;i‘ Machine Learning, 55, 219-250, 2004
‘ (© 2004 Kluwer Academic Publishers. Manufactured in The Netherlands.

Functional Trees

JOAO GAMA jgama@liacc.up.pt
LIACC, FEP—University of Porto, Rua Campo Alegre 823, 4150 Porto, Portugal

Editor: Foster Provost

Abstract. Inthe context of classification problems, algorithms that generate multivariate trees are able to explore
multiple representation languages by using decision tests based on a combination of attributes. In the regression
setting, model trees algorithms explore multiple representation languages but using linear models at leaf nodes. In
this work we study the effects of using combinations of attributes at decision nodes, leaf nodes, or both nodes and
leaves in regression and classification tree learning. In order to study the use of functional nodes at different places
and for different types of modeling, we introduce a simple unifying framework for multivariate tree learning. This
framework combines a univariate decision tree with a linear function by means of constructive induction. Decision
trees derived from the framework are able to use decision nodes with multivariate tests, and leaf nodes that make
predictions using linear functions. Multivariate decision nodes are built when growing the tree, while functional
leaves are built when pruning the tree. We experimentally evaluate a univariate tree, a multivariate tree using linear
combinations at inner and leaf nodes, and two simplified versions restricting linear combinations to inner nodes
and leaves. The experimental evaluation shows that all functional trees variants exhibit similar performance, with
advantages in different datasets. In this study there is a marginal advantage of the full model. These results lead
us to study the role of functional leaves and nodes. We use the bias-variance decomposition of the error, cluster
analysis, and learning curves as tools for analysis. We observe that in the datasets under study and for classification
and regression, the use of multivariate decision nodes has more impact in the bias component of the error, while
the use of multivariate decision leaves has more impact in the variance component.

Keywords: multivariate decision trees, multiple models, supervised learning

1. Introduction

The generalization ability of a learning algorithm depends on the appropriateness of its
representation language to express a generalization of the examples for the given task.
Different learning algorithms employ different representations, search heuristics, evaluation
functions, and search spaces. It is now commonly accepted that each algorithm has its own
selective superiority (Brodley, 1995); each one is best for some but not all tasks. The design
of algorithms that explore multiple representation languages and explore different search
spaces has an intuitive appeal.

In the context of supervised learning problems it is useful to distinguish between classifi-
cation problems and regression problems. In the former the target variable takes values in a
finite and pre-defined set of un-ordered values, and the usual goal is to minimize a 0—1 loss
function. In the latter the target variable is ordered and takes values in a subset of . The
usual goal is to minimize a squared error loss function. Mainly due to the differences in the
type of the target variable successful techniques in one class of problems are not directly
applicable to the other class of problems.

220 J. GAMA

The supervised learning problem is to find an approximation to an unknown function
given a set of labeled examples. To solve this problem, several methods have been pre-
sented in the literature. Two of the most representative methods are the Generalized Lin-
ear Models (Berthold & Hand, 1999) and Decision trees (Breiman et al., 1984; Quinlan,
1993a). These methods explore different hypothesis spaces and use different search strate-
gies: they are appropriate for different types of problems (Perlich, Provost, & Simonoff,
2003). In the case of generalized linear models (GLM), the usual goal is to minimize the
sum of squared deviations of the observed values for the dependent variable from those
predicted by the model. It is based on the algebraic theory of invariants and has an an-
alytical solution. The description language of the model takes the form of a polynomial
that, in its simpler form, is a linear combination of the attributes: wy + > w; x x;. This
is the basic idea behind linear-regression and discriminant functions (McLachlan, 1992).
In the case of decision trees a divide-and-conquer strategy is used. The goal is to decom-
pose a complex problem into simpler problems and recursively to apply the same strategy
to the sub-problems. Solutions of the sub-problems are combined in the form of a tree.
Its hypothesis space is the set of all possible hyper-rectangular regions. The power of
this approach comes from the ability to split the space of the attributes into subspaces,
whereby each subspace is fitted with different functions. This is the basic idea behind
well-known tree based algorithms like CART (Breiman et al., 1984) and C4.5 (Quinlan,
1993a).

In the case of classification problems, a class of algorithms that explore multiple rep-
resentation languages are the so called multivariate trees (Breiman et al., 1984; Utgoff &
Brodley, 1991; Murthy, Kasif, & Salzberg, 1994; Gama, 1997; Loh & Shih, 1997). In this
sort of algorithm decision nodes can contain tests based on a combination of attributes. The
language bias of univariate decision trees (axis-parallel splits) is relaxed allowing decision
surfaces oblique with respect to the axes of the instance space. As in the case of classification
problems, in regression problems some authors have studied the use of regression trees that
explore multiple representation languages, here called model trees (Quinlan, 1992; Witten &
Frank, 2000; Torgo, 2000). While in classification problems usually multivariate decisions
appear in internal nodes, in regression problems multivariate decisions appear in leaf nodes.
This observation is the main motivation for this work. Should we restrict combinations of
attributes to decision nodes? Should we restrict combinations of attributes to leaf nodes?
Would it be beneficial to use combinations of attributes both at decision nodes and leaf
nodes?

We present a framework that allows us to analyze and discuss where should we use linear
combinations of attributes. This framework is an extension of multivariate and model trees.
It is applicable to regression and classification domains, allowing combinations of attributes
both at decision nodes and leaves. Functional trees have been proposed and used by several
researchers both in machine learning and statistics communities. Those works are oriented
toward single algorithms, discussing different methods to generate the same kind of decision
models. The proposed framework is oriented toward a family of algorithms, discussing the
topological differences between decision models.

The most relevant contributions of this work are:

— A unified framework for various classification and regression functional trees.

FUNCTIONAL TREES 221

— An in-depth study of the behavior of functional trees. Experimental results show that
using functional leaves is a variance reduction method, while using functional inner
nodes is a bias reduction process.

— New algorithms for classification and regression problems. To my knowledge, this is the
first work that proposes the simultaneous use of functional nodes and functional leaves
in prediction problems.

— The experimental study suggests that multivariate models using linear functions both at
decision nodes and leaves exhibit some advantage, mostly in large datasets.

The paper is organized as follows. In the next section we present related work both in
the classification and regression settings. In Section 3 we describe the framework used to
analyze the behavior of functional inner nodes and functional leaves. In Section 4 we discuss
the different variants of multivariate models using an illustrative example on regression
domains. In Section 5 we evaluate the proposed algorithm on a set of benchmark regression
and classification problems. The last section concludes the paper and presents directions
for future research.

2. Related work

The standard algorithm to build univariate trees has two phases. In the first phase a large
tree is constructed. In the second phase this tree is pruned back. The algorithm to grow the
tree follows the standard divide-and-conquer approach. The most relevant aspects are: the
splitting rule, the termination criterion, and the leaf assignment criterion. With respect to
the last criterion, the usual rule is the assignment of a constant to a leaf node. Considering
only the examples that fall at this node, the constant is usually the constant that minimizes
the loss function: the mode of y values in the case of classification problems using the 0-/
loss function or the mean of the y values in the regression setting using mean-squared error.
With respect to the splitting rule, it is useful to distinguish between nominal attributes and
continuous ones. In the latter the most common approaches uses a binary partition based
on the value of a test in the form att; < cut_point. In the former the number of partitions
is often equal to the number of values of the attribute although binary-subset-based splits
(att; € {V;, ..., Vi}) are also possible. To estimate the merit of the partition obtained by
a given attribute several heuristics have been presented. A splitting rule typically works as
a one-step lookahead heuristic. For each possible test, the system hypothetically considers
the subsets of data obtained. The system chooses the test that maximizes (or minimizes)
some heuristic function over the subsets. An example of the so-called merit functions is
the gain ratio (Quinlan, 1993a) heuristic for classification problems and the decrease in
variance (Breiman et al., 1984) criterion for regression problems. In any case, the attribute
that maximizes the criterion is chosen as the test attribute at this node.

The pruning phase consists of traversing the tree in a depth-first order. At each non-leaf
node two measures should be estimated. An estimate of the error of the subtree below this
node, which is computed as a weighted sum of the estimated error for each leaf of the
subtree, and the estimated error of the non-leaf node if it were pruned back to a leaf. If the
latter is lower than the former, the entire subtree is replaced by a leaf.

222 J. GAMA

All of these aspects have several important variants, see for example (Breiman et al.,
1984; Quinlan, 1993a). Nevertheless all decision nodes contain conditions based on the
values of one attribute, and leaf nodes predict a constant.

The CART book (Breiman et al., 1984) presents the first extensive and in-depth study
of the problem of constructing decision trees for classification and regression problems.
It is interesting to point out that while in the case of classification problems Breiman and
colleagues consider internal nodes with a test based on linear combination of attributes, in
the case of regression problems internal nodes are univariate. In the book (page 248), the
authors write:

“In regression, use of linear combinations splits does not have the appeal that it does in
classification. (...) A promising alternative for improving accuracy is to grow a small
tree using only a few of the most significant splits. Then do multiple linear regression in
each of the terminal nodes.”

We have done a set of experiments using the implementations of CART and Linear Regression
in R (Thaka & Gentleman, 1996), in the housing dataset to verify this observation. The linear
regression built a model from the training set. Applying the linear model to the training
and test set we obtain two vectors of predictions. The training and test sets are extended
with the corresponding predictions. We compare the mean-squared error in the test set of
CART when trained with the original dataset and with the extended dataset. Out of one
hundred experiments, the insertion of the new attribute improved the performance of CART
in 75 experiments. This is an indication that, in the regression setting, the use of linear
combinations could improve decision trees. In the experimental section we will present
more evidence of this fact.

In the context of classification problems, several algorithms have been presented that can
use at each decision node tests based on a linear combination of the attributes: CART
(Breiman et al., 1984), FACT (Loh & Vanichsetakul, 1988), OC1 (Murthy, Kasif, &
Salzberg, 1994), LMDT (Utgoff & Brodley, 1991), LTREE (Gama, 1997), QUEST (Loh
& Shih, 1997), and CRUISE (Kim & Loh, 2001). One of the most comprehensive studies
of multivariate trees has been presented by Brodley and Utgoff (1995). In this work, the
authors discuss several issues for constructing multivariate decision trees: representing a
multivariate test, including symbolic and numeric features, learning the coefficients of a
multivariate test, selecting the features to include in a test, and pruning of multivariate deci-
sion trees. However only multivariate tests at inner nodes in a tree are considered. A recent
multivariate tree algorithm is the system Cruise. It was presented by Kim and Loh (2001).
Cruise splits each node into as many sub-nodes as the number of classes in the target vari-
able (as in FACT and LMDT); it uses analytical methods based on discriminant analysis to
choose the splitting tests (instead of the exhaustive method used in C4.5, and Ltree), leading
to negligible bias in variable selection. Quadratic discriminant analysis is used to find the
coefficients of multivariate tests. We use Cruise in our experimental comparisons.

