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Abstract

This paper considers p-value based step-wise rejection procedures for testing multiple hypotheses. The existing procedures have
used constants as critical values at all steps. With the intention of incorporating the exact magnitude of the p-values at the earlier
steps into the decisions at the later steps, this paper applies a different strategy that the critical values at the later steps are determined
as functions of the p-values from the earlier steps. As a result, we have derived a new equality and developed a two-step rejection
procedure following that. The new procedure is a short-cut of a step-up procedure, and it possesses great simplicity. In terms of
power, the proposed procedure is generally comparable to the existing ones and exceptionally superior when the largest p-value is
anticipated to be less than 0.5.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Consider testing m (null) hypotheses H1, . . . , Hm simultaneously based on their p-values P1, . . . , Pm. Assume that
P1, . . . , Pm are obtained from independent and continuous test statistics. Several sequential rejection procedures with
the property of strong control of the family wise error rate (FWER) have been available in the literature. These include
the procedures developed by Holm (1979), Hommel (1988), Hochberg (1988), Rom (1990), and Liu (1997). These
procedures use a set of critical values and carry out sequential rejections by comparing the ordered p-values and the
corresponding critical values.

The procedure presented by Holm (1979) is a typical step-down procedure, which proceeds by comparing the smallest
p-value to the corresponding critical value at the first step, and then the second smallest p-value to the corresponding
critical value at the second step, and so on. At each step, reject the hypothesis associated with the ordered p-value
if the ordered p-value is smaller than or equal to the critical value. Stop once an ordered p-value is larger than the
corresponding critical value and then accept all the remaining hypotheses. The critical value used at the jth step in the
Holm’s procedure is cj = �/(m − j + 1), where � is the pre-determined targeted FWER.

Hochberg (1988) proposed a step-up testing procedure that proceeds in a similar fashion as the Holm’s procedure, but
starts with the largest p-value towards the smallest p-value. Accept one hypothesis at a time, and stop once an ordered p-
value is smaller than or equal to the corresponding critical value.At the time of stopping, reject the remaining hypotheses.
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Of course, all early ones have been accepted. In the Hochberg’s procedure, the critical value is cj = �/j . The Rom’s

procedure (1990) is also a step-up procedure, but with different critical values of c1 = �, c2 = �
2 , c3 = �

3 + �2

12 etc.
The procedure proposed by Hommel (1988) is relatively complicated. To use this procedure, at each step, say the

jth step, compare P(m+i−j) to �i/j to see if P(m+i−j) > �i/j , for i = 1, . . . , j , where P(1) � · · · �P(m) are the ordered
p-values. Stop at the first step where P(m+i−j) ��i/j for some 1� i�j . At the time of stopping, reject all hypotheses
with p-value being ��/j .

Liu (1997) developed a general step-wise testing procedure which starts by comparing the j0th smallest p-value P(j0)

to the corresponding critical value cj0 , where j0 is a pre-determined number. If P(j0) �cj0 , reject all hypotheses with
p-value being �Pj0 and then continue in a step-down manner. Otherwise, accept all hypotheses with p-value being
�Pj0 and then continue in a step-up manner. As concluded by Liu (1997), when j0 is determined to be m, the procedure
becomes the Rom’s procedure, and it is the most powerful one among the class of step-wise procedures considered for
practical situations.

Among these procedures, the Holm’s procedure is the least powerful, because it is based on the Bonferonni inequality.
Both the Rom’s procedure and Hommel’s procedure are more powerful than the Hochberg’s procedure due to the fact
that sharp inequalities (or equalities) are used in both procedures, however, the power improvement is negligible
compared to their complexities.

The aforementioned procedures, although different from one to another, all have the same characteristics: the critical
values at the later steps are irrelevant to the exact value of the p-values used at the earlier steps. For example, if there are
two null hypotheses to be tested, all step-up procedures compare the largest p-value P(2) to � first and then the smallest
p-value P(1) to �/2. If P(2) > �, the decision on H(1) is purely determined by whether or not the inequality P(1) > �/2
holds, and the exact magnitude of P(2) is ignored even though it provides valuable information for the decision on H(1).
The analogy holds for the step-down procedure and other step-wise procedures.

