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Nearest neighbor classification is one of the most used and well known methods in data mining. Its

simplest version has several drawbacks, such as low efficiency, high storage requirements and sensitivity

to noise. Data reduction techniques have been used to alleviate these shortcomings. Among them,

prototype selection and generation techniques have been shown to be very effective. Positioning

adjustment of prototypes is a successful trend within the prototype generation methodology.

Evolutionary algorithms are adaptive methods based on natural evolution that may be used for

searching and optimization. Positioning adjustment of prototypes can be viewed as an optimization

problem, thus it can be solved using evolutionary algorithms. This paper proposes a differential evolution

based approach for optimizing the positioning of prototypes. Specifically, we provide a complete study of

the performance of four recent advances in differential evolution. Furthermore, we show the good synergy

obtained by the combination of a prototype selection stage with an optimization of the positioning of

prototypes previous to nearest neighbor classification. The results are contrasted with non-parametrical

statistical tests and show that our proposals outperform previously proposed methods.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The nearest neighbor (NN) algorithm [1] and its derivatives have
been shown to perform well for classification problems in many
domains [2,3]. These algorithms are also known as instance-based
learning [4] and belong to the lazy learning family of methods [5].
The extended version of NN to k neighbors is considered one of the
most influential data mining algorithms [6] and it has attracted
much attention and research efforts in recent years [7–10]. The NN
classifier requires that all of the data instances are stored and
unseen cases classified by finding the class labels of the closest
instances to them. In order to determine how close two instances
are, several distances or similarity measures have been proposed
[11–13] and this issue is continually under review [14,15]. Despite
its simplicity and high classification accuracy, it suffers from
several drawbacks such as high computational cost, high storage
requirement and sensitivity to noise.

Data reduction processes are very useful in data mining to
improve and simplify the models extracted by the algorithms [16].
ll rights reserved.
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In NN, apart from feature selection [17,18], two main data
reduction techniques have been used with promising results:
prototype selection (PS) and prototype generation (PG) [19,20].
The former is limited to selecting a subset of instances from the
original training set. Typically, three types of PS methods are
known: condensation [21], edition [22] and hybrid methods [23].
Condensation methods try to remove examples which are redun-
dant or irrelevant, which it means that these examples do not offer
any capabilities in the classification task. However, edition meth-
ods focus on removing noisy examples, which are those examples
that induce classification errors. Finally, hybrid methods combine
both approaches.

In the specialized literature, a wide number of PS techniques
have been proposed. Since the first approaches for data condensa-
tion and edition, CNN [21] and ENN [22], many other proposals of
PS have become well-known in this field. For example, IBL methods
[4], DROP family methods [19] and ICF [23]. Recent approaches to
PS are introduced in [24–26].

Regarding PG methods, also known as prototype abstraction
methods [27], they are not only able to select data, but can also
modify them, allowing interpolations, movements of instances and
artificial generation of new data. Well known methods for PG are
PNN [28], learning quantization vector (LVQ) [29], Chen’s algorithm
[30], ICPL [27], HYB [31] and MixtGauss [32]. A good study of PS and
PG can be found in [33].
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Evolutionary algorithms (EAs) [34] have been successfully used
in different data mining problems [35,36]. Given that PS and PG
problems could be seen as combinatorial and optimization pro-
blems, EAs have been used to solve them with excellent results
[37–40]. PS can be expressed as a binary space search problem and,
as far as we know, the best evolutionary model proposed for PS is
based on memetic algorithms [41] and is called SSMA [38]. PG is
expressed as a continuous space search problem. EAs for PG are
based on the positioning adjustment of prototypes, which is a
suitable method to optimize the position of prototypes, however, it
usually depends upon an initial subset of prototypes extracted from
the training set. Several proposals are presented on this topic, such
as ENPC [42] or PSCSA [43].

Particle swarm optimization (PSO) [44,45] and differential
evolution (DE) [46,47] are two effective evolutionary optimization
techniques for continuous spaces. In fact, PSO has been satisfacto-
rily used for prototype adjustment [39,40]. The first attempts at
using DE for PG can be found in [48]. In that contribution, we did a
preliminary study on the use of DE, concluding that the classic DE
scheme offers competitive results compared to other PG
approaches to small size data sets.

The first contribution of this paper is the use of the DE algorithm
[47] for prototype adjustment. The specialized literature on DE
collects several advanced schemes: SADE [49], OBDE [50], DEGL
[51], JADE [52] and SFLSDE [53]. We will study the mentioned
proposals for PG, except OBDE. This last one, as the authors state,
may not be used for problems where basic knowledge is available.
It constantly seeks the opposite solution to the one evaluated in the
search process and, in PG, this behavior does not make sense.
The remaining proposals will be compared with evolutionary and
non-evolutionary PG algorithms and we will analyze the behavior
of each DE algorithm in this problem.

It is common to use classical PS methods in pre- or late stages of
a PG algorithm as mechanisms for removing noisy or redundant
prototypes. For example, some PG methods implement ENN or
DROP algorithms as early filtering processes [27,54] and, in [31], a
hybridization method based on LVQ3 post-processing of conven-
tional prototype reduction approaches is proposed.

The second contribution of this paper follows a similar idea to
that presented in [31], but it is extended so that PS methods
can be hybridized with any positioning adjustment of prototype
method. Specifically, we study the use of LVQ3, PSO and DE
algorithms for the optimization positioning of prototypes after a
PS process. We will see that LVQ3 does not produce optimal
positioning in most cases, whereas PSO and DE result in
excellent accuracy rates in comparison with isolated PS methods
and PG methods. We especially emphasize the use of SSMA in
combination with one of the two mentioned optimization
approaches to also achieve high reduction rates in the final set
of prototypes obtained.

As we have stated before, the use of DE algorithms for the PG
problem motivates the global purpose of this paper, which can be
divided into three objectives:
�
 To make an empirical study for analyzing the DE algorithms for
the PG problem in terms of accuracy and reduction capabilities.
Our goal is to identify the best DE methods and stress the
relevant properties of each one when they tackle the PG
problem.

�
 To understand how positioning adjustment techniques can

improve the classification accuracy of PS and PG methods with
the use of hybridization models.

�
 To check the behavior and scaling-up capabilities of DE

approaches and hybrid approaches for PG when tackling large
size data sets.
The experimental study will include a statistical analysis based
on non-parametric tests and we will conduct experiments invol-
ving a total of 56 small and large size data sets.

In order to organize this paper, Section 2 describes the back-
ground of PS, PG and DE. Section 3 explains the DE algorithm
proposed for tackling the position adjustment problem. Section 4
presents the framework of the hybridization proposed. Section 5
discusses the experimental framework and Section 6 presents the
analysis of results. Finally, in Section 7 we summarize our
conclusions.
2. Background

This section covers the background information necessary to
define and describe our proposals. Section 2.1 presents the back-
ground on PS and PG. Next, Section 2.2 shows the main character-
istics of DE and the most recent advances proposed in the literature
are presented in Section 2.3.

2.1. PS and PG algorithms

This section presents the definition and notation for both PS and
PG problems.

A formal specification of the PS problem is the following: Let xp

be an example where xp ¼ ðxp1,xp2, . . . ,xpD,oÞ, with xp belonging to
a classo given by xpo and a D-dimensional space in which xpi is the
value of the i-th feature of the p-th sample. Then, let us assume that
there is a training set TR which consists of n instances xp and a test
set TS composed of t instances xq, with o unknown. Let SSDTR be
the subset of selected samples resulting from the execution of a PS
algorithm, then we classify a new pattern xq from TS by the NN rule
acting over SS.

The purpose of PG is to obtain a prototype generated set GS,
which consists of r, ron, prototypes, which are either selected
or generated from the examples of TR. The prototypes of the
generated set are determined to represent efficiently the distribu-
tions of the classes and to discriminate well when used to classify
the training objects. Their cardinality should be sufficiently small to
reduce both the storage and evaluation time spent by an NN
classifier.

Both evolutionary and non-evolutionary approaches to PS and
PG will be analyzed in the experimental study. A brief description of
the methods compared will be detailed in Section 5.

2.2. Differential evolution

Differential evolution follows the general procedure of an EA. DE
starts with a population of NP candidate solutions, so-called
individuals. The initial population should cover the entire search
space as much as possible. In some problems, this is achieved by
uniformly randomizing individuals, but in other problems, such as
that considered in this paper, basic knowledge of the problem is
available and the use of other initialization mechanisms is more
effective. The subsequent generations in DE are denoted by G ¼ 0,
1,y,Gmax.

It is usual to denote each individual as a D-dimensional vector
Xi,G ¼ {xi,G

1 ,y, xi,G
D }, called a ‘‘target vector’’.