In the context of classification problems few works consider functional tree leaves. One
of the earliest works is the Perceptron Tree algorithm (Utgoff, 1988) where leaf nodes
may implement a general linear discriminant function. Kononenko, Cestnik, and Bratko
(1988) and Kohavi (1996) have presented tree algorithms using functional leaves. These

FUNCTIONAL TREES 223

hybrid algorithms generate a regular univariate decision tree, but the leaves contain a naive
Bayes classifier built from the examples that fall at this node. The approach retains the
interpretability of naive Bayes and decision trees, while resulting in classifiers that fre-
quently outperform both constituents, especially in large datasets. A similar approach using
bivariate discriminant analysis appears in Kim and Loh (2003). Recently Seewald, Petrak,
and Widmer (2001) presented an interesting extension to this topology by allowing leaf
nodes using different kind of models: naive Bayes and a multi-response linear regression,
and instance-based models. The results indicate a certain performance improvement. Also,
Gama and Brazdil (2000) have presented Cascade Generalization, a method to combine
classification algorithms by means of constructive induction. The work presented here, fol-
lows closely the Cascade method but extended for regression domains and allowing models
with functional leaves.

In regression domains, Quinlan (1992) presented the system MS5. It builds multivariate
trees using linear models at the leaves. In the pruning phase for each leaf a linear model is
built. Recently Witten and Frank (2000) have presented M5’ a rational reconstruction of
Quinlan’s M5 algorithm. M5’ first constructs a regression tree by recursively splitting the
instance space using tests on single attributes that maximally reduce variance in the target
variable. After the tree has been grown, a linear multiple regression model is built for every
inner node, using the data associated with that node and all the attributes that participate in
tests in the subtree rooted at that node. Then the linear regression models are simplified by
dropping attributes if this results in a lower expected error on future data (more specifically,
if the decrease in the number of parameters outweighs the increase in the observed training
error). After this has been done, every subtree is considered for pruning. Pruning occurs if
the estimated error for the linear model at the root of a subtree is smaller or equal to the
expected error for the subtree. After pruning terminates, M5 applies a smoothing process
that combines the model at a leaf with the models on the path to the root to form the final
model that is placed at the leaf. Also Karalic (1992) studied the influence of using linear
regression in the leaves of a regression tree. As in the work of Quinlan, Karalic shows
that it leads to smaller models with increase of performance. Torgo (1997) has presented an
experimental study about functional models for regression tree leaves. Later, the same author
(Torgo, 2000) presented the system RT. RT is a system able to use several functional models
at the leaves, including partial linear models. RT builds and prunes a regular univariate tree.
Then at each leaf a linear model is built using the examples that fall at this leaf. In the
regression setting few works consider multi-variable splits. One of them has been presented
by Li, Lue, and Chen (2000) where decision nodes contain linear regressions and data is
split according to the sign of the residuals.

In a more general context, multivariate and model trees are related to the problem of
finding the appropriate bias for a given task. In this context those models could be related
to Stacked Generalization (Wolpert, 1992) a technique used to combine algorithms with
different representation languages. Stacked Generalization is a technique that uses learning
at two or more levels. A learning algorithm is used to determine how the outputs of the base
classifiers should be combined. Brodley (1995) presented the Model Class Selection (MCS)
system, a hybrid algorithm that combines, in a single tree, nodes that are univariate tests,
or multivariate tests generated by linear machines or instance-based learners. At each node

224 J. GAMA

MCS uses a set of if-then rules to perform a heuristic best-first search for the best hypothesis
for the given partition of the dataset. MCS uses a dynamic search control strategy, guided by a
set of rules that incorporates knowledge of experts, to perform an automatic model selection.
MCS builds trees which can apply a different model in different regions of the instance space.
Recently Todorovski and Dzeroski (2003) have introduced meta decision trees, a method for
combining classifiers. Meta decision trees are decision trees where leaves predict which clas-
sifier should be used to obtain a prediction. Meta decision trees are built from a meta dataset
using properties of the class probability distributions of the predictions of base classifiers.

3. The framework for constructing functional trees

The algorithms reported in the previous section use functions at inner nodes or at leaves
in decision trees. We denote these algorithms as functional trees. Those works are oriented
toward single algorithms, discussing different methods to generate the same kind of deci-
sion models. In this section we present a framework that allow us to analyze and discuss
where should we use combinations of attributes. The proposed framework applies to both
classification and regression problems. It can be seen as an extension to multivariate and
model trees.

3.1. Functional trees

Given a set of examples and an attribute constructor, the general algorithm used to build a
functional tree is presented in figure 1. This algorithm is similar to many others, except in

Function GrowTree(Dataset, Constructor)
1. If Stop_Criterion(DataSet)
— Return a Leaf Node with a constant value.
2. Construct a model ® using Constructor
3. For each example ¥ € DataSet

— Compute § = ®(Z)

— Extend 7 with new attributes .

4. Select the attribute of original as well as of newly constructed
attributes that maximizes some merit-function

5. For each partition 4 of the DataSet using the selected attribute
— Tree; = GrowTree(Dataset;, Constructor)

6. Return a Tree, as a decision node based on the selected attribute,
containing the ® model, and descendants Tree;.

End Function

Figure 1. Building a functional tree.

FUNCTIONAL TREES 225

the constructive phase (steps 2 and 3). Here a function is built and mapped to new attributes.
There are some aspects of this algorithm that should be made explicit. In step 2, a model
is built using the constructor function. This is done using only the examples that fall at
this node. Later, in step 3, the model is mapped to new attributes. The constructor function
should be a classifier or a regressor depending on the type of the problem. In the former
the number of new attributes is equal to the number of classes!, in the latter the constructor
function is mapped to one new attribute. In step 3, each new attribute is computed as the
value predicted by the constructed function for each example. In the classification setting,
each new attribute-value is the probability that the example belongs to one class given by
the constructed model.

The merit of each new attribute is evaluated using the merit-function of the univariate tree,
and in competition with the original attributes (step 4).> The model built by our algorithm
has two types of decision nodes: those based on a test of one of the original attributes,
and those based on the values of the constructor function. When using generalized linear
models (GLM) as the attribute constructor, each new attribute is a linear combination of
the original attributes. Decision nodes based on constructed attributes define a multivariate
decision surface.

Once a tree has been built, it is pruned back. The general algorithm to prune the tree is
presented in figure 2. The tree is traversed using a bottom-up, post-order strategy. For each
non-leaf node two quantities are estimated: the static error and the backed-up error. Static
error is an estimation of the error as if the node were a leaf. Backed-up error is the weighted
sum of the estimation of the errors of all subtrees of the current node. The estimation of
the error of each branch is weighted by the probability that an example follows the branch.
If backed-up error is greater or equal than szatic error, then the node is replaced by a leaf
with the majority class of the node.

The fundamental aspect of the pruning algorithm is the error estimation in step 1. At each
node, we need to estimate the probability of error given the error in the sample of examples
that fall at this node. The probability of error cannot be determined exactly. For a given
confidence level we can obtain a confidence interval [L.r; U] that with probability 1 — cf
contains the true error. As in Quinlan (1993a), we use the upper limit of the confidence
interval U as a pessimistic estimation for the true error.

The confidence interval for the error depends on the loss-function used. In classification
problems, and under the 0-1 loss, the error is governed by a Binomial distribution (Mitchell,
1997). In regression problems, and for the squared error loss the variance of the error for
a given example follows a x? distribution. For a set of examples the sum of x? can be
approximated using a Normal distribution (Bhattacharyya & Johnson, 1977). For each
node, the upper limit of the confidence interval is obtained from the sample error using
the appropriate distribution. A similar procedure is used to estimate the constructor error
(step 3).

The pruning algorithm produces two different type of leaves: ordinary leaves that predict
a constant, and constructor leaves that predict the value of the constructor function learned
(in the growing phase) at this node.

We obtain different conceptual models by simplifying our algorithm. Two interesting
simplifications are described in the following sub-sections.

226 J. GAMA

Function Prune(Tree)

1. Estimate Leaf_Error as the error at this node.

2. If Tree is a leaf Return Leaf Error.

3. Estimate Constructor_Error as the estimated error of ®.

4. For each descendent ¢
— Let p; the probability that an example goes through branch 1.
— Backed_Up_Error += p; x Prune(1'ree;)

5. If argmin(Leaf_Error,Constructor Error,Backed _Up_Error)

— Is Leaf_Error
e Tree = Leaf
e Tree_Error = Leaf_Error

— Is Model_Error

e Tree = Constructor Leaf
e Tree_Error = Constructor_Error

— Is Backed _Up_Error
e Tree_Error = Backed_Up_Error

6. Return Tree_Error

End Function

Figure 2. Pruning a functional tree.

3.1.1. Functional leaves only. We denote as FT-Leaves the approach to functional trees
where the functional models are not used in splitting-tests, but can be used at leaves. This
is the strategy used for example in M5 (Quinlan, 1993b; Witten & Frank, 2000), and in
the NBtree system (Kohavi, 1996). In our tree algorithm this is done by restricting the
selection of the test attribute (step 4 in the growing algorithm) to the original attributes.
Nevertheless we still build, at each node, the constructor function. The model built by the
constructor function is used later in the pruning phase. In this way, all decision nodes are
based on the original attributes. Leaf nodes could contain a constructor model. A leaf node
contains a constructor model if and only if in the pruning algorithm the estimated error
of the constructor model is lower than both the Backed-up-error and the Static error. A
FT-Leaves functional tree divides the input space into hyper-rectangles. The data in each
region could be fitted with the constructor function.

3.1.2. Functional inner nodes only. We denote as FT-Inner the approach to functional
trees where the multivariate models are used exclusively at decision nodes (internal nodes)
and not used as classifiers in leaves. In our algorithm, restricting the pruning algorithm
to choose only between the Backed-up-Error and the Static error generates this kind of
model. In this case all leaves predict a constant value. This is the strategy used in systems

FUNCTIONAL TREES 227

like LMDT (Utgoff & Brodley, 1991), OC1 (Murthy, Kasif, & Salzberg, 1994), LTREE
(Gama, 1997), and QUEST (Loh & Shih, 1997). A FT-Inner functional tree divides the input
space into oblique decision surfaces. The data in each region is fitted with a constant that
minimizes the given loss function.

