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Abstract

This paper considers the application of a genetics-based
learning algorithm to systems based on fuzzy logic. One
of the more active areas in the application of fuzzy logic
is fuzzy controllers. A fuzzy logic controller (FLC) is
based on linguistic control strategies {or rules) that in-
terface with real sensor and activator signals by means
of fuzzification and defuzzification algorithms. The dis-
crete nature of fuzzy strategies make them prime can-
didates for discovery by genetic algorithms. This ap-
proach is explored in this paper. Some general direc-
tions for genetics-based machine learning in fuzzy sys-
tems are outlined.

1 INTRODUCTION

There has been much recent activity in the use of fuzzy
logic in the design of controllers from braking systems
for trains to washing machines [10]. These systems are
for the most part designed by a knowledge engineering
process based on subjective experience and trial-and-
error experimentation. There is much interest in the
use of learning algorithms (including genetic algorithms
[4,5]) to automatically synthesize such systems. This
paper considers the use of genetics-based learning as a
general approach to synthesizing fuzzy logic strategies.
A genetic algorithm applied to a simple control example
(cart centering) is presented.

2 FUZZY LOGIC CONTROLLERS

In this section we briefly review the basic concepts of
fuzzy logic, and fuzzy logic controllers (FLCs) in par-
ticular. A general survey of the field as well as a fuzzy
logic background can be found in [9].

Fuzzy logic is based on the concept of fuzzy sets [11].
A fuzzy set is a generalization of a classical set in that
memberships are graded between 0 and 1 as opposed to
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Figure 1: The fuzzy set cool over the domain temper-
ature

being purely boolean. If z is some variable over some
domain of discourse U, and X is a fuzzy set over U,
then px (x) is defined to be the degree of membership
of z in X. As an example, U could be some measurable
parameter of a system, such as temperature. X could
be a fuzzy set, such as cool. Then g.qo](2) would be
a number between 0 and 1 inclusive as indicated in
Figure 1.

Fuzzy set operations are a generalization of classical
set operations. In particular,

min{sex,(z), px,(z)}
ﬂX,UX;(-'L') max{ﬂxx(x):”xz(x)}
hx(z) 1 - px(z)

are definitions for fuzzy intersection, union, and com-
plement. These are not the only ones (there is a product
rule for intersection for example), but these are fairly
standard.

Given a domain of discourse U, fuzzy sets over U can
be identified with a set of names of linguistic variables.
For example if U is identified with the parameter mea-
suring temperature, then fuzzy sets over U/ can be

KX, nxz(x)

{cold, cool, moderate, warm, hot}.

Basic fuzzy sets may be modified by certain operators,
such as wery, or slightly, etc. These essentially change
the shape of the membership function they modify.

A system of fuzzy sets over a domain can form
a fuzzy partition of the domain as indicated in
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Figure 2: Fuzzy partitions of a domain

Figure 3: Fuzzy inference

Figure 2. Generically for linearly ordered param-
eter spaces, the fuzzy sets of a partition can be
identified with lingustic variables such as ZE(zero),
PS(positive small), NS(negative small), NM(negative
medium), PM(positive medium), NL(negative large),
PL(positive large). A subset of these can be chosen for
a coarser resolution.

Given domains of discourse for a set of input and
output variables for a system S, rules can be written in
terms of fuzzy sets over these domains. Let us suppose
that temperature (t) and pressure (p) are two input
variables and the output variable is a valve location
(v), then a fuzzy rule could be

if t is hot and p is low then turn v to medium.