2.2.1. Mutation operation

After initialization, DE applies the mutation operator to gen-
erate a mutant vector Vi,G, with respect to each individual Xi,G, in
the current population. For each target Xi,G, at the generation G,
its associated mutant vector Vi,G¼ {Vi,G

1 ,y,Vi,G
D }. The method of

creating this mutant vector is that which differentiates one DE
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scheme from another. Six of the most frequently referenced
strategies are listed below:
�
 ‘‘DE/Rand/1’’:

Vi,G ¼ Xri
1

,GþF � ðXri
2
,G�Xri

3
,GÞ ð1Þ
�
 ‘‘DE/Best/1’’:

Vi,G ¼ Xbest,GþF � ðXri
1

,G�Xri
2

,GÞ ð2Þ
�
 ‘‘DE/RandToBest/1’’:

Vi,G ¼ Xi,GþF � ðXbest,G�Xi,GÞþF � ðXri
1
,G�Xri

2
,GÞ ð3Þ
�
 ‘‘DE/Best/2’’:

Vi,G ¼ Xbest,GþF � ðXri
1

,G�Xri
2

,GÞþF � ðXri
3
,G�Xri

4
,GÞ ð4Þ
�
 ‘‘DE/Rand/2’’:

Vi,G ¼ Xri
1

,GþF � ðXri
2
,G�Xri

3
,GÞþF � ðXri

4
,G�Xri

5
,GÞ ð5Þ
�
 ‘‘DE/RandToBest/2’’:

Vi,G ¼ Xi,GþF � ðXbest,G�Xi,GÞþF � ðXri
1
,G�Xri

2
,GÞ

þF � ðXri
3

,G�Xri
4

,GÞ ð6Þ

The indices r1
i , r2

i , r3
i , r4

i , r5
i are mutually exclusive integers

randomly generated within the range [1, NP], which are also
1 It is also known as DE/CurrentToBest/1.
different from the base index i. These indices are randomly
generated once for each mutation. The scaling factor F is a positive
control parameter for scaling the difference vectors. Xbest,G is the
best individual of the population in terms of fitness.

2.2.2. Crossover operator

After the mutation phase, a crossover operation is applied to
increase the potential diversity of the population. The DE algorithm
can use three kinds of crossover schemes, known as ‘‘Binomial’’,
‘‘Exponential’’ and ‘‘Arithmetic’’ crossovers. This operator is applied
to each pair of the target vector Xi,G and its corresponding mutant
vector Vi,G to generate a new trial vector that we denote Ui,G. The
mutant vector exchanges its components with the target vector Xi,G.

We will focus on the binomial crossover scheme, which is
performed on each component whenever a randomly picked
number between 0 and 1 is less than or equal to the crossover
rate (CR), The CR is a user-specified constant within the range [0,1),
which controls the fraction of parameter values copied from the
mutant vector. This scheme may be outlined as

Uj
i,G ¼

Vj
i,G if randð0,1Þo ¼ CR or j¼ jrand

Xj
i,G Otherwise

8<
: j¼ 1,2, . . . ,D: ð7Þ

where rand½0,1ÞA ½0:1� is a uniformly distributed random number,
and jrandAf1,2, . . . ,Dg is a randomly chosen index, which ensures
that Ui,G gets at least one component from Vi,G.

Finally, we describe the arithmetic crossover, which generates
the trial vector Ui,G like this,

Ui,G ¼ Xi,GþK � ðVi,G�Xi,GÞ ð8Þ

where K is the combination coefficient which is usually used in the
interval [0, 1]. This strategy is known as ‘‘DE/CurrentToRand/1’’.

2.2.3. Selection operator

When the trial vector has been generated, we must decide
which individual between XiG and Ui,G should survive in the
population of the next generation G+1. The selection operator is
described as follows:

Xi,Gþ1 ¼
Ui,G if f ðUi,GÞ is better than f ðXi,GÞ

Xi,G Otherwise

(
ð9Þ
where f() is the fitness function to be minimized. If the new trial
vector yields a solution equal to or better than the target vector, it
replaces the corresponding target vector in the next generation;
otherwise the target is retained in the population. Therefore, the
population always gets better or retains the same fitness values,
but never deteriorates. This one-to-one selection procedure is
generally kept fixed in most of the DE algorithms.

2.3. Advanced proposals for DE

The success of DE in solving a specific problem crucially depends
on choosing the appropriate mutation strategy and its associated
control parameter values (F and CR) that determine the conver-
gence speed. Hence, a fixed selection of these parameters can
produce slow and/or premature convergence depending on the
problem. Thus, researchers have investigated the parameter adap-
tation mechanisms to improve the performance of the basic DE
algorithm.

Now, we describe four of the newest and best DE algorithms
proposed in the literature.

2.3.1. Self-adaptive differential evolution (SADE)

SADE [49] was proposed by Qin et al. to alleviate the expensive
trial-and-error search for the most adequate parameters and
mutation strategy. They simultaneously implement four mutation
strategies (Eqs. (1) (5), (6), (8)) that are called candidate pool.

For each target vector Xi,G in the current population, we have to
decide which strategy is selected. Initially, the probability with
respect to each strategy is 1/S, where S is the number of strategies.
SADE adapts the probability of generating offspring by either
strategy based on their success ratios in the past LP generations.
Specifically, they introduce success and failure memories to store
the number of Ui,G that enter the next generation, and the number
of discarded Ui,G.

In SADE, the mutation factors Fi are independently generated at
each generation according to a normal distribution N(0.5,0.3). The
proper choice of CR can lead to successful optimization, so they
consider gradually adjusting the range of CR values according to the
previous values. It is adjusted by using a memory, to store the CR

values with respect to an S-strategy, and a normal distribution.

2.3.2. Adaptive differential evolution with optional external archive

(JADE)

JADE [52] is proposed by Zhang and Sanderson and it is based on
a new mutation strategy and parameter adaptation. The new
strategy is called DE/RandTop best with an optional archive that
is created to resolve the premature convergence of greedy strate-
gies such as DE/RandToBest/k1 and DE/Best/k. The authors call p the
percentage (per unit) of individuals that are considered in the
mutation strategy. A mutation vector with DE/RandTop Best/1 with
archive is generated as follows:

Vi,G ¼ Xi,GþFi � ðXbest,G�Xi,GÞþFi � ðXr1,G�Xur2,GÞ ð10Þ

where Xi,G, Xr1,G and Xbest,G are selected from P (current population),
while Xur2,G is randomly chosen from the union of P

S
A, where A is

the archive of inferior solutions stored from recent explorations.
The archive is initially empty. Then, after each generation, the

solutions that fail in the selection process are stored to the archive.
When the archive size exceeds a certain threshold, some solutions
are randomly removed from the archive A. Furthermore, this
algorithm proposes a parameter adaptation where the mutation
factor Fi of each individual is independently generated according to
a Cauchy distribution [55,56] with location parameter mF and scale



Fig. 1. DE algorithm basic structure.
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parameter 0.1, and then it is truncated to be 1 if Fi4 ¼ 1 or
regenerated if Fio ¼ 0. At each generation, the crossover rate CRi is
generated according to a normal distribution N(mCR, 0.1), and then
truncated to [0,1].

2.3.3. Differential evolution using a neighborhood-based mutation

operator (DEGL)

DEGL [51] is also motivated by DE/RandToBest/1. They propose
a new mutation model based on neighborhoods. The authors make
two kinds of neighborhood called ‘‘Local’’ and ‘‘Global’’ neighbor-
hoods, so they propose two kinds of mutation operator. When they
talk about the local neighborhood is not necessarily local in the
sense of their geographical nearness or similar fitness values.

These mutation operators are combined in one, in the following
manner. For each member of the population, a local trial vector
is created by employing the best (fittest) vector in the neighbor-
hood as

Li,G ¼ Xi,GþF � ðXLbesti ,G�Xi,GÞþF � ðXp,G�Xq,GÞ ð11Þ

where Lbesti is the best vector in the local neighborhood of Xi,G, and
p, q are the indices of two random vectors extracted from the local
neighborhood.

Similarly, the global trial vector is created as

gi,G ¼ Xi,GþF � ðXgbesti ,G�Xi,GÞþF � ðXr1 ,G�Xr2 ,GÞ ð12Þ

where gbesti is the best vector in the current population, and r1 and
r2 are randomized in the interval [1,NP].

To combine both operators, they use a new parameter, known as
‘‘scalar weight’’ oAð0,1Þ, and they use the following expression:

Vi,G ¼o � gi,Gþð1�oÞ � Li,G ð13Þ

As with other adaptive methods, they propose different
schemes for adaptation. They introduce three kinds of perfor-
mance: the adaptation of the new o parameter, a deterministic
linear or exponential increment, and a random value for each
vector or a self-adaptive weight factor scheme. However, they do
not present an adaptive control parameter for F and CR.

2.3.4. Scale factor local search in differential evolution (SFLSDE)

Scale factor local search in differential evolution was proposed
by Neri and Tirronen [53]. This self-adaptive algorithm was
inspired by memetic algorithms. In order to guarantee a high
quality solution, SFLSDE uses two local search algorithms in the
scale factor space to find the appropriate parameters for a given Xi,G.
Specifically, they follow two different approaches: scale factor
golden section search (SFGSS) and scale factor hill-climb (SFHC).
Both are based on changing the scale factor value and calculate the
fitness value of the trial vector Ui,G after the mutation and crossover
phases.