3.1.3. Prediction using functional trees. Once a functional tree has been built, it can be
used to predict the value of the target attribute for unclassified examples. As usual, the
example traverses the tree from the root node to a leaf. At each decision node (inner node)
of the tree the set of attributes of the example is extended using the constructor function
built at this node. After this expansion, the decision test of the node is applied defining the
path that the example will follow. When a leaf is reached the example is classified using
either the constant associated with the leaf or the constructor function built at this leaf.

3.1.4. Other issues. A functional tree can use functional splitting tests and/or functional
leaves. Although they play different roles in the system the algorithm that generates both is
the same. Nevertheless, a functional splitting test is installed if and only if it minimizes the
attribute evaluation function while a functional leaf is used if and only if it has lower expected
error. Those functions act like intermediate concepts potentially useful for discriminating
between classes. They are used for structuring the final model. The different uses of those
models can provide different levels of detail.

As we have already pointed out, at different depths of the tree the number of attributes
varies. To apply the attribute constructor, we can consider two variants. The attribute con-
structor can be applied using only the original attributes or using all the attributes at this
level. In the latter, the function built at a given node will contain terms based on the terms
built at previous nodes. To avoid this increase of complexity, in the experiments reported
here, we restrict the constructor functions to the original attributes.’

Functional trees extend and generalize multivariate trees. Our algorithm can be seen as
a hybrid model that performs a tight combination of a univariate tree and a GLM function.
The components of the hybrid algorithm use different representation languages and search
strategies. The tree uses a divide-and-conquer method; GLM functions perform a global
minimization approach. The tree performs feature selection; GLM’s use all (or almost
all) the attributes to build a model. From the the bias-variance decomposition of the error
(Breiman, 1998) point of view, a decision tree is known to have low bias but high variance,
and GLM functions are known to have low variance but high bias. Different bias-variance
profiles has been pointed out as a desirable property for components of hybrid models
(Kohavi & Wolpert, 1996).

4. An illustrative example

In this section we use the well-known regression dataset Housing to illustrate the different
variants of functional models. The attribute constructor used is the linear regression function.
Figure 3(a) presents a univariate tree for the Housing dataset. Decision nodes contain only
tests based on the original attributes. Leaf nodes predict the average of y values taken from
the examples that fall at the leaf.

228 J. GAMA

e
]

Y
J

Figure 3. (a) The univariate regression tree and (b) FT-Inner regression tree for the housing problem.

In a FT-Inner multivariate tree (figure 3(b)) decision nodes can contain tests based on
a linear combination of the original attributes. The tree contains a mixture of nodes with
tests based on learned attributes, denoted as LS, and original attributes, e.g. AGE, DIS. Any
of the linear-regression attributes can be used at the node where they have been created
and at deeper nodes. For example, the LS (6) has been created at the second level of the
tree. It is used as the test attribute at this node, and also (due to the constructive ability) as
the test attribute at the third level of the tree. Leaf nodes predict the average of y values
of the examples that fall at this leaf. In a FT-Leaves multivariate tree (figure 4(a)) the

>46.1

Figure4. (a) The FT-Leaves functional regression tree and (b) The full functional regression tree for the housing
problem.

FUNCTIONAL TREES 229

decision nodes only contain tests based on the original attributes. Leaf nodes could predict
values using a linear-regression function. In such cases, the function is built only using the
examples that fall at this node. This is the type of multivariate regression tree that usually
appears in the literature. For example, systems M5 (Quinlan, 1993b; Witten & Frank, 2000)
and RT (Torgo, 2000) generate this type of models. Figure 4(b) presents the full multivariate
regression tree using both functional inner nodes and functional leaves. In this case, decision
nodes can contain tests based on a linear combination of the original attributes, and leaf
nodes can predict the values obtained by using a linear-regression function built from the
examples that fall at this node.

In the set of experiments described in the next section using the Housing problem, the
mean square error of the univariate tree was 19.59, FT-Leaves 13.36, and FT-Inner 16.54
and FT 16.25.

5. Experimental evaluation

The main goal in this experimental evaluation is to study the influence, in terms of perfor-
mance, of the use of linear models inside regression and classification trees: How do the
algorithms derived from this framework compare against the state of the art in classification
and regression trees? What is the impact in the performance of the final model of functional
leaves and functional nodes? What is the role of each component?

We evaluate the full model implemented in the framework, its simplified variants, and
its components on a set of classification and regression benchmark problems. We evaluate
three situations:

— Trees that can use linear combinations at each internal node.
— Trees that can use linear combinations at each leaf.
— Trees that can use linear combinations both at internal nodes and leaves.

Using the common framework allows all evaluated models to be based on the same tree
growing and pruning algorithm. That is, they use exactly the same splitting criteria, stopping
criteria, and pruning mechanism. In regression problems the constructor is a standard linear
regression function. In classification problems the constructor is the LinearBayes classifier
(Gama, 2000).* Moreover they share many minor heuristics that individually are too small to
mention, but collectively can make a difference. Doing so, the differences on the evaluation
statistics are solely due to the differences in the conceptual model.

5.1. Experimental setup

We estimate the performance of a learned model using 10-fold cross validation. To minimize
the influence of the training set variability, we repeat this process ten times, each time using
a different permutation of the examples in the dataset. The final estimate is the mean of the
performance statistics obtained in all runs of the cross validation. For regression problems
the performance is measured in terms of mean squared error. For classification problems
the performance is measured in terms of error rate. To apply pairwise comparisons we

230 J. GAMA

guarantee that, in all runs, all algorithms learn and test on the same partitions of the data. For
each dataset, comparisons between algorithms are done using the Wilcoxon signed ranked
paired-test. The null hypothesis is that the difference between performance statistics has
median value zero. We consider that a difference in performance has statistical significance
if the p value of the Wilcoxon test is less than 0.05 after a Bonferroni multiple comparisons
correction.

5.1.1. Organization of the experiments. The experimental evaluation of the different
algorithms has been organized into four main dimensions. The goal of the two first sets of
experiments is to provide evidence that the proposed framework can implement algorithms
that are competitive with the state of the art in univariate, multivariate and model trees.
Based on these results we argue that the framework is appropriate to discuss the role of
linear combinations in decision nodes and leaves in the performance of the final model (last
two sets of experiments). The goals of the experiments are as follows:

— The simplest model that can be derived from the framework is a univariate tree. Is
the baseline of the framework competitive against the state of the art in classification
and regression univariate trees? The first set of experiments answers this question. We
compare the univariate tree against well known classification and regression univariate
trees.

— How does the functional tree (FT) compare against the state of the art in multivariate
classification and regression trees? In a second set of experiments, we compare the
performance of the functional tree against the state of the art in multivariate classification
and regression trees.

— Functional trees generate hybrid models by tightly coupling two other classifiers. Is
the integration method of the different models sound? In a third set of experiments, we
compare the performance of the functional tree (FT) against its components: the univariate
tree (UT) and the constructor function, linear regression (LR) in regression problems,
and LinearBayes (LB) in classification problems.

— What is the role of functional leaves and functional nodes? Do they have different influ-
ence in the performance of the final model? This is the main problem we discuss in the
paper. To answer this question we compare the functional tree against the two simplified
versions: FT-Leaves and FI-Inner.

For comparative purposes we present the results of other well-known algorithms. For
regression problems we have used system M5> with and without smoothing, and two
versions of system RT (version 4.1.1): univariate and partial linear trees. For classification
problems, we have used system C4.5 (release 8.0), system M5'Class (Frank et al., 1998),
and two versions of system Cruise (version 1.11): univariate and multivariate trees.

5.2. Results for classification problems

We have chosen 30 datasets from the UCI repository (Blake, Keogh, & Merz, 1999). All
of them them have been previously used in comparative studies. The number of examples

FUNCTIONAL TREES 231

varies from 150 to 52202. The number of attributes varies from 4 to 60, and the number
of classes from 2 to 26. For comparative purposes we also evaluated the state of the art
in univariate trees, C4.5 (Quinlan, 1993a), M5'Class (Witten & Frank, 2000), and the
univariate and multivariate versions of Cruise (Kim & Loh, 2001). C4.5 and univariate
Cruise use univariate splits and constants at leaves, M5'Class uses univariate splits and
linear models at leaves, multivariate Cruise uses linear combinations at inner nodes and
constants at leaves.

The detailed results in terms of error-rate are presented in the Appendix in Tables A-1,
A-2, and A-3. The results of LinearBayes and univariate trees are presented in Table A-1.
The reference algorithm is the univariate tree of our framework. In Table A-2 we present
the results of multivariate trees. The algorithm used for comparison is the functional tree
(FT). In Table A-3 we present the results of functional trees and their components. The
reference algorithm is again the functional tree (FT). For each dataset, the algorithms
are compared against the reference algorithm using the Wilcoxon signed ranked paired-
test. A — (4) sign indicates that for this dataset the performance of the algorithm was
worse (better) than the reference model with a p value less than 0.05 after Bonferroni
correction.

Those tables are summarized in Tables 1, 2, and 3. All summary tables are organized as
follows. The first two lines present the arithmetic and the geometric mean of the error rate
across all datasets. The third line shows the average rank of all models, computed for each
dataset by assigning rank 1 to the best algorithm, 2 to the second best and so on. The fourth
line shows the average ratio of error rates. This is computed for each dataset as the ratio
between the error rate of each algorithm and the error rate of the reference algorithm. The
next two lines show the number of Wins/Losses and the number of significant differences
using the signed-rank test with respect to the reference algorithm. We use the Wilcoxon
signed ranked paired-test to compare the error rate of pairs of algorithms across datasets.®
The last line shows the p values associated with this test for the results on all datasets with
respect to the reference algorithm.

Table 1 presents a comparative summary of the results of simple algorithms: all the
univariate trees and LinearBayes. In this case the reference algorithm is FT-Univ. All the
statistics provide evidence that the univariate tree that is the basis of our framework is

Table 1. Summary of results of error-rate in classification problems of univariate tree and Linear-Bayes. The
reference algorithm is the univariate tree.