A set of rules of this type constitute a fuzzy rule-base.
Once a fuzzy rule-base has been specified, either by an
expert or an adaptive procedure (such as a genetic algo-
rithm), the system can map actual (crisp) input values
to output values by means of fuzzification, fuzzy infer-
ence, and defuzzification. The system uses a method of
inference called sup-star composition. This procedure
is indicated in Figure 3. The fuzzification is performed
by evaluating every input parameter with respect to the
fuzzy sets in the premise of rules. For example in the
above example, ppot(t) and pjow(p) would be evalu-

NL NM ZE PS PM PL

NL [NB |[NM|PL ZE |PS |ZE
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Figure 4: Fuzzy decision table

ated. They are combined by

8 = pPhot®) * Llow(P)

where * is either the multiplication or minimum opera-
tor. This gives the degree to which that particular rule
is selected. The output of the rule is the fuzzy set R
defined by the function

#R(Y) = Pmedium(?) *s-

This procedure produces a fuzzy set for each rule
(R1(v),R3(v),...). A single fuzzy set V is produced by
taking the fuzzy union (or max): V = RfURa U ... .
A single value v is then produced by a defuzzification
operator

v = defuzzify(V).

In practice, several defuzzification stategies have been
used. A typical strategy is to take the centroid of area
under the curve specified by the membership function
of V. This is the strategy used in the example below.

Fuzzy logic systems (such as fuzzy controllers) thus
allow conflicting rules to apply allowing consensus an-
swers to be formulated. This effect can be acheived by
using partial matching and confidence factors in stan-
dard expert systems, but the fuzzy approach is a less
ad-hoc approach.

An FLC consists of three components: a fuzzification
interface with sensors, a fuzzy rule-base for inferencing,
and a defuzzication interface for activators (or decison
variables). The role of fuzzification is to map a sensor
or input signal z into fuzzy membership values — one
for each fuzzy set in the universe of discourse of z. For
low dimensional systems, the fuzzy control logic can be
specified by a table as shown in Figure 4. Entries in
the table can be blank indicating no fuzzy set output
for the corresponding rule.



3 LEARNING FUZZY RULES AND

MEMBERSHIP FUNCTIONS

There are a number of previous approaches to learn-
ing fuzzy rule sets for implementing control strategies.
These are referenced in [9], as well as a discussion of
their general concept. A genetic algorithm approach is
presented in [4]. In [5], a genetic algorithm is used to
find both the memberships functions (parameterized by
the endpoints of the triangular shapes) as well as the
fuzzy rules. In this paper only the learning of fuzzy
rules are considered.

4 FLC SYNTHESIS WITH A GA

One of the main applications of genetic algorithms
and genetics-based machine learning (GBML) systems
(such as classifier systems) is control. The use of GAs
in controller synthesis has ranged from using low level
binary pattern languages [2] to high level rule languages
as the expression of control stratgies [3,7]. The use of
fuzzy rule expressions is somewhat of a middle ground
between these two.

We shall only consider fuzzy control synthesis for
decision table forms. We will consider a table as
a genotype with alleles that are fuzzy set indica-
tors over the output domain. The phenotype is
produced by the behavior produced by the fuzzifi-
cation, max-* composition, and defuzzification op-
erations.  The eight gene values can be written
{NL,NM,NS,ZE, PS,PM,PL, _}. The _ symbol
indicates there is no fuzzy set entry at a position that it
appears. A chromosome (genotype) is formed from the
decision table by going rowwise and producing a string
of numbers from the code set. Standard crossover and
mutation operators can act on these strings. In the
example below we will only take a subset of the fuzzy
partition.

5 EXAMPLE

We consider the example of cart centering. This prob-
lem involves a cart with mass m that moves on a one
dimensional track, as indicated in Figure 5. The state
variable for this system are the position (z), and ve-
locity (v). We assume in the dynamics of the model
that the track is frictionless. The output of the con-
troller is a force (F). The objective is, given an initial
position and speed, to move the cart to zero position
and velocity in minimum time.
The simulation for the cart is given by

z(t+7) = =z(t)+ To(t)
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Figure 5: Cart centering example
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Figure 6: Fuzzy partitions for position, velocity,
force (in meters, meters/sec, and newtons respectively)

v(t) + 7'@

v(t+ 1) —

Following [7], T = .02 sec, m = 2.0 kilograms. Position
(velocity) is chosen randomly between —2.5 and 2.5 me-
ters (meters/sec). For the first experiment, only five
fuzzy partitions of each parameter were chosen. The
fuzzy partitions for all three parameters (position, ve-
locity, force) are chosen as indicated in Figure 6. The
individual control strategies are are 5 x 5 tables, coded
as chromosomes with alleles in {0,1,2,3,4,5}. (corre-
sponding to NM,NS,ZE PS PM, and __ respectively.
Based on the sup-* algorithm above, a force F' can be
computed for a given (z,v). The defuzzification used
is a simpilification of the centroid operator which com-
putes a weighted average of the central points of the
output fuzzy sets.