SFLSDE follows the typical DE scheme, but at each iteration, five
random numbers are generated (rand1,y,rand5) and they are used
to determine the corresponding trial vector Ui,G. The values of the
parameters are as follows:

Fi ¼

SFGSS if rand5ot3

SFHC if t3o ¼ rand5ot4

FlþFu � rand1 if rand2ot1

Fi otherwise

(
if rand54t4

8>>>><
>>>>:

ð14Þ

CRi ¼
rand3 if rand4ot2

CRi otherwise

(
ð15Þ

where tk, kA1,2,3,4 are constant threshold values. In [53], the
authors only use the DE/rand/1/Bin mutation strategy. In the
experimental study, we incorporate other mutation strategies.
3. Differential evolution for prototype generation

In this section we explain the proposal to apply the underlying
idea of DE to the PG problem as a position adjusting of prototypes
scheme. Fig. 1 shows the pseudo-code of the model proposed with
the DE/Rand/1 mutation strategy and binomial crossover. In the
following we describe the most significant instructions enumer-
ated from 1 to 34.

First of all, it is necessary to define the solution codification. In
the proposed DE algorithm, each individual Xi,G in the population
encodes a complete solution; that is, a reduced set of prototypes are
encoded sequentially in each individual.

The number of prototypes encoded in each individual will
define its individual size and it is denoted r as previously. A user
parameter will set this value r. It is necessary to point out that this
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parameter r is different to the parameter D explained in Section 2.2.
The dimensionality D corresponds to the number of input attri-
butes of the problem.

Following the notation used in Section 2.2, Xi,G defines the target
vector, but in our case, the target vector can be represented as a
matrix. Table 1 describes the structure of an individual. Further-
more, each prototype pj, 1r jrr, of an individual Xi,G has a class
xpo,j. This class value remains unchangeable by the DE operators
throughout the evolutionary cycle, and it is fixed from the begin-
ning of the process. The number of prototypes evolved for each
class is assigned in the initialization stage.

3.1. Initialization

DE begins with a population of NP individuals Xi,G. Given that
this problem provides some knowledge based on the initial
arrangement of training samples, instruction 3 initializes each
individual Xi,G by choosing r random prototypes from the TR.

The initialization process ensures that every class has at least
one representative prototype. Specifically, we use an initial random
stratified selection of prototypes which guarantees that the
number of prototypes encoded in each individual for each class
is proportional to the number of them in TR. There must be at least
one prototype for each class encoded in the individuals. Fig. 2
shows an example.

It is important to point out that every solution must have the
same structure, thus they must have the same number of proto-
types per class, and the classes must have the same arrangement in
the matrix Xi,G. Following the example of Fig. 2, each individual Xi,0

should contain four prototypes, in the following order: three
prototypes of Class 0, one of Class 1.
Table 1
Encoding of a set of prototypes in an individual Xi,G for the DE algorithm.

Attribute 1 Attribute 2 y Attribute D Class

Prototype 1 xp1,1 xp2,1 y xpD,1 xpo,1

Prototype 2 xp1,2 xp2,2 y xpD,2 xpo,2

y

Prototype r xp1,r xp2,r y xpD,r xpo,r

Fig. 2. Initialization process for an individual Xi,0 in Appendicitis data set. TR contains

95 examples. If we established the reduction rate (RR) at 0.95, let us assume that Z ¼

1�RR, r ¼ Z � 95 examples ¼ 4 prototypes (truncating this value). Appendicitis is

composed of two classes, with 76 and 19 prototypes respectively. Hence, the

individual Xi,0 should contain: Z � 76¼ 3 prototypes of Class 0, and Z � 19¼ 0

prototype of Class 1. We ensure that Class 1 has at least one prototype.
3.2. Mutation and crossover operators

The mutation and crossover strategies explained in Section 2
have been implemented. From instructions 9–14, the algorithm
selects 3 or 5 random individuals, depending on the mutation
strategy, and then, it generates the mutant matrix Vi,G with respect
to each individual Xi,G, in the current population. The operations of
addition, subtraction and scalar product are carried out as typical
matrices. This is the justification for the individuals having the
same structure. In order for the mutation operator to make sense,
the operators must act over the same attributes and over proto-
types of the same class in all cases.

After applying this operator, it is necessary to check that the
mutant matrix Vi,G has been generated with correct values for all
features of the prototypes, i.e. to check that the values are in the
correct range. Instruction 15 normalizes all attributes of the data
set to the [0, 1] range, so this procedure only needs to check if there
have been values out of range of [0,1]. If a computed value is greater
than 1, we truncate it to 1, and if is lower than 0, we establish it at 0.

Our previous work [48] indicates that the binomial crossover
operator has more suitable behavior for the PG problem than the
rest of the operators. The new trial matrix is generated by using
Eq. (7) and the instructions 16–21 show this operation. In PG,
instead of interchanging attributes values, the mutant matrix Vi,G

exchanges its prototypes with the target Xi,G to generate a new trial
matrix Ui,G.

3.3. Selection operator

This operator must decide which individual between Xi,G and
Ui,G should survive in the population of the next generation G+1
(instructions 23–26). The NN rule, with k¼1 (1NN), guides this
operator. The instances in TR are classified with the prototypes
encoded in Xi,G or Ui,G by the 1NN rule with a leave-one-out

validation scheme, and their corresponding fitness values are
measured as the accuracyð�Þobtained, which represents the number
of successful hits (correct classifications) relative to the total
number of classifications. We try to maximize this value, so the
selection operator can be viewed as follows:

Xi,Gþ1 ¼
Ui,G if accuracyðUi,GÞ4 ¼ accuracyðXi,GÞ

Xi,G otherwise

(
ð16Þ

In case of a tie between the values of accuracy, we select the Ui,G

in order to give the mutated individual the opportunity to enter the
population.

Finally, instructions 27–30 check if the selected individual
obtains the best fitness in the population, and instruction 34
returns the best individual found during the evolutionary process.
4. Hybridizations of prototype selection and generation
methods

This section presents the hybridization model that we propose.
Section 4.1 enumerates the arguments that justify hybridization.
Section 4.2 explains how to construct the hybrid model.

4.1. Motivation

As we stated before, PS and PG relate to different problems. The
main drawback of PS methods is that they assume that the best
representative examples can be obtained from a subset of the
original data whereas PG methods generate new representative
examples if needed. Specifically, positioning adjustment methods
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aim to correct the position of a subset of prototypes from the initial
set by using an optimization procedure.

However, the positioning adjustment methods are not free of
different drawbacks.
�
 They relate to a more complex problem than PS, i.e. the search
space can be more difficult to explore.

�
 As a result of the above, finding a promising solution by using

positioning adjustment methods requires a higher cost than a PS
method.

�
 Positioning adjustment methods usually initialize the gener-

ated set GS with a fixed number of random prototypes from TR,
which will be modified in successive iterations. This character-
istic is one of the weaknesses of these methods because this
parameter can be very dependent on the specific problem. In
principle, a practitioner must know the exact number of
prototypes which will compose the final solution for each
problem, but moreover, the proportion of prototypes between
classes should be estimated in order to obtain good solutions.
Thus, two schemes of initialization are commonly used:
3 The number of representative instances for each class is

proportional to the number of them in the input data.
3 All the classes are represented with the same number of

prototypes.
As we have seen, the appropriate choice of the number of
prototypes per class has not been addressed by positioning
adjustment techniques.

4.2. Hybrid model

Random selection (stratified or not) of prototypes from the TR

may not be the most adequate procedure to initialize the GS.
Instead, we can use a PS algorithm prior to the adjustment process
to initialize a subset of prototypes. Making use of this idea, we
mitigate the first and second drawbacks stated before as most of
the effort performed by positioning adjustment is made over a
localized search area given by a PS solution. We also tackle the third
weakness, because the heuristic of the PS methods is not forced to
select a determinate number of prototypes of each class; it selects
the most suitable number of prototypes per class. In addition to
this, if the prototypes selected by a PS method can be tuned in the
search space, the main drawback associated with PS is also
overcome.

To hybridize PS and positioning adjustment methods, two
different methods of initialization of the positioning adjustment
algorithm will be used, depending on the type of codification of the
solution:
�
 Complete solution per individual: This corresponds to the case
where each individual of the population encodes a complete GS

(i.e., that used by DE and PSO). The SS must be inserted once as
one of the individuals of the population, initializing the rest of
the individuals as the standard procedure does.

�

2 http://sci2s.ugr.es/keel/datasets
Others: This is the case where the complete GS is optimized (i.e.,
the scheme used by LVQ3). The resulting SS of the PS methods is
used by the positioning adjustment procedure as the initial set.

When each individual of the evolutionary algorithm encodes a
complete GS, it helps to alleviate the complexity of the optimization
procedure, because there is a promising initial individual in the
population. Operators used by DE and PSO benefit from the
presence of this individual. Furthermore, this type of codification
tries to avoid getting stuck at a local optimum, initializing the rest
of the individuals with random solutions extracted from the TR,
keeping the same structure as the S selected by the PS method, as in
the example given in Section 3.1.