FT-Univ Linear-Bayes C4.5 Cruise-Univ.
Arithmetic mean 14.58 15.31 14.51 16.35
Geometric mean 9.741 11.632 9.399 8.897
Average rank 2.267 2.367 2.300 3.067
Average error ratio 1 8.2617 0.9813 1.6481
Wins (for FT-Univ)/losses - 15/15 14/14 22/8
Significant wins/losses - 14/13 5/3 17/4

Wilcoxon test - 0.7266 0.7241 0.0066

232 J. GAMA

Table 2. Summary of results of error-rate in classification problems of multivariate trees. The reference algorithm
is FT.

FT M5'Cl Cruise
Arithmetic mean 11.72 12.77 12.93
Geometric mean 6.62 7.24 6.69
Average rank 1.83 2.20 1.97
Average error ratio 1.0 1.23 2.09
Wins (for FT)/losses - 18/12 17/13
Significant wins/losses - 4/2 10/10
Wilcoxon test - 0.13 0.39

comparable in generalization performance to C4.5, the state of the art in univariate trees. It
is very different from LinearBayes. In 30 datasets there are 27 significant differences!

Table 2 presents a comparative summary of the results of the state of the art in multivariate
trees. The reference algorithm is the full model functional tree (FT). All the evaluation
statistics show that FT is a competitive algorithm. It is the algorithm with lowest average
rank, arithmetic and geometric means. FT performs significantly better than M5" on four
datasets. We should note that M5’ decomposes a n-classes classification problem into n — 1
binary regression problems. With respect to Cruise there is a draw with respect to the
significant wins. FT significantly outperforms Cruise on the larger datasets (Adult, Letter,
Satimage, Shuttle).

Table 3 presents a comparative summary of the results of all classification algorithms
implemented in our framework: the components and variants of functional trees. The full
model (FT) is the algorithm with lowest average rank, average error ratio, arithmetic and
geometric means. FT significantly improves over both components (LB and FT-Univ) in
6 datasets. With respect to its components, the p-values of the Wilcoxon Test indicates
that the performance of FT is significantly better than each component at a significance
level greater than 99%. All the multivariate trees have a similar performance. Nevertheless,
in all statistics, FT is the algorithm with best performance. It is interesting to note also

Table 3. Summary of results of error-rate in classification problems. Comparison between components of func-
tional trees and functional trees variants. The reference algorithm is FT.

FT FT-Leaves FT-Inner FT-Univ LBayes
Arithmetic mean 11.72 12.56 11.90 14.58 15.31
Geometric mean 6.62 6.97 6.80 9.03 11.63
Average rank 2.567 2.617 2.833 3.483 3.5
Average error ratio 1.0 1.11 1.03 1.41 7.55
Wins (for FT)/losses - 15/13 11/7 22/8 20/10
Significant wins/losses - 8/7 3/0 14/5 15/5

Wilcoxon test - 0.724 0.055 0.0015 0.0015

FUNCTIONAL TREES 233

that the FT-Inner version is the most competitive algorithm. A more detailed analysis of
the comparison between FT and its simplified versions (FT-Inner and FT-Leaves) will be
presented later in Section 5.4.

5.3. Results in regression domains

We have chosen 20 datasets from the Repository of Regression problems at LIACC.” The
choice of datasets was restricted using the criterion that almost all the attributes be ordered
with few missing values.® The number of examples varies from 43 to 40768. The number
of attributes varies from 5 to 48.

The detailed results in terms of mean square error (MSE) are presented in Tables A-4,
A-5, and A-6. In Table A-4 we present the results of Linear Regression and univariate trees.
The algorithm used for comparison is the univariate tree of our framework. In Table A-5 we
present the results of model trees. The algorithm used for comparison is the functional tree
of our framework. In Table A-6 we present the results of functional trees, and the simplified
versions of functional trees. The algorithm used for comparison is the full functional tree.
In all tables, and for each dataset, all the algorithms are compared against the algorithm
taken as reference using the Wilcoxon signed rank-test. A — (+) sign indicates that in this
dataset the performance of the algorithm was worse (better) than the reference algorithm
with a p value less than 0.05 after Bonferroni correction.

Tables 4, 5, and 6 present summaries of the results according to the methodology presented
in Section 5.1.1. In each table we use as reference the most appropriate algorithm for the
comparative analysis: FT-Univ for Table 4, and FT for Tables 5 and 6. All tables are organized
similarly to the summary tables for classification.

Table 4 presents a comparative summary of the results of simpler algorithms: the uni-
variate trees (FT-U and RT-U) and Linear Regression. In this case the reference algorithm
is FT-Univ. RT-Univ is the algorithm with the best performance. A possible reason for that
is the cost-complexity pruning used by RT. All the statistics provide evidence that the uni-
variate tree, which is the basis of our framework, has a performance similar to the state of
the art in univariate trees.

Table 5 presents a comparative summary of the results of the state of the art in model trees.
The reference algorithm is the full model functional tree (FT). FT exhibits a performance

Table 4. Summary of results of mean-squared error in regression problems of univariate trees and linear
regression.

FT-Univ LR RT-Univ
Geometric mean 23.59 39.17 22.22
Average rank 1.9 24 1.7
Average Error Ratio 1.0 2.94 0.96
Wins (for FT-Univ)/losses - 13/7 9/11
Significant wins/losses - 13/5 3/8

Wilcoxon test - 0.105 0.38

234 J. GAMA

Table 5. Summary of results of mean-squared error of model trees in regression problems.

FT RT-PLS M5’ M5’'nSmooth
Geometric mean 16.90 20.04 16.09 17.76
Average rank 22 3.1 1.8 29
Average error ratio 1.0 1.37 0.98 1.07
Wins (for FT)/losses - 17/3 9/11 11/8
Significant wins/losses - 12/1 2/3 4/3
Wilcoxon test - 0.0012 0.96 0.1776

Table 6. Summary of results of mean-square error in regression problems. Comparison between components of
functional trees and functional trees variants.

FT FT-Leaves FT-Inner FT-Univ LR
Geometric mean 16.90 16.48 17.68 23.59 39.17
Average rank 2.025 2.275 2.400 3.900 4.400
Average error ratio 1.00 0.99 1.07 1.53 3.4973
Wins (for FT)/losses - 11/6 12/8 16/4 19/1
Significant wins/losses - 6/4 7/6 15/3 18/0
Wilcoxon test - 0.67 0.648 0.003 0.000

similar to M5/, the best performing algorithm. All the evaluation statistics show that FT
is a competitive algorithm. It is interesting to observe the influence of smoothing in the
behavior of M5'. In terms of significant wins, M5’ significantly outperforms the version
without smoothing in 8 datasets and never is worst. Smoothing takes into account the linear
models built at inner nodes in the tree. This result is relevant to the conclusions detailed
below.

Table 6 presents a comparative summary of the results of all regression algorithms imple-
mented in our framework: the components and variants of functional trees. The full model
(FT) significantly improves over both components (LR and FT-U) in 14 datasets out of
20. All the multivariate trees have a similar performance. Considering only the number of
significant wins, FT exhibits some advantage. The FT-Leaves version is the most compet-
itive algorithm. The ratio of significant wins/losses between the FT-Leaves and FT-Inner
versions is 4/3. Nevertheless there is a computational cost associated with the increase in
performance. To run all the experiments referred to here, FT requires almost 1.8 more time
than the univariate regression tree.

5.4. Discussion

In this subsection we discuss in detail the performance of functional tree variants. The main
goal of this analysis is to understand the role and the impact in the performance of the final
model of functional nodes and functional leaves.

FUNCTIONAL TREES 235

Error Reduction in Bias-Variance in Comparison fo the Univariate Tree Error Reduction in Bias-Variance in comparison to the Univariate Tree
o
o
0 Variance 0 Variance
N Bas B Bas

2.5e+08
I

2.0e+08
L

b 0381 % 0703% 0.595%

1.50+08

1.0e+08

5.00+07
L

0.0
L
0.0e+00
L

Unv /FT Univ/FTLeaves Univ/ FTlnner Univ/FT Univ/ FT Leaves Unv/FT Inner

Figure 5. Reduction in bias and variance of functional trees variants with respect to a univariate tree: (left)
Classification problems and (right) Regression problems.

Several authors state that there is a trade-off between the systematic errors due to the
representational language used by an algorithm (the bias) and the variance due to the
dependence of the model to the training set (Breiman, 1998). When using more flexible
representations the bias is reduced. We have tested this hypothesis. We have compared the
bias-variance error decomposition of the univariate tree against the functional trees. For
classification problems we have used the decomposition suggested by Kohavi and Wolpert
(1996), while for regression problems we have used the standard decomposition presented
in Geman, Bienenstock, and Doursat (1992). Figure 5 shows the reduction in the error
components of each functional tree with respect to the univariate tree. In classification
problems, 90% of the error reduction is due to the bias component. In regression problems,
most of the reduction is due to a reduction in variance. FT is the algorithm with lowest
average bias. FT-Leaves is the algorithm with lowest average variance. In classification,
FT and FT-Inner have similar bias and variance reductions. FT-Leaves shows a different
behavior: the main error-reduction is due to a reduction in variance. Although not so clear
as in classification, a similar observation applies to regression. It is known that discriminant
analysis is stable to perturbations of the training set. In the case of FI-Leaves, deeper
nodes in the tree (nodes where decisions are based on small number of examples) are
replaced by stable classifiers, leading to a decrease in variance. FT-Inner uses splits based on
combinations of attributes, introducing more powerful and flexible representations, leading
to a reduction in bias. These results suggest that standard variance reduction methods, like
bagging, will be more effective with FT and FT-Inner than with FT-Leaves.

5.4.1. Bagging functional trees. One of the most attractive features of a univariate tree is
that we can reduce its error by applying simple variance reduction methods. Does this feature

236 J. GAMA

apply to a multivariate tree? We have applied a standard variance reduction method, bagging
(bootstrap aggregating (Breiman, 1996)), to our functional tree (FT). In our experiments
we have used bagging by aggregating 10 trees. The results report the mean of 10-fold cross
validation. Detailed results are reported in Tables A-7 and A-8. On both types of problem
the results are similar. On these datasets, bagging FT improves the overall performance of
FT. Bagging significantly improves the performance on 7 regression problems and 3 clas-
sification datasets. Moreover, on these datasets we never observe a significant degradation
of the performance. These results suggest that variance reduction methods can be com-
bined with bias-reduction methods. This deserves future study. Moreover, in comparison
to FT-Leaves, bagging FT-Leaves significantly improves in 2 classification problems and
degrades the performance in 1 dataset (Monks-1), while in regression, bagging FT-Leaves
significantly improves in 5 datasets. The use of functional leaves is also a variance reduction
method, which explains the reduced impact of bagging in FT-Leaves.

