overall accuracy. Thus, NCR was not able to satisfy our requirements.
Our approach and SMOTE did not demonstrate such behavior and both kept
specificity and overall accuracy at an acceptable level.

The analysis of the changes in the class distribution showed that NCR tended
to remove too many examples from the majority classes – although it could
”clean” borders of minority class, it might deteriorate recognition abilities of in-
duced classifiers for the majority classes. Moreover, the results revealed that
SMOTE introduced much more extensive changes than our approach, what
might have also resulted in swapping the minority and majority classes. Finally,
one can notice that our approach tended to introduce more limited changes in
the class distribution without sacrificing the performance gain. Additionally, un-
like SMOTE, it did not introduce any artificial examples, but replicated existing
ones what may be more acceptable in some applications.

To sum up, according to the experimental results, the classification perfor-
mance of our approach is slightly better or comparable to SMOTE depending
on a learning algorithm. Moreover, it does not require tuning the global degree
of over-sampling, but in a more flexible way identifies difficult regions in the
minority class and modifies only these examples, which could be misclassified.
Thus, we claim our approach is a viable alternative to SMOTE.
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Selection of a a particular variant in our approach depends on the accepted
trade-off between sensitivity and specificity. If a user prefers classifiers charac-
terized by higher sensitivity, then the variant with relabeling is the best choice.
When specificity is more important, then the simplest variant with weak ampli-
fication is suggested. Finally, if balance between sensitivity and specificity and
good overall accuracy are requested, then the variant with strong amplification
is preferred. We should however note that relabeling of examples may not be
accepted in some specific applications - in such cases users would have to decide
between the two amplification variants.
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