Fig. 3 shows the two different hybrid models. Specifically,
Fig. 3(a) presents the scheme to hybridize a PS method with DE
and PSO, and Fig. 3(b) shows the hybridization process with LVQ3.
5. Experimental framework

In this section, we show the factors and issues related to the
experimental study. We provide the measures employed to
evaluate the performance of the algorithms (Section 5.1), details
of the problems chosen for the experimentation (Section 5.2), an
enumeration of the algorithms used for comparison with their
respective parameters (Section 5.3) and finally, the statistical
tests employed to contrast the results obtained are described
(Section 5.4).

5.1. Performance measures for standard classification

In this work, we deal with multi-class data sets. In these
domains, two measures are widely used for measuring the effec-
tiveness of classifiers because of their simplicity and successful
application. We refer to accuracy and Cohen’s kappa rate. Further-
more, the reduction rate will be used as the classification efficiency
measure. They are explained as follows:
�
 Accuracy: is the number of successful hits (correct classifica-
tions) relative to the total number of classifications. It has been
by far the most commonly used metric for assessing the
performance of classifiers for years [57,58].

�
 Cohen’s kappa (Kappa rate): is an alternative measure to the

classification rate, since it compensates for random hits [59]. In
contrast to accuracy, kappa evaluates the portion of hits that can
be attributed to the classifier itself (i.e., not to mere chance),
relative to all the classifications that cannot be attributed to
chance alone. Cohen’s kappa ranges from �1 (total disagree-
ment) through 0 (random classification) to 1 (perfect agree-
ment). For multi-class problems, kappa is a very useful, yet
simple, meter for measuring a classifier’s accuracy while
compensating for random successes.

�
 Reduction rate: One of the main goals of the PG and PS methods is

to reduce storage requirements. Another goal closely related to
this is to speed up classification. A reduction in the number of
stored instances will typically yield a corresponding reduction
in the time it takes to search through these examples and
classify a new input vector.

Note that Accuracy and Kappa measures are applied over the
training data with a leave-one-out validation scheme.

5.2. Data sets

In the experimental study, we selected 56 data sets from the UCI
repository [60] and the KEEL-dataset repository2 [61]. Table 2
summarizes the properties of the selected data sets. It shows, for
each data set, the number of examples (#Ex.), the number of
attributes (#Atts.), and the number of classes (#Cl.). The data sets
are grouped into two categories depending on the size they have.
Small data sets have less than 2000 instances and large data sets
have more than 2000 instances. The data sets considered are
partitioned using the 10-fold cross-validation (10-fcv) [62,63]
procedure.

http://sci2s.ugr.es/keel/datasets


Fig. 3. Hybrid model. (a) PSO and DE approaches; (b) LVQ approach.
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In K-fold cross-validation (K-fcv), the original sample is randomly
partitioned into K subsamples. Of the K subsamples, a single subsample
is retained as the validation data for testing the model, and the
remaining K-1 subsamples are used as training data. The cross-
validation process is then repeated K times (the folds), with each of
the K subsamples used exactly once as the validation data. The K results
from the folds will be averaged to produce a single estimation.

5.3. Comparison algorithms and parameters

Several methods, evolutionary and non-evolutionary, have been
selected to perform an exhaustive study of the capabilities of our
proposals. Those methods are as follows:

1NN: The 1NN rule is used as a baseline limit of performance.

Prototype selection methods:
�
 DROP3: This combines an edition stage with a decremental
approach where the algorithm checks all the instances in order
to find those instances which should be deleted from GS [19].
�
 ICF: This method follows an iterative procedure in which those
instances susceptible to removal from GS based on reachability
and coverage properties of the instance are determined [23].

�
 SSMA: This memetic algorithm makes use of a local search or

meme specifically developed for the prototype selection pro-
blem. This interweaving of the global and local search phases
allows the two to influence each other [38].

Prototype generation methods:
�
 LVQ3: Learning vector quantization can be understood as a
special case of artificial neural network in which a neuron
corresponds to a prototype and a competition weight based is
carried out in order to locate each neuron in a concrete place of
the m-dimensional space to increase the classification accuracy
[29]. It will be used as an optimizer in the proposed hybrid
models.

�
 MixtGauss: This is an adaptive PG method considered in the

framework of mixture modeling by Gaussian distributions,
while assuming a statistical independence of features.
The prototypes are chosen as the mean vectors of the optimized



Table 2
Summary description for classification data sets.

Data set #Ex. #Atts. #Cl.

Abalone 4174 8 28

Appendicitis 106 7 2

Australian 690 14 2

Autos 205 25 6

Balance 625 4 3

Banana 5300 2 2

Bands 539 19 2

Breast 286 9 2

Bupa 345 6 2

Car 1728 6 4

Chess 3196 36 2

Cleveland 297 13 5

Coil2000 9822 85 2

Contraceptive 1473 9 3

crx 125 15 2

Dermatology 366 33 6

Ecoli 336 7 8

Flare-solar 1066 9 2

German 1000 20 2

Glass 214 9 7

Haberman 306 3 2

Hayes-roth 133 4 3

Heart 270 13 2

Hepatitis 155 19 2

Housevotes 435 16 2

Iris 150 4 3

Led7digit 500 7 10

Lymphography 148 18 4

Magic 19020 10 2

Mammographic 961 5 2

Marketing 8993 13 9

Monks 432 6 2

Movement_libras 360 90 15

Newthyroid 215 5 3

Pageblocks 5472 10 5

Penbased 10992 16 10

Pima 768 8 2

Saheart 462 9 2

Satimage 6435 36 7

Segment 2310 19 7

Sonar 208 60 2

Spambase 4597 57 2

Spectheart 267 44 2

Splice 3190 60 3

Tae 151 5 3

Texture 5500 40 11

Thyroid 7200 21 3

Tic-tac-toe 958 9 2

Titanic 2201 3 2

Twonorm 7400 20 2

Vehicle 846 18 4

Vowel 990 13 11

Wine 178 13 3

Wisconsin 683 9 2

Yeast 1484 8 10

Zoo 101 16 7
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Gaussians, whose mixtures are fit to model each of the
classes [32].

�
 HYB: This constitutes a hybridization of several prototype

reduction techniques. Concretely, HYB combines support vector
machines with LVQ3 and executes a search in order to find the
most appropriate parameters of LVQ3 [31].

�
 RSP3: This technique is based on Chen’s algorithm [30]. The

main difference between them is that in Chen’s algorithm any
subset containing a mixture of instances belonging to different
classes can be chosen to be divided. By contrast, in RSP3 [54], the
subset with the highest overlapping degree is the one picked to
be split. This process tries to avoid drastic changes in the form of
decision boundaries associated with TR which are the main
shortcomings of Chen’s algorithm.
�
 ENPC: This follows a genetic scheme with five operators,
which focus their attention on defining regions in the search
space [42].

�
 PSO: This adjusts the position of an initial set with the PSO rules,

attempting to minimize the classification error [39]. We will use
it as an optimizer in the proposed hybrid models.

�
 PSCSA: This is based on an artificial immune system [64], using

the clonal selection algorithm to find the most appropriate
position for a prototype set [43].

Many different configurations are established by the authors
of each paper for the different techniques. We focus this experi-
mentation on the recommended parameters proposed by their
respective authors, assuming that the choice of the values
of the parameters was optimally chosen. The configuration para-
meters, which are common for all problems, are shown in
Table 3. Note that some methods have no parameters to be
fixed, so they are not included in this table. In all of the
techniques, Euclidean distance is used as a similarity function
and those which are stochastic methods have been run three times
per partition.
5.4. Statistical tools for analysis

In this paper, we use the hypothesis testing techniques to
provide statistical support for the analysis of the results [65,66].
Specifically, we use non-parametric tests, due to the fact that the
initial conditions that guarantee the reliability of the parametric
tests may not be satisfied, causing the statistical analysis to lose
credibility with these parametric tests. These tests are suggested in
the studies presented in [67,68,65,69], where their use in the field
of machine learning is highly recommended.

Throughout the study, we perform several non-parametric
tests. The Wilcoxon test [67,68] will be used to perform a multiple
pairwise comparison between the different schemes of our pro-
posals. It will be adopted considering a level of significance of
a¼ 0:1.

Furthermore, in order to perform multiple comparisons
between our proposals and the rest of the techniques considered,
we will use the Friedman Aligned-Ranks test [70] to detect
statistical differences among a group of results and the Holm
post-hoc test [71], to find out which algorithms are distinctive
among the 1*n comparisons performed [69]. A complete descrip-
tion of these statistical tests can be found in Appendix A.

More information about these tests and other statistical pro-
cedures can be found at http://sci2s.ugr.es/sicidm/.
6. Analysis of results

In this section, we analyze the results obtained from different
experimental studies. Specifically, our aims are:
�
 To compare the different DE schemes to each other and to
several classical and recent prototype reduction techniques for
1NN based classification over small data sets (Section 6.1).

�
 To test the performance of our DE schemes when the size of the

problems is increased (Section 6.2).

�
 To show the convergence process of basic and advanced DE

algorithms (Section 6.3).

�
 To analyze the benefits of hybrid models over small data-sets

(Section 6.4).