5.4.2. The effect of training-set size. Several authors have pointed out that the increase in
the size of datasets naturally will reduce the variance of tree models (Brain & Webb, 2002).
In that paper the authors wrote: “Experiments show that learning from large datasets may be
more effective when using an algorithm that places greater emphasis on bias management”.
This is confirmed in the experiments described in this paper, where FT-Inner is significantly
better than FT-Leaves in the largest datasets: Adult, Letter, Satimage.

To study the influence of training-set size on the behavior of functional trees, we have
done a set of learning-curve experiments using the Adult (classification) and Friedman
(regression) datasets. Experiments were performed as follows. We fixed a hold-out test set
with 4000 examples. From the remainder, we obtain training sets with increasing numbers
of examples. For each training set we measure the test-set error, the bias and the variance
components of the error. The algorithms used were FI-Inner and FI-Leaves. For both
algorithms the error, the bias, and the variance slowly decrease when increasing the number
of examples. In figure 6 we plot the differences (FT-Leaves—FT-Inner). We observe that
while the differences in bias are always positive and increase with training-set size, the
differences in variance are negative and decrease with training-set size. These results confirm

Ditferences in Blas and Varlance (FT.Leaves - FT.Inner) Differences in Blas and Variance (FT.Leaves—FT.Inner)
g -
m BiAS — | Bins

g

H <4
E 5 2 =4
B = k
5 & g ~ o
£ £

s | wd

b 1

22k 33k 37k a0k aak 10k 20k 30k ok S0k 60k
Nr. of Examples M ol Examglos

Figure 6. Differences in bias and variance between FT-Leaves and FT-Inner varying the number of training
examples in Adult classification dataset (left) and Friedman regression dataset (right).

FUNCTIONAL TREES 237

Dendrogram of Functional Trees Dendrogram of Functional Trees
o I
. |8
3 i
afé
. g .al”
2 = H] 5 i
1 o
E g ¢ 1 E
2 3
P8 ’—_I_‘
3 N
N E § 3
N £ 3 o
£ £
£

FT.Inner

Figure 7. Dendrogram of similarities between error-rates of functional trees for classification problems (left)
and regression problems (right).

the different impact in the components of the error of functional inner nodes and functional
leaves. Functional inner nodes is a technique for bias management, and functional leaves
emphasis in variance management.

5.4.3. Similarities between results of functional trees. We have used a hierarchical clus-
tering algorithm to study the similarities between the errors of algorithms. In this analysis
the similarity between two algorithms is given by the sum of differences between the errors
of both algorithms in the same dataset. For each type of problem, the data matrix for cluster
analysis has been constructed as follows. Each column represents one algorithm. Each row
represents one dataset. The value of each cell is the error statistic of a given algorithm on
the corresponding dataset.

Figure 7 shows the dendrogram obtained by applying cluster analysis respectively to
the results of classification and regression algorithms of our framework. On both types
of problem, the cluster {FT, FT-Inner} corresponds to the minimum distance level—that
is maximum similarity. The similarity between FT and FT-Leaves is at least one order
magnitude lower. This shows that the highest correlation between errors correspond to the
clusters {FT, FT-Inner}. It provides additional evidence that FT and FT-Inner have very
similar behavior.

Figure 8 shows the dendrograms obtained by applying cluster analysis to the results of
all classification and regression algorithms used in our experimental study. For both types
of problems there are three well-defined clusters. A cluster with algorithms using univariate
decision nodes, a cluster with algorithms using multivariate decision nodes, and a cluster
with algorithms using discriminant analysis. In classification problems some key clusters
are: the univariate models {FT.Univ, C4.5}, functional leaves: {FT-Leaves, M5Class},
and functional nodes {FT-Inner, FT}. Interestingly, LinearBayes and Cruise appear in the
same cluster. Both are based on discriminant analysis. In regression problems, M5’ without
smoothing appears together with the other univariate trees, while M5” appears together with
FT-Inner and FT.

238 J. GAMA

of Dendrogram of Regression Algorithms

70
Il
3.00+09
N

60
I
2

2.00+09
'
Lifiear.Regression ——

T
T

Helght

Cruise Univ
Height
1.0e+09

Cruise

LinearBayes

FT
FT

o 10
L 1
Bagging FT ‘|

cas
FT.Leaves
M5.Class
0.00400
L L
FT.Bagg _|

FT.inner
FT.Univariate
FT.Leaves
RT.pl
FT.lnner
Ms
FT.Univ
RT.Univ
M5NS

Figure 8. Dendrogram of similarities between error-rates of all used models for classification problems (left)
and regression problems (right).

5.4.4. Model complexity. In this work we estimate the complexity of tree models by
measuring the number of leaves. This measures the number of different regions into which
the instance space is partitioned. On these datasets, the average number of leaves for the
univariate tree is 81. All functional tree generate smaller models. The average number of
leaves of the full model is 50, for FT-Leaves is 56, and for FT-Inner is 52.

The algorithms implemented in the framework have different degrees of complexity.
Univariate trees, using tests based on a single attribute and constants in leaves, generate
simpler but large models. By introducing functional nodes or functional leaves the level of
complexity increases, but the global size of the model decreases. Using functional nodes
and functional leaves corresponds to the most complex and smallest models.

5.4.5. Learning times. 'We have mentioned that there is a computational cost associated
with the increases in performance observed. To run all the experiments discussed here,
the fastest algorithm was the univariate tree and the slowest was FT. FT requires almost
1.8 more time than the univariate tree. FT-Leaves is the fastest functional tree. This is an
indication that the most time-consuming operation in functional trees is not the construction
of new attributes but the time needed to evaluate them. The new attributes are continuous
and require a sort operation to estimate the merit of the attribute.

6. Conclusions

In this work we have presented functional trees, a framework to construct multivariate trees
for regression and classification problems. From the framework it is possible to derive algo-
rithms able to use functional decision nodes and functional leaf nodes. Functional decision
nodes are built when growing the tree, while functional leaves are built when pruning the
tree. A contribution of this work is to provide a single framework for various classification
and regression multivariate trees. Functional trees can be seen as a generalization of prior
multivariate trees for decision problems and model-trees for regression problems.

In the experimental evaluation on a set of benchmark problems we have compared the per-
formance of the full functional tree against its components, two simplified versions, and the

FUNCTIONAL TREES 239

state of the art in multivariate trees. The experimental evaluation points out some interesting
observations. All multivariate tree versions have similar performance. On these datasets,
there is no clear winner between the different versions of functional trees. Any functional
tree out-performs its constituents (the univariate tree and the discriminant function) in a
large set of problems.

In our study the results are consistent on both types of problem. For classification and
regression we obtain similar rankings of the performance between the different versions
of the functional algorithms. The experimental study suggests that the full model, which
is a multivariate model using linear functions both at decision nodes and leaves, exhibits
a marginal advantage. Although most of the prior work in multivariate classification trees
follows the FT-Inner approach, the FT-Leaves approach seems to be an interesting and
competitive alternative. A similar observation applies to regression problems. The FT-Inner
approach deserves more attention for future research.

The analysis of the bias-variance decomposition of the error indicates that the use of
multivariate decision nodes is a bias reduction process while the use of multivariate leaves
is a variance reduction process. This analysis is a contribution to our understanding of how
and why learning algorithms work. Methods like bagging, are very effective in variance
reduction for decision trees (Breiman, 1998). Nevertheless the increase in the size of datasets
that we verify nowadays, naturally will reduce the variance of tree models (Brain & Webb,
2002). This fact will increase the research on bias-reduction methods.

6.1. Contributions

Functional trees have been proposed and used by several researchers both in machine learn-
ing and statistics communities. Prior work has been oriented toward single algorithms,
discussing different methods to generate the same kind of decision models. The frame-
work introduced here is oriented toward a family of algorithms, discussing the topological
differences between decision models. The most important contributions of this work are:

— A unified framework for various types of classification and regression functional trees.
An in-depth study of the behavior of functional trees. The understanding of the behavior
of algorithms is a fundamental aspect of machine learning research. The patterns that
emerge from the bias-variance decomposition of the error, and the cluster analysis of
similarities between functional trees provide strong insights to the behavior of those
algorithms: variance can be reduced using functional leaves, while bias can be reduced
using functional inner nodes.

— New algorithms for classification and regression problems. To my knowledge, this is the
first work that proposes the simultaneous use of functional nodes and functional leaves
in prediction problems. The topologically different models, that is functions in leaves
and/or inner nodes, can provide different levels of interpretability for the problem under
study.

— The experimental study suggests that all multivariate models are competitive. Neverthe-
less, using linear functions both at decision nodes and leaves exhibits some advantage
mostly in large datasets. This observation can open new directions for future research.

240 J. GAMA

6.2. Limitations and future directions

Univariate trees are invariant to monotonic transformations of the input variables, are ro-
bust to the presence of outliers, redundant and irrelevant attributes. Decision trees using
combinations of attributes either in the splitting test in decision nodes or models at leaves
could lose these properties. The application of the ideas we have presented in this paper
to real-world contexts will require effective methods for feature selection in the attribute
constructor.

Functional trees allow a tight integration of different representation languages for gener-
alizing examples. It is interesting to note that there are standard algorithms for topological
transformations on decision trees. For example, Sahami has presented an algorithm to trans-
form a multivariate decision tree into a three-layer feed forward neural net (Sahami, 1995).
Sahami argues that the method could be used to simultaneously learn the topology and the
parameters of a neural network. Also Quinlan (1993a), and Frank and Witten (1998) have
presented algorithms to transform a decision tree into a set of rules. Similar algorithms
could be applied to functional trees. This is an interesting aspect because it points out a
common representation for different representations languages. We intend to explore these
aspects in future research.

Appendix

Table A-1. Error rates of LinearBayes and univariate trees in classification problems. For the comparisons at the
bottom, the reference algorithm is FT-Univariate.