In this paper, we consider step-up procedures but with a revised strategy that critical values at the later steps are
determined as functions of p-values used at the earlier steps so that the magnitude of p-values at the earlier steps can be
incorporated into decisions at the later steps. Towards this end, we have obtained a quite simple equality, and from there
derived a two-step rejection procedure where the critical value at the first step is �, and at the second step is a simple
linear function of the p-value used at the first step. The new procedure is a short-cut of a step-up procedure with all
critical values from the second step and later steps being the same. Therefore it possesses great simplicity. In terms of
power, simulations have shown that it is comparable to the existing ones in general. But in situations where the largest
p-value is anticipated to be less than 0.5, which is often the case in confirmatory research, the proposed procedure is
far superior to the others.

Hochberg and Tamhane (1987) discussed distinction of exploratory research and confirmatory research, two typical
types of research in practice, in the context of multiple testing. In confirmatory research, where a strong control of
FWER is usually required, the set of hypotheses is selected prior to conducting the research. Each hypothesis, as
a requirement to be selected, is anticipated to be confirmed as “false” at the end of research. This implies that, in
statistical language, the p-value of each hypothesis cannot be large. In this type of research, the proposed procedure
outperforms the others because that it capitalizes on the fact that the research is confirmatory. Of course, the proposed
procedure is not in a favorable position for exploratory research where the set of hypotheses is not pre-specified and/or
the researchers do not have a good sense on whether the research itself by design has capability to conclude each
hypothesis of interest as “false” at the end.

The details of the proposed procedure are included in Section 2, where the new equality is established and the pro-
posed procedure is stated. The formula for computing adjusted p-value is also presented. In Section 3, we present two
examples to illustrate the use of the proposed procedure, as contrast to other available procedures. A detailed numerical
comparison between the propose procedure and the others is in Section 4. We have some final remarks in Section 5.

2. A two-step rejection procedure

2.1. A new equality

Recall that P1, . . . , Pm are p-values and they are uniform U(0, 1) variables under the global null hypothesis
∩{Hj : j = 1, . . . , m}. For a subset {P1j , . . . , Pjj } ⊆ {P1, . . . , Pm}, let P1:j , · · · , Pj :j be the ordered p-values of
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P1j , . . . , Pjj . Assume that P1, . . . , Pm are independent. To construct a step-up procedure, we need the following type
of inequality (Liu, 1996):

Pr(Pi:j > cj−i+1, i = 1, . . . , j)�1 − � (1)

for j = 1, . . . , m. Of course, c1 = � (taking j = 1). For ci, i�2, we need the following result.

Lemma. For j �2, let U(1) � · · · �U(j) be the ordered values of U1, . . . , Uj , where U1, . . . , Uj are uniform U(0, 1)

variables and independent from each other. Then

Pr

(
U(j) > �, U(i) >

1 − U(j)

1 − �
�, i = 1, . . . , j − 1

)
= 1 − �. (2)

Proof. By definition, U(1) � · · · �U(j), and then

U(i) >
1 − U(j)

1 − �
�, i = 1, . . . , j − 1 ⇔ U(1) >

1 − U(j)

1 − �
�.

Therefore we just need to show

Pr

(
U(j) > �, U(1) >

1 − U(j)

1 − �
�

)
= 1 − �.

The joint density of (U(1), U(j)) is f (s, t) = j (j − 1)(s − t)j−2, 0 < t �s < 1. Therefore

Pr

(
U(j) > �, U(1) >

1 − U(j)

1 − �
�

)
=

∫ 1

�

∫ s

(1−s)/(1−�)�
j (j − 1)(s − t)j−2 dt ds = 1 − �.

The proof is complete. �

2.2. The two-step rejection procedure

Under the global null hypothesis ∩{Hi : i = 1, . . . , m}, P1j , . . . , Pjj are independent and uniform U(0, 1) variables.
Based on the lemma, we can take ci =�(1−P(m))/(1−�), i�2, in (1) since �(1−P(m))/(1−�)��(1−Pj :j )/(1−�)

for any j �2 and {P1j , . . . , Pjj } ⊆ {P1, . . . , Pm}. Noting that c2 = · · · = cm, the step-up procedure formed by (1)
naturally becomes the following simple two-step procedure.