�
 To check if the performance of hybrid models is maintained with

large data sets (Section 6.5).

http://sci2s.ugr.es/sicidm/
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6.1. Analysis and results of DE schemes over small size data sets

This study is divided into two parts. First, in Section 6.1.1 we
compare the different schemes of DE and identify the best
alternatives for the positioning adjustment of prototypes. The
Wilcoxon test will be used to support this analysis [67]. Next,
Section 6.1.2 shows a comparative study of the better DE methods
with other classical and recent PG techniques. In this case, the
Friedman Aligned Ranks test for multiple comparisons will be used
in association with the Holm post-hoc test [69]. We have used a
total of 40 small data sets of the general framework for both
experiments.

6.1.1. Results of DE schemes over small data sets

We focus this experiment on comparing the differences in
performance of the DE methods based on the experimental frame-
work stated previously.

Table 4 shows the average results (and its standard deviations
‘‘+-’’) obtained over small data sets in training and test data by six
different mutation strategies for the basic DE, two configurations
for SADE parameters, one for JADE, four different schemes for DEGL
and finally SFLSDE has been tested with two mutation strategies.
The best case for each column is highlighted in bold. The Wilcoxon
test is conducted to compute for each method, with a level of
Table 3
Parameter specification for all the methods employed in the experimentation.

Algorithm Parameters

SSMA Population¼30, Eval¼10 000, Cr

LVQ3 Iterations ¼ 500, a¼ 0:1, Window

HYB Search_Iter ¼ 200, Optimal_Iter

Initial_Window ¼ 0, Final_Wind

RSP3 Subset Choice ¼ Diameter

ENPC Iterations ¼ 250

PSO SwarmSize ¼ 40, Iterations ¼ 50

C1 ¼ 1, C2 ¼ 3, Vmax ¼ 0.25, W

PSCSA HyperMutation Rate ¼ 2, Clonal

Mutation Rate ¼ 0.01, Stim_Thre

DE PopulationSize ¼ 40, Iterations ¼

SADE PopulationSize ¼ 40, Iterations ¼

JADE PopulationSize ¼ 40, Iterations ¼

DEGL PopulationSize ¼ 40, Iterations ¼

WeightScheme¼ Exponential, Ad

SFLSDE PopulationSize ¼ 40, Iterations ¼

Note: The parameter reduction rate on fixed reduction algorithms has been established

Table 4
Results of different DE models over small data sets.

Algorithm Accuracy Kap

Training Test Trai

DE/Rand/1/Bin 0.7679 70.1536 0.7268 70.1670 0.58

DE/Best/1/Bin 0.8005 70.1275 0.7393 70.1464 0.63

DE/RandToBest/1/Bin 0.8279 70.1192 0.7524 70.1460 0.68

DE/Best/2/Bin 0.8285 70.1174 0.7434 70.1445 0.68

DE/Rand/2/Bin 0.7962 70.1456 0.7348 70.1563 0.62

DE/RandToBest/2/Bin 0.8231 70.1250 0.7567 70.1426 0.67

SADE LP 50 0.8195 70.1563 0.7513 70.1452 0.67

SADE LP 100 0.8243 70.1232 0.7502 70.1435 0.67

JADE 0.8209 70.1219 0.7541 70.1417 0.67

DEGL EXP 0.8144 70.1563 0.7597 70.1394 0.67

DEGL ADAP 0.8211 70.1563 0.7525 70.1401 0.66

DEGL RANDOM 0.8146 70.1563 0.7488 70.1392 0.66

DEGL LINEAR 0.8187 70.1563 0.7550 70.1404 0.66

SFLSDE/Rand/1/Bin 0.8347 70.1563 0.7582 70.1563 0.69

SFLSDE/RandToBest/1/Bin 0.8411 70.1563 0.7619 70.1563 0.70
significance of a¼ 0:1, the number of algorithms outperformed by
it and the number of algorithms with no detected differences in
performance. Specifically, the column denoted by ‘‘+’’ reflects the
number of methods outperformed by the method in the row and
the column ‘‘+¼ ’’ shows the number of methods with similar or
worse performance by the method in the row.

Observing Table 4, we can point out some interesting facts:
�
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The choice of an adequate mutation strategy seems to be an
important factor that influences the results obtained. When the
perturbation process is based on the selection of random
individuals to generate a new solution, it may be affected by
a lack of exploitation capability. However, when the best
individual guides the search, exploration capabilities are
reduced. RandToBest strategies have reported the best results
because they perform a good balance between exploration
(random individual) and exploitation (best individual).

�
 Advanced proposals such as JADE and DEGL, that are completely

motivated by the RandToBest strategy, clearly outperform those
basic DE techniques which are based on Rand and Best
strategies. SADE probably loses accuracy in the iterations that
only execute Rand and Best strategies. The DEGL algorithm, with
an exponential increment of the parameter o, has reported the
best kappa test and the statistical test shows that it also
0.5, Mutation¼0.001

idth¼0.2, epsilon ¼ 0.1, Reduction Rate ¼ 0.95/0.99

000, alpha ¼ 0.1, I_epsilon ¼ 0, F_epsilon ¼ 0.5

¼ 0.5, delta ¼ 0.1, delta_Window ¼ 0.1, Initial Selection ¼ SVM

rt ¼ 1.5, Wend ¼ 0.5, Reduction Rate ¼ 0.95/0.99

¼ 10,

ld ¼ 0.89, a ¼ 0.4

0, F ¼ 0.5, CR ¼ 0.9, Reduction Rate ¼ 0.95/0.99

0, Learning Period ¼ 50 and 100, Reduction Rate ¼ 0.95/0.99

0, p¼0.05, c¼ 0.1, Reduction Rate ¼ 0.95/0.99

0, F ¼ 0.8, CR ¼0.9, WeightFactor¼0.0,

ive, Random and Linear, Reduction Rate ¼ 0.95/0.99

0, iterSFGSS ¼8, iterSFHC¼20, Fl¼0.1, Fu¼0.9, Reduction Rate ¼ 0.95/0.99

.95 for small size data set, 0.99 for large.

ate Acc Tst Kappa Tst

Test + +¼ + +¼

70.2216 0.4947 70.2579 0 13 0 10

70.1986 0.5155 70.2468 0 10 0 10

70.1887 0.5384 70.2453 0 14 1 13

70.1875 0.5212 70.2463 1 13 2 13

70.2187 0.5061 70.2484 0 12 0 7

70.2031 0.5406 70.2484 0 14 1 14
70.1563 0.5335 70.2482 1 12 2 13

70.1979 0.5324 70.2432 0 12 0 12

70.1974 0.5417 70.2415 0 14 3 14
70.1563 0.5529 70.2328 6 14 4 14
70.1563 0.5351 70.2436 1 14 1 14
70.1936 0.5329 70.2335 0 13 2 12

70.1930 0.5437 70.2371 1 13 2 13

70.1948 0.5461 70.1563 2 14 4 14
70.1563 0.5516 70.1563 2 14 2 13
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overcomes more methods supported with a level of significance
a¼ 0:1 in terms of accuracy rate. The other DEGL’s variants
obtain similar results except for the random approach that is
probably affected by a lack of convergence.

�

Table 6
Average rankings of the algorithms over small data sets (Friedman Aligned-Ranks +

Holm’s Test).

Algorithm FA ranking Holm APV

SFLSDE/RandToBest/1/Bin 131.4625 –

SFLSDE/Rand/1/Bin 138.3 1.0

DEGL EXP 139.4 1.0
SFLSDE with the RandToBest strategy achieves the best average
results in accuracy. This technique involves the best mutation
strategy and two local searches which allow it to find the most
suitable parameters during the evolution process.

Looking at accuracy, kappa rate and the statistical test; three
methods deserve particular mention: DEGL exponential, SFLSDE
Rand and SFLSDE RandToBest. We will use these methods in the
comparison with other PG methods.

6.1.2. Comparison with other PG techniques over small data sets

In this section, we perform a comparison between the best three
DE models checked before (SFLSDE Rand, RandToBest and DEGL
exponential) with respect to the other 7 PG methods. Table 5 shows
the average results collected. In this case, we add the reduction rate,
which is, an important measure to compare the methods.

Table 6 presents the rankings obtained by the Friedman Aligned
(FA) procedure with the accuracy measure. In this table, algorithms
are ordered from the best to the worst ranking. Furthermore, the
third column shows the adjusted p-value with the Holm’s test
(Holm APV) [69]. Note that the SFLSDE RandToBest is established as
the control algorithm because it has obtained the best FA ranking.
Holm’s test uses the same level of significance as Wilcoxon, a¼ 0:1.
Algorithms highlighted in bold are those which have been out-
performed with this level of significance.

Observing both Tables 5 and 6, we want to make some
interesting comments:
PSO 158.275 1.0

RSP3 225.3999 0.0044
1NN 226.0 0.0044
�

HYB 258.3625 4.85�10�5

ENPC 268.15 1.07�10�5

Mixt_Gauss 269.6875 9.33�10�6

PSCSA 286.1875 4.75�10�7

LVQ3 324.275 1.19�10�10
DE methods significantly outperform the other PG techniques,
except for PSO, in accuracy and kappa rate. PSO is clearly the
most competitive PG algorithm for DE. PSO has the same type of
solution codification as DE and a similar evolutionary scheme,
but advanced proposals of the DE algorithm usually obtain
better average results.