Dataset C4.5 Cruise-Univ LinBayes FT Univ.
Adult 13.98 £0.56 —21.53+0.81 —17.01+0.49 14.18 £ 0.46
Australian 14.43 £0.64 14.32+0.66 +13.50£0.27 14.75+0.96
Balance 21.93+0.7 —31.61+1.8 +13.35+£0.35 2247+1.1
Banding 23.60£1.3 —26.31+£0.89 23.68 +£0.97 23.51+1.8
Breast(W) —5.396 £0.33 5.148 £0.39 +2.862 £0.093 5.123+0.19
Cleveland 21.23+2 —22.7+0.75 +16.13 £0.39 2099+ 1.4
Credit 14.51+0.67 14.82+£0.36 1423 +0.15 14.614+0.55
Diabetes 2528+1.2 25.244+0.55 +22.71£0.21 2535+1
German 28.29+1.0 +25.50£0.92 +24.52+£0.23 28.24+0.73
Glass 33.54+25 —39.86+3.5 —36.65+0.8 32.15+£23
Heart 22.07+1.5 22.86+0.67 +17.70£0.23 23.07+1.7
Hepatitis —21.55+2 —2484+1.3 +15.48 £0.71 17.13+1.3
Ionosphere 10.09+1.1 10.24+0.81 —13.38+0.76 10.03+£0.93
Iris —4.933+£0.78 4.8124+0.42 +2+0 4.3334+0.79
Letter 11.644+0.46 —36.12+ 1.6 —29.82+1.3 11.884+0.56
Monks-1 +3.522+£1.6 —13.87+2.0 —25.014+0.030 10.54+1.7
Monks-2 32.86+0 +5.094£1.5 —34.194+0.58 32.86+0

(Continued on next page.)

FUNCTIONAL TREES

Table A-1. (Continued).

241

Dataset C4.5 Cruise-Univ LinBayes FT Univ.
Monks-3 1.388 +£0.01 +1.356 £0.009 —4.16+0.01 1.572+0.39
Mushroom 0+0 0.0025 £ 0.008 —3.11+0.037 0+0
Optdigits 9.48+0.32 —16.85+0.33 +4.687 £0.059 9.476 +£0.27
Pendigits 3.491+0.13 —6.116+0.16 —12.43+£0.036 3.559+0.14
Pyrimidines +5.307£0.17 +5.061 £0.16 —9.846+0.11 5.7334+0.24
Satimage —13.66+0.4 —15.6+0 —16.01+0.13 12.894+0.23
Segment 3.2214+0.22 —4.25+£0.33 —8.407 £ 0.09 3.3814+0.21
Shuttle 0.028 +0.015 —0.39+£0.11 —5.63+0.3 0.028 +£0.025
Sonar 2747423 2555+ 1.7 2495+1.2 27.65+3.5
Vehicle 27.37+1.2 —30.6+0.74 +22.16 £0.15 27.33+1.2
Votes +3.355+£0.28 —4.313+0.14 —9.74+0.21 3.773+£0.47
Waveform —24.924+0.8 —26.36+0 +14.94£0.22 24.04£0.8
Wine 6.724+1.2 —-9.26+1.8 +1.133 £0.45 6.61+1.3
Average mean 14.51 16.35 15.31 14.58
Geometric mean 9.399 8.897 11.632 9.741
Average ranks 2.300 3.067 2.367 2.267
Average error ratio 0.9813 1.6481 8.2617 1
Wins/losses 15/15 8/22 14/14 -
Significant wins/losses 3/5 4/17 13/14 -
Wilcoxon test 0.7241 0.0066 0.7266 -

Table A-2. Error rates of multivariate trees in classification problems. For the comparisons at the bottom, the

reference algorithm is FT.

Dataset Cruise M5'Class
Adult —21.53+0.81 13.83+0.38 —15.18+0.62
Australian 13.97+£0.19 13.64 £0.58 14.64 £5.2
Balance 8.22£0.073 7.555+0.81 —13.89+3.2
Banding —28.06+0.9 2393+2 22.62+5.3
Breast(W) 3.666 +0.24 3.346 £0.39 5.137+£3.1
Cleveland +15.86 £0.32 16.67+0.78 17.93£8
Credit +14.07 £0.27 15.22+0.55 1491 +£3.7
Diabetes 23.67+0.34 23.57+0.82 25+4.8
German —27.41+0.35 24.440.72 26.3+3.1
Glass —39.27+ 14 35.18+2.4 29.48 £ 10
Heart +15.71£0.56 17.19+£0.8 16.67+9
Hepatitis 16.24 £ 1.1 16.67£1.3 19.92+£8.5

(Continued on next page.)

242

Table A-2. (Continued).

J. GAMA

Dataset Cruise FT M5’Class
Tonosphere +9.229 £0.83 11.04£1.6 9.704 £4.1
Iris 1.938+£0.20 2.06£0.21 5.333£53
Letter —36.12+1.6 11.83+1.1 +9.44£0.46
Monks-1 +4.267£1.6 9.023+2.0 10.05+9
Monks-2 11£2.6 9.213+1.8 27.66 £21
Monks-3 +1.356 £0.0092 2.929+0.52 1.364+2.4
Mushroom +0.0037 £0.008 0.111+0.04 0.0246 +0.08
Optdigits +3.012+£0.1 3.304£0.13 —5429+14
Pendigits +1.532£0.064 2.892 +0.086 +2.419+£0.37
Pyrimidines —7.405+0.20 6.158 £0.17 6.175+0.95
Satimage —13.89+0.11 11.78 £0.32 1240+3.2
Segment —3.806+£0.23 3.208 £0.21 2.468 +£0.76
Shuttle —1.177+£0.26 0.036 +0.025 0.067 +0.03
Sonar 23.79+1.5 24.834+2.7 227249
Vehicle 20.98 £0.46 2097+1.2 209+4.6
Votes —4.269+0.010 3.703 £0.44 4.172+4.0
Waveform +14.81 £0.18 15.91+0.44 —1724+14
Wine 1.540+0.47 1.404 +£0.29 3.830+3.6
Average mean 12.93 11.72 12.77
Geometric mean 6.690 6.621 7.238
Average ranks 1.967 1.833 2.200
Errors ratio 2.087 1.000 1.225
Significant wins 10/10 - 4/2
Wilcoxon test 0.3991 - 0.1332

FUNCTIONAL TREES

243

Table A-3. Error rates of functional trees in classification problems. For the comparisons at the bottom, the
reference algorithm is FT.

Dataset Lin.Bayes FT-U FT-Leaves FT-Inner FT
Adult —17.01£0.49 14.18 £0.46 —14.31+0.38 13.80+0.39 13.83 +£0.38
Australian 13.50+£0.27 —14.75+£0.96 —14.344+0.43 13.94 +0.65 13.64 £0.58
Balance —13.35+£0.35 —2247+1.1 —10.414+0.63 7.555+0.81 7.555+0.81
Banding 23.68 £0.97 2351+1.8 23.64+1.7 239342 239342
Breast(W) +2.862+0.093 —5.123+0.19 —4.3374+0.071 3.346+0.39 3.346+0.39
Cleveland 16.13+0.39 —-2099+1.4 +15.95+0.49 17.37+0.9 16.67+0.78
Credit +14.23£0.15 14.61 £0.55 14.81+0.5 15.124+0.47 15.224+0.55
Diabetes +22.71+£0.21 —2535+1 2397+1.0 —25.15+£0.93 23.574+0.82
German 24.524+0.23 —28.24+0.73 +23.63£0.51 24.89 £0.55 24440.72
Glass 36.65+0.8 +32.15£23 +32.34+£2.1 35.18+2.4 35.18+2.4
Heart 17.70 £0.23 —23.07£1.7 17.04 £0.58 1733+ 1.4 17.19£0.8
Hepatitis +15.48£0.71 17.13+1.3 +1556+14 17.17+ 1.6 16.67+1.3
Ionosphere —13.38+£0.76 10.03 £0.93 10.794+0.9 11.04+1.6 11.04+ 1.6
Iris 240 —4.333+£0.79 2.067+0.21 —3.867+1.1 2.067+0.21
Letter —29.82+1.3 11.884+0.56 12.01 £0.58 11.83£1.1 11.83£1.1
Monks-1 —25.014+0.030 10.54+1.7 11.08+1.6 9.045+2 9.0234+2.0
Monks-2 —34.194+0.58 —32.86+0 —33.91+0.41 9.143+1.8 9.213+1.8
Monks-3 —4.163£0.011 +1.572+£0.39 3.511+0.87 27924+0.52 2.929+0.52
Mushroom —3.109+£0.037 +0£0 +0.0616 £ 0.006 0.111+£0.039 0.111£0.039
Optdigits —4.687+£0.059 —-9.476+0.27 —4.73 £0.062 3.300£0.13 3.304£0.13
Pendigits —12.43+£0.036 —3.559+0.14 —3.097 £0.085 2.892£0.086 2.89240.086
Pyrimidines —9.846£0.11 +5.733£0.24 6.105£0.22 6.156£0.17 6.158+0.17
Satimage —16.01£0.13 —12.89+0.23 —12.924+0.22 11.78 +£0.32 11.78£0.32
Segment —8.407£0.09 3.381£0.21 3.390+0.21 3.208£0.21 3.208£0.21
Shuttle —5.63+0.3 0.0276 £ 0.025 0.0276 £ 0.025 0.036+:0.025 0.036+0.025
Sonar 2495+1.2 27.65£3.5 24.11+1.7 24.69+2.9 24.83+2.7
Vehicle 22.16£0.15 —2733+£12 +18.28 £0.55 21.03+1.2 2097+1.2
Votes —-9.74+0.21 3.773+£0.47 3.681+0.41 3.703+0.44 3.703+0.44
Waveform +1494+£022 —24.04+£0.8 +1522+020 —16.18+£0.3 1591+0.44
Wine 1.133+0.45 —6.61+1.3 1.404 +0.29 1.4594+0.29 1.404 +£0.29
Average mean 15.31 14.58 12.56 11.90 11.72
Geometric mean 11.632 9.741 6.978 6.800 6.621
Average ranks 3.500 3.483 2.617 2.833 2.567
Errors ratio 7.553 1.407 1.112 1.035 1.000
Significant wins 5/15 4/15 7/8 0/3 -
Wilcoxon test 0.00154 0.00154 0.724 0.055 -

244

Table A-4. Mean-squared error of linear regression and univariate trees in
comparisons at the bottom, the reference algorithm is FT-Univariate.