Procedure R. Step 1. Reject all Hi’s ifP(m) ��. Otherwise, accept the hypothesis associated with P(m) and go to Step
2.

Step 2. Reject any remaining Hi with Pi �(1 − P(m))/(1 − �)�.

Theorem. If P1, . . . , Pm are independent, the procedure R provides a strong control of the FWER in that the probability
of at least one erroneous rejection is less than or equal to �, regardless of which and how many of the Hi are true.

The theorem can be established based on its derivation above using the well-known close principle (Marcus et al.,
1976). An alternative and direct proof is stated below.

Proof of the Theorem. We need to show that

FWER = Pr(at least one erroneous rejection)��

under any “true” and “false” configuration among m hypotheses. Consider a configuration with m0 true null hypotheses
and m − m0 false hypotheses. If m0 = 0, all null hypotheses are false and then FWER = 0. If m0 >0, note that

1 − FWER = Pr(all m0 true null hypotheses are accepted).
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Without loss of generality, assume that the m0 true null hypotheses have p-values Q1, . . . , Qm0 and Q(1) � · · · �Q(m0).
All m0 true null hypotheses are accepted by the procedure R if and only if P(m) > � and Q(1) > �(1 − P(m))/(1 − �).
Note that P(m) �Q(m0),

1 − FWER = Pr

(
P(m) > �, Q(1) > �

1 − P(m)

1 − �

)
� Pr

(
Q(m0) > �, Q(1) > �

1 − Q(m0)

1 − �

)
.

If m0 =1, Q1 > � ⇔ Q1 > �(1−Q1)/(1−�) and 1−FWER� Pr(Q1 > �)=1−�. When m0 > 1, 1−FWER�1−�
following the lemma. The proof is complete. �

Remark 1. The proposed procedure can be thought of as a short-cut of the step-up procedure. For any step-up proce-
dure, it is desired to have ci , i�2, as large as possible (the largest possible value for c1 is �). In the proposed procedure,
ci = � if P(m) = �. As a result, ci can be quite close to � if P(m) is larger than � but not too much. Therefore, in the
cases where we nearly reject all hypotheses at the first step, we are able to reject more at the second step.

Remark 2. The critical values at the second step and later steps in the proposed procedure, if it is considered as a
step-up procedure, are just a simple linear function of P(m). In theory, one can use different functional forms of P(m),
for example, a quadratic form rather than linear, however, such form will not have simplicity as the proposed one has,
and may not be as powerful as the proposed one is. Also it is natural to ask whether it will result in a more powerful
procedure if c3 is taken as a linear function of P(m) and P(m−1), c4 is taken as a linear function of P(m), P(m−1) and
P(m−2), etc. The answer is no. In fact, if one wants to use the linear form for critical values at the later steps, it will
end up exactly with the proposed procedure, i.e., ci = �(1 − P(m))/(1 − �) for i = 2, . . . , m. In detail, with a desire
of using the linear form of all earlier p-values, we need the following inequality (Liu, 1996):

Pr(Pj :j > �, Pj−k+1:j > ak,kPj :j + ak,k−1Pj−1:j + · · · + ak,2Pj−k+2:j + ak,1, k = 2, . . . , j)�1 − �

for j = 2, . . . , m. Under the constraint of having

aj,jPj :j + · · · + aj,2P2:j + aj,1 = aj−1,j−1Pj :j + · · · + aj−1,2P3:j + aj−1,1

if P2:j =aj−1,j−1Pj :j +· · ·+aj−1,2P3:j +aj−1,1, for j = 2, . . . , m, it is easy to show that aj,j =−aj,1 =−�/(1 −�)

and aj,j−1 = · · · = aj,2 = 0 for j = 2, . . . , m.