�

Table 7
Results of the Wilcoxon test compared with PSO over small data sets.

Comparison p-Value
We could also have stressed RSP3, HYB and ENPC algorithms as
competitive algorithms for DE. But, as we can see in the table,
they obtain a good performance over training results, but they
do not report great test results, therefore they have a higher
overfitting than the DE algorithms.

�

DEGL EXP vs. PSO 0.0106
SFLSDE Rand vs. PSO 0.0986
SFLSDE RandToBest vs. PSO 0.0408
In terms of reduction capabilities, DE has been fixed to 0.95.
Only MixtGauss and PSCSA obtain better reduction rates, but
they offer lower accuracy/kappa rates. DE outperforms the rest
of the methods with similar or lower reduction rates.
le 5
parison between the three best DE models and other PG approaches over small da

lgorithm Accuracy

Training Test

NN 0.7369 70.1654 0.7348 70.1664

ixtGauss 0.7138 70.1545 0.6932 70.1668

Q3 0.6931 70.1560 0.6763 70.1662

YB 0.8309 70.0154 0.7153 70.1651

SP3 0.7924 70.1373 0.7325 70.1591

NPC 0.8247 70.1477 0.7167 70.1597

SO 0.8238 70.1274 0.7501 70.1409

SCSA 0.6787 70.1835 0.6682 70.1874

EGL EXP 0.8144 70.1563 0.7597 70.1394

FLSDE/Rand/1/Bin 0.8347 70.1563 0.7582 70.1563

FLSDE/RandToBest/1/Bin 0.8411 70.1563 0.7619 70.1563
Now, we focus our attention on the first statement. Holm’s test
has no reported significant differences between DE and PSO. PSO
probably benefits from the multiple comparison test, because it
significantly outperforms the rest of the PG techniques. For this
reason, we want to check the comparison between PSO and DE with
the Wilcoxon test. Table 7 shows the p-values obtained with the
Wilcoxon test. As we can see, advanced DE proposals always
outperform the PSO algorithm with a level of significance ofa¼ 0:1.

6.2. Analysis and results of DE schemes over large size data sets

This section presents the study and analysis of large size data
sets. The goal of this study is to analyze the effect of scaling up the
data in DE methods. Again, we divide this section into two different
stages. First, in Section 6.2.1 we look for the best DE method over
large data sets. Next, Section 6.2.2 compares the results with other
PG methods.

6.2.1. Results of DE schemes over large data sets

In order to test the performance of DE methods we have
established a high reduction rate 0.99. Table 8 presents
ta sets.

Kappa rate Reduction

Training Test

0.4985 70.2910 0.4918 70.2950 0.0000 70.0000

0.4888 70.2473 0.4546 70.2680 0.9552 70.0084

0.4421 70.2458 0.4114 70.1563 0.9488 70.0083

0.6988 70.2573 0.4790 70.1563 0.4278 70.1563

0.6112 70.2420 0.5004 70.2861 0.7329 70.1185

0.6800 70.2532 0.4818 70.2936 0.7220 70.1447

0.6791 70.1950 0.5332 70.2402 0.9491 70.0072

0.4461 70.2466 0.4231 70.2540 0.9858 70.1563
0.6728 70.1563 0.5529 70.2328 0.9483 70.1563

0.6960 70.1948 0.5461 70.1563 0.9481 70.1563

0.7079 70.1563 0.5516 70.1563 0.9481 70.1563



Table 8
Results of different DE models over large data sets.

Algorithms Accuracy Kappa rate Acc Tst Kappa Tst

Training Test Training Test + +¼ + +¼

DE/Rand/1/Bin 0.7831 70.0055 0.7798 70.2075 0.5709 70.2713 0.5639 70.2761 0 12 0 12

DE/Best/1/Bin 0.8025 70.0038 0.7881 70.2069 0.5883 70.2849 0.5605 70.2894 0 8 0 8

DE/RandToBest/1/Bin 0.8124 70.0032 0.7968 70.2087 0.6115 70.2845 0.5815 70.2888 2 10 2 10

DE/Best/2/Bin 0.8183 70.0045 0.7988 70.2086 0.6224 70.2859 0.5843 70.2897 1 11 1 11

DE/Rand/2/Bin 0.7888 70.0068 0.7838 70.2088 0.5803 70.2691 0.5686 70.2753 0 10 0 10

DE/RandToBest/2/Bin 0.8243 70.0045 0.8088 70.2113 0.6377 70.2920 0.6073 70.2928 6 14 6 14
SADE LP 50 0.8107 70.0036 0.7966 70.2063 0.6178 70.2722 0.5918 70.2748 2 13 2 13

SADE LP 100 0.8070 70.0032 0.7941 70.2070 0.6030 70.2793 0.5789 70.2829 0 12 0 12

JADE 0.8136 70.0110 0.8020 70.2058 0.6204 70.2803 0.5969 70.2830 6 13 6 13

DEGL EXP 0.8076 70.0032 0.7951 70.2058 0.6044 70.2783 0.5792 70.2829 0 11 0 11

DEGL ADAP 0.8069 70.0041 0.7946 70.2074 0.6027 70.2811 0.5761 70.2883 1 10 1 10

DEGL RANDOM 0.8069 70.0037 0.7938 70.2079 0.6025 70.2799 0.5772 70.2844 0 8 0 8

DEGL LINEAR 0.8088 70.0031 0.7961 70.2058 0.6052 70.2810 0.5811 70.2831 1 11 1 11

SFLSDE/Rand/1/Bin 0.8327 70.0046 0.8181 70.2074 0.6541 70.2840 0.6243 70.2925 9 14 9 14
SFLSDE/RandToBest/1/Bin 0.8341 70.0030 0.8154 70.2072 0.6556 70.2879 0.6184 70.2910 11 14 11 14

Table 9
Comparison between the two best DE models and other PG approaches over large data sets.

Algorithm Accuracy Kappa rate Reduction

Training Test Training Test

1NN 0.8197 70.0023 0.8072 70.0100 0.6195 70.0229 0.5948 70.0181 0.0000 70.0000

MixtGauss 0.7534 70.0141 0.7505 70.2315 0.4913 70.3251 0.4860 70.3255 0.9514 70.0001

LVQ3 0.6840 70.0057 0.6767 70.2680 0.4409 70.2926 0.4264 70.2962 0.9899 70.0011

HYB 0.7888 70.0234 0.7618 70.2168 0.5992 70.2790 0.5567 70.3153 0.5727 70.2903

RSP3 0.7922 70.2545 0.7556 70.2708 0.6299 70.3266 0.5597 70.3397 0.8100 70.1369

ENPC 0.8809 70.1610 0.7986 70.2188 0.7613 70.2497 0.6170 70.2949 0.8205 70.1919

PSO 0.8022 70.0055 0.8049 70.2136 0.6177 70.2887 0.5948 70.2880 0.9899 70.0011

PSCSA 0.6730 70.2190 0.6707 70.2205 0.3900 70.2376 0.3842 70.2824 0.9988 70.0017
SFLSDE/Rand/1/Bin 0.8388 70.0039 0.8249 70.2205 0.6570 70.3036 0.6281 70.3131 0.9901 70.0002

SFLSDE/RandToBest/1/Bin 0.8414 70.0028 0.8236 70.2199 0.6598 70.3079 0.6240 70.3131 0.9901 70.0002

Table 10
Average rankings of the algorithms over large data sets (Friedman Aligned-Ranks +

Holm’s Test).
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the comparative study. Again, we use the Wilcoxon test to
differentiate between the different proposals.

We can make several observations from these results:
Algorithm FA ranking Holm APV
�

SFLSDE/RandToBest/1/Bin 47.0313 –

SFLSDE/Rand/1/Bin 48.0938 0.9482

1NN 65.1875 0.7359

PSO 66.0625 0.7359

ENPC 71.875 0.5174

RSP3 86.9063 0.0746
HYB 92.6875 0.0319
Some models present important differences when tackling
large data sets. We can stress JADE as a good algorithm
when the size of the data set is higher. With large data sets,
this algorithm overcomes most of the advanced proposals;
except for SFLSDE which remains the best advanced
DE model.
Mixt_Gauss 94.375 0.0269
�

LVQ3 113.5313 3.9323�10�4

PSCSA 119.25 9.3584�10�5
The number of difference vectors to be perturbed by the
mutation operator does seem to be an important factor that
influences the final result obtained when dealing with large
data sets.

�
 SFLSDE/Rand/1/Bin has reported the best average results in

accuracy and kappa rate. However, the statistical test shows
that SFLSDE RandToBest has better behavior than the Rand
strategy. As we can observe in Table 8, SFLSDE/Rand/1/Bin is
able to overcome nine methods and SFLSDE RandToBest 11
methods. The rest of the proposals advanced are not able to
overcome SFSLDE.

�
 When dealing with large data sets, the statistical test notes

higher differences between the methods. Concretely, we can
observe that SFLSDE RandToBest outperforms a total of 11
methods out of 14 with a level of significance of 0.1.