J. GAMA

regression problems. For the

Dataset FT Univ. Lin.Regression RT Univ.
Abalone 5.69 +£0.093 +4.908 £ 0.0057 +5.402 £ 0.069
Auto 1943+1.2 +11.47£0.12 +13.97£0.92
Cart 0.9955 +0.00018 —5.684 £ 0.00068 —1.001 £0.0019
Computer 10.95+0.65 —99.9+0.25 11.45+0.57
Cpu 4111+ 1657 3734 £1717 2865+ 1041
Diabetes 0.5355+0.032 +0.3994 £ 0.028 0.55314+0.027
Elevators 1.4le—5+3.2e—7 +1.02e—5+4.2e—7 1.46e—5+£5.2e—7
Friedman 3.474£0.018 —6.924 £ 0.00052 +3.203 £0.016
House(16H) 1.692e+9 + 3.4e+7 —2.055e+4-9 £ 606768 +1.479¢+9 +2.2e47
House(8L) 1.193e+9 + 1.2e+7 —1.731e4+9 £ 81894 +1.134e+9 4= 1.3e+7
House(Cal) 3.691e+9 £+ 3.5e+7 —4.809e+9 £ 2e+6 +3.516e+9 & 3.8e+7
Housing 19.59+1.7 —23.84+£0.22 20.50£2.1
Kinematics 0.03537 +0.0004 —0.0408 = 1.5e—5 —0.038 +0.0005
Machine 6036+ 1752 5952 +2053 6535 +2556
Pole 48.55+1.2 —930£0.29 —54.96+1.1
Puma32 0.00011 = 1.5e—6 —0.00072 £ 6.3e—7 +7.5e—5+8.2e—7
Puma8 13.31+0.18 —19.93+£0.0077 +11.20£0.087
Pyrimidines 0.0142+0.0015 —0.01811+£0.0031 0.013314+0.0015
Hearth.QU 0.03591 +2.8e—5 +0.0358 £3.9e—5 +0.03574 £0.00018
Triazines 0.01945+0.0014 —0.02515£0.0012 0.02044 £0.0013
Geometric mean 23.59 39.17 22.22
Average ranks 1.9 24 1.7

Errors ratio 1.0 2.94 0.95
Significant wins - 13/5 3/9

FUNCTIONAL TREES

245

Table A-5. Mean-squared error of model trees in regression problems. For the comparisons at the bottom, the
reference algorithm is FT.

Dataset FT M5’ M5/NSmooth RT.PLS
Abalone 4.608 +0.014 4.553+0.5 4.67+0.57 —4.963 +0.061
Auto 9.131£0.52 7.958+3.5 8.363+4.2 —12.17+0.5
Cart 1.0124+0.0012 0.9943 +£0.017 0.9943 +0.017 —1.101 +£0.0021
Computer 6.284 +0.58 8.081+£2.7 8.624+4 —32.78+0.94
Cpu 1070+ 137 1092 £ 1315 1456 + 1558 —2696 £ 642
Diabetes 0.3993 +£0.028 0.4457 £0.32 0.4498 +£0.32 0.3911 £0.036
Elevators S5e—6+0 5.2e—6+1.4e—6 S5e—6+6.7e—7 —1.07e—5+4.8¢e—7
Friedman 1.85£0.013 —1.938+0.09 —1.954+£0.09 —2.749+0.02
House(16H) 1.231e9 £ 2.2e7 1.27e9+ 1.1e8 —1.437e9£2.1e8 —1.308e9 £ 1.5¢7
House(8L) 1.015¢9 + 1.3e7 997178776 &+ Te7 1.095¢9 + 1.2e8 —1.039¢9 £ 1.4e7
House(Cal) 3.053e9+3.1e7 3.070e9 + 2.8e8 —3.625¢9 £ 1.1e9 —3.199¢9 £ 2.3e7
Housing 16.25+1.3 1247+7.5 15.67+9.7 16.07 £2.0
Kinematics 0.02318 +£0.00027 —0.02548 £0.0015 —0.0276 £0.0018 0.02335 +0.00064
Machine 30324759 3557 +£4271 4466 £ 5392 2492 + 1249
Pole 793+24 +42+5.8 +52.81£11 +40.56 £0.97
Puma3?2 8.24e—5+1.1e—6 +6.56e—5+3.2e—6 +6.83e—5+3.6e—6 8.3e—5+1.2e—6
Puma8 11.24 £0.072 +10.30£0.53 +10.37£0.58 —11.924+0.13
Pyrimidines 0.01296 +0.0031 0.01212+0.024 0.017324+0.036 0.01147 +£0.0012
Heart.QU 0.03593 +0.00018 0.03571 +0.0052 0.03565+0.0053 —0.03781 +0.00032
Triazines 0.02263 +0.0014 0.01746 +0.0071 0.01788 +0.0079 0.02288 +0.0012
Geometric mean 16.90 16.09 17.76 20.04
Average ranks 22 1.8 29 3.1

Errors ratio 1 0.98 1.07 1.37
Significant wins - 2/3 4/3 12/1

246

J. GAMA

Table A-6. Mean-squared error of functional trees in regression problems. For the comparisons at the bottom,

the reference algorithm is FT.

Dataset FT FT.Leaves FT.Inner FT.Univ Lin.Regre.
Abalone 4.608 £0.014 —4.753 £0.007 4.619 £0.029 —5.69 £0.093 —4.908 £0.0057
Auto 9.131+0.52 9.587+0.79 8.933+0.38 —1943+£1.2 —11.47+£0.12
Cart 1.012£0.0012 +0.9947 £0.00015 —1.016£0.0017 +0.9955+£0.00018 —5.684 £ 0.00068
Computer 6.284 +0.58 —6.507£0.53 —6.426 £0.58 —10.95£0.65 —99.9+£0.25
Cpu 1070+ 137 —1197+ 161 —1760 4389 —4111 £ 1657 =3734+£1717
Diabetes 0.3993 +£0.028 0.4001 £0.027 —0.4998 £ 0.037 —0.5355+0.032 0.3994 +0.028
Elevators 5e—6+0 5e—6+0 —8.6e—6+52e—7 —1.4le—5+3.2e—7 —1.02e—5+4.2e—7
Friedman 1.85+£0.013 —2.348 £0.015 1.85+0.013 —3.474£0.018 —6.924 £ 0.00052
House(16H) 1.23e9 +2.2¢7 1.19e9 £ 3e7 +1.2e9+2.1e7 —1.69e9 £ 3.4e7 —2.06e9 £+ 606768
House(8L) 1.02e9 £ 1.3¢7 1.02¢9 £9156339 +1.01e9 £ 1.3e7 —1.19¢9 £ 1.2¢7 —1.73¢9 £ 818904
House(Cal) 3.05e9£3.1e7 +2.78¢9 £2.8¢e7 —3.09e9 £ 2.7¢7 —3.69¢9 + 3.5¢7 —4.81e9 £ 2e6
Housing 1625+1.3 +1336£1.7 16.54+1.3 —1959+£1.7 —23.84+£0.22
Kinematics 0.023 £0.0003 —0.0258 4 0.0004 —0.027 £0.0004 —0.035 £0.0004 —0.041 £1.5e-5
Machine 3032£759 —3300£757 3473 £673 —6036 +1752 —5952 £ 2053
Pole 793+2.4 +35.16£0.72 79.48+2.6 +48.55+1.2 -9304+0.29
Puma32 8.24e—5+1.1e—6 8.24e—5+1.1e—6 +7.15e—5+53e—7 —0.0001£1.5e—6 —0.0007 +6.3e—7
Puma8 11.244+0.072 11.15+0.084 +11.05 £0.087 —13.31+£0.18 —19.93 £0.0077
Pyrimidines ~ 0.0129 4+ 0.003 0.0129 +0.003 +0.0102 £ 0.001 0.01424+0.002 —0.018 £0.003
Hearth.QU 0.03594+0.0002 0.0359+0.0002 0.0359+6.7e—5 0.0359 +2.8e—5 0.0358 +=3.9e—5
Triazines 0.0226 +0.001 0.0227 £ 0.001 +0.0179 £ 8e—4 +0.0195 £0.001 —0.0252£0.001
Geometric 16.90 16.48 17.69 23.59 39.17

mean
Average 2.02 2.28 24 3.9 4.4

ranks
Errors ratio 1 0.99 1.07 1.53 3.49
Significant - 6/4 716 15/3 18/0

wins

FUNCTIONAL TREES 247

Table A-7. Error rates of bagging functional trees in classification problems. For the comparisons at the bottom,
the reference algorithm is FT without bagging.

Bagging
Dataset FT FT-Leaves FT FT-Univ.
Adult 13.83+£0.38 14.41+0.6 13.82+0.64 —14.25+0.35
Australian 13.64 +£0.58 13.77+5.2 13.35+£5.6 14.94+5.6
Balance 7.555+0.81 —10.24+23 6.235+2.8 —20.61+£3.9
Banding 239342 20.19+5.3 20.55+£6.3 19.34+5.4
Breast(W) 3.346 +£0.39 4419443 3.561£29 6.268+5.4
Cleveland 16.67 +£0.78 16.51+6.3 16.51£6.3 20.85+7
Credit 15.224+0.55 15.37+4.7 15.65+4.7 15.23+3.9
Diabetes 23.57+£0.82 23.18+3.4 22.79+£2.7 2525+2.6
German 2444+0.72 23.5+33 24.1+4 —279+2.8
Glass 35.18+£2.4 26.92+12 33.09+13 2692+ 12
Heart 17.19£0.8 17.04£4.7 17.04+4.7 21.85+93
Hepatitis 16.67+1.3 14.19+6 1740+ 6 16.7£6
Ionosphere 11.04+ 1.6 10.50+5.3 10.82£3.7 8.781 £3.8
Iris 2.067+£0.21 2432 2432 5.333+6.9
Letter 11.83+1.1 11.56 +£0.79 +10.27£0.7 +9.105£0.95
Monks-1 9.023+2.0 —23.43+52 3.084+£8.2 —23.68+5.6
Monks-2 9.213+1.8 —39.14+ 11 18.71+18 —32.86 +0.65
Monks-3 2.929+£0.52 4.404+58 3.933+42 2294434
Mushroom 0.1108 £0.039 0.0616 +0.065 0.1477+£0.2 +0£0
Optdigits 3.304+0.13 —5217+1.2 3.419+0.77 —7.407+1.7
Pendigits 2.892 £0.086 2.5744+0.48 +2.211£0.49 2.846+0.7
Pyrimidines 6.158 +£0.17 +5.475+£0.7 5275+1 +5.046 £ 1.1
Satimage 11.78 £0.32 12.73£29 11.75£3 12.67+£2.7
Segment 3.208 £0.21 2.597+1.0 2.727+£0.87 2.641+1.0
Shuttle 0.0362 +0.025 0.03454+0.024 0.0362+0.03 0.0345+0.024
Sonar 24.83+2.7 23.99+7.2 22.00£7.9 19.68 £9.8
Vehicle 2097+1.2 19.95+3.5 +18.69£2.5 —26.34+34
Votes 3.703 £0.44 3.728+4.9 3.496£5 3.966+£4.9
Waveform 1591+0.44 14.92+2.6 1496+2.3 —19.56+2.6
Wine 1.404 +£0.29 0.5556+1.8 0.5556+1.8 5.526+5.2
Arithmetic mean 11.72 12.75 11.27 13.93
Geometric mean 6.62 6.86 6.15 9.52
Average rank 2.73 2.37 2.07 2.83
Significant wins - 4/1 0/3 8/3

Wilcoxon test - 0.51 0.0089 0.0641

248

J. GAMA

Table A-8. Mean-squared error of bagging functional trees in regression problems. For the comparisons at the
bottom, the reference algorithm is FT without bagging.