2.3. Adjusted p-values

For single hypothesis testing problems, the p-value is the smallest significance level at which the hypothesis can
be rejected. For multiple hypothesis testing problems, the (marginal) p-value for each hypothesis is not the smallest
significance level at which that hypothesis can be rejected. In the literature, the smallest significance level at which a
hypothesis can be rejected is called adjusted p-value (see Dunnett and Tamhane, 1992). Computing adjusted p-value
can be complicated even for a relatively simple multiple hypothesis testing procedure. But for the step-up procedure
considered in this paper, the adjusted p-value can be easily obtained as

P̃i = Pi

Pi + 1 − P(m)

, i = 1, . . . , m.

Once the adjusted p-value P̃i is determined, the hypothesis Hi can be tested at any specified level � by simply rejecting
Hi if P̃i ��. Using the adjusted p-value is equivalent to using the procedure R to test each hypothesis. The proof of
such statement is trivial, hence omitted.

3. Examples

Example 1. In an example used by Hommel (1988), there were 10 statistical tests preformed and the associated ordered
p-values were: P(1) =0.0021, P(2) =0.0074, P(3) =0.0093, P(4) =0.0106, P(5) =0.0121, P(6) =0.0218, P(7) =0.0238,
P(8) = 0.0352, P(9) = 0.0466, and P(10) = 0.0605. Using a typical FWER of � = 0.05, the Hommel’s procedure rejects
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the hypotheses corresponding to P(1), P(2), and P(3). Both the Hochberg’s procedure and Rom’s procedure only reject
the hypothesis corresponding to P(1).

When the proposed procedure is applied, we accept the hypothesis associated with P(10) at the first step since
P(10) = 0.0605 > 0.05. By comparing the rest of p-values to (1 − P(10))/(1 − �)� = 0.049 at the second step, we
conclude that all remaining nine hypotheses are rejected.

Example 2. We consider an example used by Liu (1997). Six hypotheses were tested and corresponding ordered p-
values wereP(1) = 0.007, P(2) = 0.011, P(3) = 0.012, P(4) = 0.020, P(5) = 0.190, and P(6) = 0.250. Using � = 0.05,
the proposed procedure rejects the hypotheses corresponding to P(1), P(2), P(3) and P(4). The Hommel’s procedure or
Hochberg’s procedure or Rom’s procedure rejects the hypotheses corresponding to P(1), P(2), and P(3).

4. Power comparisons

A simple comparison is done by directly looking at the critical values in the proposed procedure and all other
procedures. When P(m) �0.5 + 0.5�, ci = (1 − P(m))/(1 − �)���/2 for i�2. Therefore, the critical value in the
proposed procedure is larger than the corresponding one in the Hochberg’s procedure or Rom’s procedure at all steps
except at the first step where the critical value is the same. In particular, when P(m) is close to �, all critical values in
the proposed procedure are equal to or close to � and superiority of the proposed procedure becomes outstanding. The
same conclusion can be reached when the proposed procedure is compared to the Hommel’s procedure.

In situations where the magnitude of P(m) is uncertain, the performance of the proposed procedure is not clear
compared to others. Therefore, we numerically evaluate the power. Consider a common normal model, where for
i = 1, . . . , m, the test statistic is Xi ∼ N(di, 1) for the hypothesis Hi : di = 0. The two-sided p-value can then be
computed as 2 ∗ [1 − �(|Xi |)], where �(x) is the distribution function of the standard normal distribution. For a
given parameter configuration (d1, . . . , dm) or equivalently marginal power configuration (q1, . . . , qm), the probability
of rejecting each hypothesis, rejecting at least one hypothesis, rejecting at least two hypotheses, etc., by different
multiple testing procedures, can be calculated through simulations. For given di , the marginal power qi is defined as
the probability of rejecting Hi at level � marginally without taking other hypotheses into consideration, i.e.

qi = Pr
(
|Xi |��−1

(
1 − �

2

))
= 1 − �

[
�−1

(
1 − �

2

)
− di

)]
+ �

[
−�−1

(
1 − �

2

)
− di

)]
.