We select both SFLSDE algorithms for the next comparison as
they have, in general, reported the best results.
6.2.2. Comparison with other PG techniques over large data sets

In this section, we perform a comparison between the two best
DE models obtained for large data sets (SFLSDE models) with
the same algorithms as in Section 6.1.2. Table 9 shows the average
results obtained, and Table 10 displays the FA ranking and the
adjusted p-value obtained with Holm’s test.

Observing Tables 9 and 10, we can summarize that:
�
 Most of the PG methods present clear differences when dealing
with large data sets. For instance, ENPC outperforms its ranking
obtained over small data sets. Together with PSO, they are the
most competitive PG techniques for the DE model and Holm’s
test supports this statement. However, SFLSDE usually obtains
better average results.
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DE methods significantly overcome the rest of the PG techni-
ques. Specifically, accuracy and the kappa rate demonstrate that
SFLSDE Rand is able to overcome in 0.02 the average results
obtained for the best PG technique (PSO).

�
 In order to improve the efficiency of the 1NN rule when tackling

large data sets, the reduction rate becomes more important. FA
ranking indicates that only SFLSDE models are able to outper-
form the 1NN with a high reduction rate (0.99), to a greater
extent than the rest of the PG methods.

Again, we use the Wilcoxon test to check if the DE models are able
to outperform the most competitive PG algorithms. Specifically, we
carry out a study with ENPC and PSO. Table 11 presents the results.

The Wilcoxon test shows that ENPC is outperformed with
a¼ 0:1. However, this hypothesis is rejected with PSO, but the
p-value is smaller than the adjusted p-value of Holm’s test.
le 11
ults of the Wilcoxon test compared with PSO and ENPC over large data sets.

omparison p-Value

FLSDE Rand vs. PSO 0.1981

FLSDE RandToBest vs. PSO 0.1928

FLSDE Rand vs. ENPC 0.0183
FLSDE RandToBest vs. ENPC 0.0214
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Fig. 4. Map of convergence: Bupa data set.

le 12
rid models with small data sets.

lgorithm Accuracy Kappa

Training Test Trainin

ROP3 0.7527 70.1240 0.7011 70.1497 0.5498

F 0.7118 70.1343 0.6784 70.1505 0.4797

SMA 0.8207 70.1335 0.7581 70.1518 0.6685

Q3 0.6931 70.1560 0.6763 70.1662 0.4421

SO 0.8238 70.1274 0.7501 70.1409 0.6791

FLSDE/RandToBest/1/Bin 0.8411 70.1563 0.7619 70.1563 0.7079

ROP3+LVQ3 0.7666 70.1197 0.7027 70.1471 0.5705

ROP3+PSO 0.8645 70.0970 0.7501 70.1349 0.7474

ROP3+SFLSDE/RandToBest/1/Bin 0.8711 70.0958 0.7620 70.1348 0.7605

F+LVQ3 0.7384 70.1189 0.6865 70.1413 0.5229

F+PSO 0.8677 70.0980 0.7523 70.1398 0.7526

F+SFLSDE/RandToBest/1/Bin 0.8738 70.0991 0.7618 70.1401 0.7642
SMA+LVQ3 0.8347 70.1100 0.7704 70.1267 0.6842

SMA+PSO 0.8617 70.1007 0.7770 70.1267 0.7376

SMA+SFLSDE/RandToBest/1/Bin 0.8651 70.1010 0.7845 70.1256 0.7407

NN 0.7369 70.1654 0.7348 70.1664 0.4985
6.3. Analysis of convergence

One of the most important issues in the development of any EA
is the analysis of the convergence of its population. If the EA does
not evolve in time, it will not be able to obtain suitable solutions.

We show a graphical representation of the convergence cap-
abilities of DE models, Fig. 4. Specifically, the best basic DE
(DE/RandToBest/2/Bin), SADE (LP¼50), JADE, DEGL exponential,
and SFLSDE with RandToBest.

To perform this analysis we have selected the Bupa small data
set. The graphics show a line representing the fitness value of
the best individual of each population. The X-axis represents the
number of iterations carried out, and the Y-axis represents the
fitness value currently achieved.

As we can see in the graphic, SADE and DEGL quickly find
promising solutions and they waste more than 300 iterations
without an improvement. However, SFLSDE and DE are slower to
converge, which usually allows them to find a better solution at the
end of the process. They find a great balance between exploration
and exploitation during the evolution.

6.4. Analysis and results of hybrid models over small size data sets

This section shows the average results obtained for our hybrid
models when they are applied to small data sets. Table 12 collects
the average results and the Wilcoxon test. The abilities of hybrid
models are shown and their performance is compared with the
basic components that take part in it.

The results achieved in this part of the study allow us to
conclude the following:
�

rate
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Hybrid models always outperform the basic algorithms upon
which they are based. The good synergy between PG and PS
methods is clearly demonstrated with the obtained results. We
selected three PS methods with different reduction rates (ICF
0.7107, DROP3 0.8202 and SSMA 0.9553). A priori a lower
Reduction Acc Tst Kappa Tst

Test + +¼ + +¼

0.2139 0.4544 70.2651 0.8202 70.0148 0 5 1 6

0.2364 0.4175 70.2644 0.7107 70.1369 0 4 0 4

0.2089 0.5455 70.2685 0.9554 70.0343 7 15 6 15
0.2458 0.4114 70.1563 0.9488 70.0083 0 4 0 2

0.1950 0.5332 70.2402 0.9491 70.0072 6 15 5 14

0.1563 0.5516 70.1563 0.9481 70.1563 9 14 7 13

0.2200 0.4553 70.2703 0.8202 70.0809 0 5 1 5

0.1688 0.5286 70.2588 0.8202 70.0809 5 9 6 13

0.1687 0.5488 70.2572 0.8202 70.0809 6 13 6 14

0.2191 0.4282 70.2590 0.7107 70.1369 0 5 0 5

0.1678 0.5318 70.2593 0.7107 70.1369 5 9 3 8

0.1730 0.5462 70.2695 0.7107 70.1369 7 14 7 15
0.2087 0.5619 70.2657 0.9554 70.0343 9 14 6 15
0.1852 0.5727 70.2515 0.9554 70.0343 7 15 9 15
0.1891 0.5836 70.2524 0.9554 70.0343 10 15 10 15
0.2910 0.4918 70.2950 0.0000 70.0000 2 11 4 10

le 13
rage runtime of the optimizer algorithms over small data sets.

untime

FLSDE PSO LVQ3

0.5483 42.3168 0.2316



Table 14
Hybrid models with large data sets.

Algorithms Accuracy Kappa rate Reduction Acc Tst Kappa Tst

Training Test Training Test + +¼ + +¼

DROP3 0.7744 70.0232 0.7472 70.2256 0.5592 70.3079 0.5119 70.3248 0.9061 70.0569 1 5 1 5

ICF 0.6781 70.1863 0.6621 70.2016 0.4202 70.3079 0.3940 70.3143 0.8037 70.1654 0 2 0 2

SSMA 0.8493 70.0021 0.8196 70.2220 0.6725 70.3134 0.6221 70.3177 0.9844 70.0100 9 14 9 14

LVQ3 0.6840 70.0057 0.6767 70.2680 0.4409 70.2926 0.4264 70.2962 0.9899 70.0011 0 4 0 4

PSO 0.8022 70.0055 0.8049 70.2136 0.6177 70.2887 0.5948 70.2880 0.9899 70.0011 3 13 3 13

SFLSDE/RandToBest/1/Bin 0.8414 70.0028 0.8236 70.2199 0.6598 70.3079 0.6240 70.3131 0.9901 70.0002 7 12 7 12

DROP3+LVQ3 0.7730 70.2166 0.7412 70.2382 0.5661 70.3140 0.5106 70.3308 0.9061 70.0569 3 6 3 6

DROP3+PSO 0.8386 70.1913 0.7974 70.2236 0.6496 70.2911 0.5768 70.3130 0.9061 70.0569 5 9 5 9

DROP3+SFLSDE/RandToBest/1/Bin 0.8538 70.1868 0.8152 70.2260 0.6843 70.2875 0.6173 70.3135 0.9061 70.0569 6 14 6 14

ICF+LVQ3 0.6851 70.1796 0.6641 70.1997 0.4297 70.3042 0.3960 70.3133 0.8302 70.1386 0 3 0 3

ICF+PSO 0.8397 70.1950 0.8046 70.2259 0.6444 70.3050 0.5846 70.3226 0.8302 70.1386 5 12 5 12

ICF+SFLSDE/RandToBest/1/Bin 0.8367 70.1924 0.8145 70.2260 0.6434 70.2933 0.6082 70.3151 0.8302 70.1386 6 13 6 13

SSMA+LVQ3 0.8534 70.1998 0.8244 70.2197 0.6793 70.3120 0.6312 70.3163 0.9847 70.0099 6 15 6 15
SSMA+PSO 0.8576 70.2007 0.8241 70.2225 0.6970 70.3030 0.638470.3092 0.9847 70.0099 8 15 8 15
SSMA+SFLSDE/RandToBest/1/Bin 0.8635 70.1979 0.8291 70.2213 0.7056 70.3005 0.6442 70.3105 0.9847 70.0099 11 15 11 15
1NN 0.8197 70.0023 0.8072 70.0100 0.6195 70.0229 0.5948 70.0181 0.0000 70.0000 3 15 3 15

2.67
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reduction rate should allow better accuracy results to be
obtained. In terms of accuracy/kappa rates, we can observe
how the hybrid models, DROP3+SFSLDE and ICF+SFLSDE prob-
ably produce overfitting in training data, because they do not
present good generalization capabilities, obtaining lower accu-
racy/kappa rates in test results.