6 RESULTS

The fitness for an individual is determined by running
a simulation of the cart for 500 steps (corresponding to
10 seconds for 7 = 0.02) with starting points (2o, vo)
selected from 25 equally spaced positions. The fitness
of an individual control strategy is measured by 50017,
where T is average time required to be sufficiently close
to (0,0) in (x,v) coordinates (chosen as max(|z|, |v|) <
.5). If, for a given starting point (zq, v}, more than 500
steps are required, the process “times out”, recording

500 steps.
These are the particular features of the genetic al-
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Figure 7: Fuzzy control strategy found in generation

100

gorithm based on the coding strategy described above.
A mutation operator changes a fuzzy code either up a
level or down a level, or to the blank code. (if it is
already blank, then it chooses a non-blank code at ran-
dom). The crossover operator is the standard two-point
crossover [1]. A mutation rate of 0.01 and a crossover
(two-point) rate of 0.7 were chosen. A elite strategy was
taken whereby the best solution at a given generation
is promoted directly to the next.

A simulation of 100 generations with a population
of 31 individuals produces a solution which translates
into the fuzzy decision table shown in Figure 7. This
rule set compares well with the optimal “bang-bang”
control rule [7], which is defined as follows. If F(¢) is
chosen to be either F or —F, where F is some positive
constant, then choose F(t) to be F' if

v2sgn(v)

< -z
21|

and —F otherwise. In this simulation F' = m = 2.0.

The control strategy in Figure 7 was compared with
the optimal control strategy over 100 runs with random
starting points in —2.5 < ¢ < 2.5,-2.5 < v < 2.5. The
average number of time steps (< 500) were 164 (corre-
sponding to 3.28 sec) for the fuzzy controller and 143
(2.86 sec) for the optimal controller. A strategy suc-
ceeds when the cart is within the tolerance as specified
above (0.5 in « and v). Keeping the same fuzzy control
strategy and reducing the tolerance to 0.2 resulted and
allowing 2000 steps before time-out resulted in an aver-
age of 242 (4.8 sec) for the fuzzy controller and 161 (3.2
sec) for the optimal controller. The controller could be
further optimized by using a GA to place the endpoints
of the triangular membership functions shown in Fig-
ure 6.

7 CONCLUSION

In this paper we have examined one aspect of using
GAs and GBML in fuzzy systems, namely to design a
simple fuzzy controller. Fuzzy systems research and ap-
plications have been experiencing a recent acceleration
[10], so the usefulness of genetic approaches as these
systems become more complex could become more ap-
parent. Future directions remain: more complex rule
structures with modifiers and quantification, the rela-
tion of fuzzy logic and classifier systems, and adaptive
generation of the shapes of fuzzy membership functions
themselves. In regards to classifier systems, a classifer
of the form 751 / 3 could code a rule of the form

if z5 is PM and z3 is NM then u is ZE

Rule activation would be by fuzzification and defuzzifi-
cation instead of the standard pattern matching. Also
fuzzy algorithms [11] expressed in a programing lan-
guage form could be more robust than with non-fuzzy
programs (the problem raised in [8] notes the radical
change of phenotype due to minor change in genotypes
based on standard programs with non-fuzzy decisions).
The interface between genetic algorithms and fuzzy sys-
tems should prove to produce useful results.

In the languange of genetic algorithms, the alleles are
fuzzy set indicators. This allows discrete specification
to have continuous and robust interactions with the en-
vironment via the fuzzy phenotype.
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