Table 1 presents the results for m = 3 and � = 0.05. The results for other cases of m and � are similar, hence omitted.
The results in Table 1 show that the proposed procedure is generally more powerful than the Hochberg’s procedure,

Hommel’s procedure, and Rom’s procedure, when the marginal power of each hypothesis is not very low (> 20%).
Also note that the powers of the Hochberg’s procedure, Hommel’s procedure, and Rom’s procedure are quite close,
with the Hommel’s procedure and Rom’s procedure being more powerful, which is consistent with results obtained by
Dunnett and Tamhane (1993).

5. Conclusions and discussions

In this paper, we consider step-up procedures with a new strategy that the critical values at the later steps in the
procedures are determined as functions of p-values used at the earlier steps, with the intention of incorporating the
magnitude of these p-values into decisions at the later steps. As a result, we have constructed a step-up procedure with
the critical values at the second step and all later steps being equal to a linear function of P(m), hence, a two-step
procedure. By comparing the critical values directly or by evaluating power through simulations, we demonstrate that
the proposed procedure generally outperforms others if the marginal power of each hypothesis is not very low. In
particular, the proposed procedure is remarkably superior when the largest p-value is anticipated to be less than 0.5. In
confirmatory research (Hochberg and Tamhane, 1987), each hypothesis is pre-selected and expected to be confirmed
as “false” through conducting the research. In these situations, the proposed procedure is particularly useful since it
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Table 1
Probability (%) of rejecting each hypothesis, �1 hypothesis, �2 hypotheses by different testing procedures for given marginal power configuration
(� = 0.05)

Marginal power of
(H1, H2, H3)

Hochberg’s Hommel’s Rom’s Proposed
procedure

(20, 20, 20) H1 11.1 11.3 11.2 12.7
�1 27.7 28.1 27.9 30.9
�2 4.9 4.9 4.9 6.3

(50, 50, 50) H1 39.6 39.9 39.7 44.5
�1 71.2 71.9 71.4 78.5
�2 35.3 35.3 35.3 42.4

(80, 80, 80) H1 76.4 76.5 76.4 78.8
�1 96.4 96.7 96.5 98.4
�2 81.6 81.6 81.6 87.1

(20, 20, 50) H1 12.2 12.4 12.3 14.4
H3 35.1 35.3 35.2 36.8
�1 46.5 47.1 46.8 50.3
�2 11.1 11.1 11.1 13.4

(20, 20, 80) H1 13.5 13.6 13.5 15.2
H3 67.5 67.7 67.7 67.7
�1 72.8 73.2 73.0 74.1
�2 18.4 18.4 18.4 20.8

(50, 50, 80) H1 42.4 42.5 42.4 46.4
H3 71.4 71.6 71.5 75.1
�1 85.5 86.0 85.6 90.1
�2 50.7 50.7 50.7 57.7

(20, 50, 50) H1 13.8 13.9 13.8 16.8
H2 37.0 37.3 37.1 40.1
�1 60.6 61.3 60.8 65.9
�2 20.2 22.2 22.2 26.0

(20, 80, 80) H1 17.3 17.3 17.3 19.2
H2 71.3 71.5 71.4 72.3
�1 90.0 90.4 90.1 91.5
�2 57.1 57.1 57.1 59.5

(50, 80, 80) H1 45.5 45.6 45.6 48.6
H2 73.8 74.0 73.9 76.8
�1 92.8 93.2 92.9 95.7
�2 68.4 68.4 68.4 74.7

(20,50, 80) H1 15.3 15.4 15.3 17.9
H2 39.2 39.4 39.3 41.5
H3 69.2 69.4 69.3 70.9
�1 79.9 80.5 80.1 82.9
�2 35.8 35.8 35.8 39.4

capitalizes on the fact that the research is confirmatory and the p-value of each hypothesis is expected to be small at
the end.

The proposed procedure is developed with the independent p-values in the spirit to the development of the Holm’s,
Hochberg’s, Hommel’s, and Rom’s procedure. With some parametric assumptions on test statistics, the Hochberg’s
procedure and Hommel’s procedure are still valid under dependence (Sarkar and Chang, 1997). It is unclear whether
the lemma and the proposed procedure are valid under these dependent parametric models since the methods used by
Sarkar and Chang (1997) are not applicable here. Further exploration on the issue is merited.
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