�
 SFSLDE is the best performing method in comparison with PS

and PG basic algorithms. Furthermore, when it is applied as an
optimizer method in the hybrid models it achieves the best
accuracy/kappa rates. As we stated before, it can sometimes
produce overfitting. However, as we can see from the test results
of SSMA+SFLSDE, when a high reduction PS method is applied,
SFLSDE is very effective. We can extrapolate this statement for
LVQ3 and PSO, which do not produce overfitting over the
resulting set selected by SSMA.

�
 Although LVQ3 does not offer competitive results, when it is

used to optimize a PS solution, LVQ3 is able to improve
appropriately the position of the prototypes. For instance, as
we can see with SSMA+LVQ3 in comparison with SSMA, LVQ3
works properly when it starts from a good solution. Although
PSO and DE outperform LVQ3 as optimizers, an advantage of
LVQ is that it is faster. Table 13 shows the average runtime3 of
the optimizers over small data sets. As we can see, the learning
time of LVQ3 is clearly lower than PSO and DE which codify a
complete solution per individual.

�
 With the same reduction rate, PSO outperforms LVQ3, and it is

more effective when we use it in the hybrid models. Never-
theless, with the obtained results and in comparison with the DE
algorithms, PSO is probably affected by a lack of convergence
because of the absence of an adaptive process to improve its
own parameters during the evolution.

6.5. Analysis and results of hybrid models over large size data sets

In this section we want to check if the performance of hybrid
models is maintained when dealing with large data sets. Table 14
shows this experiment.

We briefly summary some interesting facts:
�
 When dealing with large data sets, reduction rate must be taking
into consideration as one of the main parameters to improve the
3 These results have been obtained with an Intel(R) Core(TM) i7 CPU 920 at

GHz.
efficiency of the 1NN rule. The DE model has been fixed with a
high reduction rate (0.99) and the advanced proposal SFLSDE
outperforms the rest of the PG and PS basic techniques which
are far from achieving this reduction rate.

�
 SSMA was proposed to cover a drawback of the conventional

evolutionary PS methods: their lack of convergence when facing
large problems. We can observe that it is the best PS method and
its performance is improved when we hybridize with an
optimization procedure. SSMA provides a promising solution
which enables any optimization process, including LVQ3 which
does not offer great results in combination with ICF and DROP3,
to converge quickly.

7. Conclusions

In this work, we have presented differential evolution and its
recent advanced proposals as a data reduction technique. Speci-
fically, it was used to optimize the positioning of the prototypes for
the nearest neighbor algorithm, acting as a prototype generation
method.

The first aim of this paper is to determine which proposed DE
algorithm works properly to tackle the PG problem. Specifically, we
have studied the different mutation strategies recognized in the
literature, and the recent approaches to adapt the parameters of
this evolutionary algorithm in order to find a good balance between
exploration and exploitation.

The second contribution of this paper shows the good relation
between PS and PG in obtaining hybrid algorithms that allow us to
find very promising solutions. Hybrid models are able to tackle
several drawbacks of the isolated PS and PG methods. Concretely,
we have analyzed the use of positioning adjustment algorithms as
an optimization procedure after a previous PS stage. Our DE model
is an appropriate optimizer which has reported the best results in
terms of accuracy and reduction rate.

The wide experimental study performed has allowed us to
justify the behavior of DE algorithms when dealing with small and
large data sets. These results have been compared with several non-
parametric statistical procedures, which have reinforced the
conclusions.
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Appendix A. Friedman Aligned Ranks and adjusted p-values

The Friedman test is based on n sets of ranks, one set for each
data set in our case; and the performances of the algorithms
analyzed are ranked separately for each data set. Such a ranking
scheme allows for intra-set comparisons only, since inter-set
comparisons are not meaningful. When the number of algorithms
for comparison is small, this may pose a disadvantage. In such
cases, comparability among data sets is desirable and we can
employ the method of aligned ranks [70].

In this technique, a value of location is computed as the average
performance achieved by all algorithms in each data set. Then it
calculates the difference between the performance obtained by an
algorithm and the value of location. This step is repeated for
algorithms and data sets. The resulting differences, called aligned
observations, which keep their identities with respect to the data
set and the combination of algorithms to which they belong, are
then ranked from 1 to kn relative to each other. Then, the ranking
scheme is the same as that employed by a multiple comparison
procedure which employs independent samples; such as the
Kruskal–Wallis test [72]. The ranks assigned to the aligned
observations are called aligned ranks.

The Friedman aligned ranks test statistic can be written as

T ¼
ðk�1Þ

Pk
j ¼ 1 R̂:j

2
�ðkn2=4Þðknþ1Þ2

h i
f½knðknþ1Þð2knþ1Þ�=6g�ð1=kÞ

Pn
i ¼ 1 R̂i:

2
ð17Þ

where R̂i: is equal to the rank total of the i-th data set and R̂ :j is the
rank total of the j-th algorithm.

The test statistic T is compared for significance with a chi-square
distribution for k�1 degrees of freedom. Critical values can be
found at Table A3 in [66]. Furthermore, the p-value could be
computed through normal approximations [73]. If the null-hypoth-
esis is rejected, we can proceed with a post-hoc test. In this study,
we use the Holm post-hoc procedure.

We focus on the comparison between a control method, which
is usually the proposed method, and a set of algorithms used in the
empirical study. This set of comparisons is associated with a set or
family of hypotheses, all of which are related to the control method.
Any of the post-hoc tests is suitable for application to non-
parametric tests working over a family of hypotheses.

The test statistic for comparing the i-th algorithm and j-th
algorithm depends on the main non-parametric procedure used. In
this case, it depends on the Friedman Aligned Ranks test:

Since the set of related rankings is converted to absolute
rankings, the expression for computing the test statistic in Fried-
man Aligned Ranks is the same as that used by the Kruskal–Wallis
test [72,74]

z¼ ðR̂i�R̂jÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðnþ1Þ

6

r,
, ð18Þ

where R̂i, R̂j are the average rankings by Friedman Aligned Ranks of
the algorithms compared.

In statistical hypothesis testing, the p-value is the probability of
obtaining a result at least as extreme as the one that was actually
observed, assuming that the null hypothesis is true. It is a useful
and interesting datum for many consumers of statistical analysis. A
p-value provides information about whether a statistical hypoth-
esis test is significant or not, and it also indicates something about
‘‘how significant’’ the result is: the smaller the p-value, the stronger
the evidence against the null hypothesis. Most importantly, it does
this without committing to a particular level of significance.

When a p-value is considered in a multiple comparison, it
reflects the probability error of a certain comparison, but it does not
take into account the remaining comparisons belonging to the
family. If one is comparing k algorithms and in each comparison the
level of significance is a, then in a single comparison the probability
of not making a Type I error is ð1�aÞ, then the probability of not
making a Type I error in the k�1 comparison is ð1�aÞðk�1Þ. Then the
probability of making one or more Type I error is 1�ð1�aÞðk�1Þ. For
instance, if a¼ 0:05 and k¼10 this is 0.37, which is rather high.

One way to solve this problem is to report adjusted p-values
(APVs) which take into account that multiple tests are conducted.
An APV can be compared directly with any chosen significance level
a. We recommend the use of APVs due to the fact that they provide
more information in a statistical analysis.

The z value in all cases is used to find the corresponding
probability (p-value) from the table of normal distribution
N(0,1), which is then compared with an appropriate level of
significance a [66, Table A1]. The post-hoc tests differ in the way
they adjust the value of a to compensate for multiple comparisons.

Next, we will define the Holm procedure and we will explain
how to compute the APVs. The notation used in the computation of
the APVs is as follows:
�
 Indexes i and j each correspond to a concrete comparison or
hypothesis in the family of hypotheses, according to an incre-
mental order of their p-values. Index i always refers to the
hypothesis in question whose APV is being computed and index
j refers to another hypothesis in the family.

�
 pj is the p-value obtained for the j-th hypothesis.

�
 k is the number of classifiers being compared.

The Holm procedure adjusts the value of a in a step-down
manner. Let p1, p2,y,pk�1 be the ordered p-values (smallest to
largest), so that p1rp2r � � �rpk�1, and H1, H2,y,Hk�1 be the
corresponding hypotheses. The Holm procedure rejects H1 to Hi�1

if i is the smallest integer so that pi4a=ðk�iÞ. Holm’s step-down
procedure starts with the most significant p-value. If p1 is below
a=ðk�1Þ, the corresponding hypothesis is rejected and we are
allowed to compare p2 with a=ðk�2Þ. If the second hypothesis is
rejected, the test proceeds with the third, and so on. As soon as a
certain null hypothesis cannot be rejected, all the remaining
hypotheses are retained as well.

Holm APVi: min{v;1}, where v¼maxfðk�jÞpj : 1r jr ig.
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