Bagging
Dataset FT FT-Leaves FT FT-Univ.
Abalone 4.608 £0.014 4.878+3.3 4.704+2.8 5.265+3.3
Auto 9.1314+0.52 10.09+7.7 8.832+5.7 17.40+13
Cart 1.012+£0.0012 0.9947 +0.021 1.008 £ 0.021 0.9957 +£0.021
Computer 6.284 £0.58 6455+1.2 5.881+1.3 698+ 1.4
Cpu 1070 £ 137 2965 + 5837 2601 £5134 4747 £ 8634
Diabetes 0.3993 +0.028 0.3688 +0.17 0.3790+0.17 0.3797+£0.2
Elevators Se—6+0 6.163e—6+4.4e—6 6.16le—6£4.4e—6 —1.136e—5+6.3e—6
Fried 1.85+£0.013 —1.972+0.058 +1.511£0.048 —2.014£0.054
House(16H) 1.231e9 £2.2¢7 4996707700 £5.5¢7 +984746700 +4.7¢7 +1.086e9 +7.9¢7
House(8L) 1.015e9 + 1.3e7 +8.9e8 £ 6.7¢7 +8.75e8 £ 7.2e7 4930206300 £ 7.9¢7
House(Cal) 3.053e9 +3.1e7 4.417e9 £2.2¢9 3.623e9 + 1.3e9 —5.331e9 +2.4e9
Housing 16.25+1.3 13.01+4.4 13.35+6.1 14.53£5.6
H.Quake 0.03593 +0.00018 0.03628 +0.0051 0.03626 £ 0.0051 0.03743 £ 0.0059
Kinematics 0.02318 +0.00027 +0.02113 £0.0013 +0.01818 +0.0010 0.02203 £0.0013
Machine 3032+ 759 5661 + 8956 5297 £+ 8629 6880 + 12684
Pole 79.3+24 +31.15+4 +62.21+£7 +28.75+4.4
Puma32 824e—5+1.1e—6 +6.983e—5+32e—6 +6.983e—5+3.2e—6 +6.612e—5+2.8e—6
Puma8 11.24 £0.072 +10.08 £0.34 +10.26 £0.36 +10.49 £0.37
Pyrimidines 0.01296 +0.0031 0.00991 £0.016 0.00991 £0.016 0.01029 +0.022
Triazines 0.02263 £0.0014 0.01939 +0.0077 0.01930 4+ 0.0077 0.01594 £0.011
Geometric mean 16.90 16.97 16.69 19.01
Average rank 2.8 2.325 1.775 3.1
Significant wins - 1/6 0/7 3/5
Acknowledgments

Thanks to the detailed comments of the editor and the anonymous reviewers that much
improved the text. Gratitude is expressed to the financial support given by the FEDER,
the Plurianual support attributed to LIACC, project APRIL, and project Adaptive Learning
Systems—ALES (POSI/SRI/39770/2001).

Notes

1. At different nodes the system considers different number of classes depending on the class distribution of the
examples that fall at this node.

FUNCTIONAL TREES 249

2. We could penalize the degrees of freedom of each new attribute. In the actual implementation this has not been
done.

3. The implementation of the framework allows both options. For strict linear models, as those we use in this
work, this aspect is not relevant because a linear combination of linear combinations is also linear.

4. The LinearBayes classifier is a standard naive Bayes when all the attributes are nominal, and behaves like
a linear discriminant when all the attributes are continuous. For mixed attribute types LinearBayes makes
a fusion of these classifiers. LinearBayes generates a naive Bayes model using the nominal attributes, and
a discriminant function using the continuous ones. To classify a test example, LinearBayes sums the class
probability distributions given by both, and selects the class that maximizes the sum.

5. We have used M5’ from version 3.1.8 of the Weka environment.

6. Each pair of data points consists of the estimate statistic on one dataset and for the two learning algorithms
being compared.

7. http://www.niaad.liacc.up.pt/~Itorgo/Datasets.

8. Inregression problems, the actual implementation ignores missing values at learning time. At application time,
if the value of the test attribute is unknown, all descendant branches produce a prediction. The final prediction
is a weighted average of the predictions.

References

Berthold, M., & Hand, D. (1999). Intelligent data analysis—An introduction. Springer Verlag.

Bhattacharyya, G., & Johnson, R. (1977). Statistical concepts and methods. New York: John Willey & Sons.

Blake, C., Keogh, E., & Merz, C. (1999). UCI repository of machine learning databases.

Brain, D., & Webb, G. (2002). The need for low bias algorithms in classification learning from large data sets. In
T. Elomaa, H. Mannila, & H. Toivonen (Eds.), Principles of data mining and knowledge discovery PKDD-02,
LNAI 2431 (pp. 62—73). Springer Verlag.

Breiman, L. (1996). Bagging predictors. Machine Learning, 24, 123-140.

Breiman, L. (1998). Arcing classifiers. The Annals of Statistics, 26:3, 801-849.

Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Wadsworth Inter-
national Group.

Brodley, C. E. (1995). Recursive automatic bias selection for classifier construction. Machine Learning, 20, 63-94.

Brodley, C. E., & Utgoff, P. E. (1995). Multivariate decision trees. Machine Learning, 19, 45-77.

Frank, E., Wang, Y., Inglis, S., Holmes, G., & Witten, 1. (1998). Using model trees for classification. Machine
Learning, 32, 63-82.

Frank, E., & Witten, 1. H. (1998). Generating accurate rule sets without global optimization. In J. Shavlik (Ed.),
Proceedings of the 15th international conference—ICML’98 (pp. 144-151). Morgan Kaufmann.

Gama, J. (1997). Probabilistic linear tree. In D. Fisher (Ed.), Machine learning, Proc. of the 14th international
conference (pp. 134—142). Morgan Kaufmann.

Gama, J. (2000). A linear-bayes classifier. In C. Monard, & J. Sichman (Eds.), Advances on artificial intelligence—
SBIA2000, LNAI 1952 (pp. 269-279). Springer Verlag.

Gama, J., & Brazdil, P. (2000). Cascade generalization. Machine Learning 41, 315-343.

Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilema. Neural Com-
putation, 4, 1-58.

Thaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and
Graphical Statistics, 5:3,299-314.

Karalic, A. (1992). Employing linear regression in regression tree leaves. In B. Neumann (Ed.), European confer-
ence on artificial intelligence (pp. 440-441). John Wiley & Sons.

Kim, H., & Loh, W. (2001). Classification trees with unbiased multiway splits. Journal of the American Statistical
Association, 96, 589-604.

Kim, H., & Loh, W.-Y. (2003). Classification trees with bivariate linear discriminant node models. Journal of
Computational and Graphical Statistics, 12:3, 512-530.

Kohavi, R. (1996). Scaling up the accuracy of naive-bayes classifiers: A decision tree hybrid. In Proc. of the 2nd
international conference on knowledge discovery and data mining (pp. 202-207). AAAI Press.

250 J. GAMA

Kohavi, R., & Wolpert, D. (1996). Bias plus variance decomposition for zero-one loss functions. In L. Saitta (Ed.),
Machine learning, Proc. of the 13th international conference (pp. 275-283). Morgan Kaufmann.

Kononenko, I., Cestnik, B., & Bratko, I. (1988). Assistant professional user’s guide. Technical report, Jozef Stefan
Institute.

Li, K. C, Lue, H., & Chen, C. (2000). Interactive tree-structured regression via principal Hessians direction.
Journal of the American Statistical Association, 95, 547-560.

Loh, W., & Shih, Y. (1997). Split selection methods for classification trees. Statistica Sinica, 7, 815-840.

Loh, W., & Vanichsetakul, N. (1988). Tree-structured classification via generalized discriminant analysis. Journal
of the American Statistical Association, 83, 715-728.

McLachlan, G. (1992). Discriminant analysis and statistical pattern recognition. New York: Willey and Sons.

Mitchell, T. (1997). Machine learning. MacGraw-Hill Companies, Inc.

Murthy, S., Kasif, S., & Salzberg, S. (1994). A system for induction of oblique decision trees. Journal of Artificial
Inteligence Research, 2, 1-32.

Perlich, C., Provost, F., & Simonoff, J. (2003). Tree induction vs. logistic regression: A learning-curve analysis.
Journal of Machine Learning Research, 4,211-255.

Quinlan, R. (1992). Learning with continuous classes. In Adams, & Sterling (Eds.), Sth Australian joint conference
on artificial intelligence (pp. 343-348). World Scientific.

Quinlan, R. (1993a). C4.5: Programs for machine learning. Morgan Kaufmann Publishers, Inc.

Quinlan, R. (1993b). Combining instance-based and model-based learning. In P. Utgoff (Ed.), Machine learning,
proceedings of the 10th international conference (pp. 236-243). Morgan Kaufmann.

Sahami, M. (1995). Generating neural networks through the induction of threshold logic unit trees. In Proceedings
of the first international IEEE symposium on intelligence in neural and biological systems (pp. 108—115). IEEE
Computer Society.

Seewald, A., Petrak, J., & Widmer, G. (2001). Hybrid decision tree learners with alternative leaf classifiers: An
empirical study. In Proceedings of the 14th FLAIRS conference (pp. 407-411). AAAI Press.

Todorovski, L., & Dzeroski, S. (2003). Combining classifiers with meta decision trees. Machine Learning, 50,
223-249.

Torgo, L. (1997). Functional models for regression tree leaves. In D. Fisher (Ed.), Machine learning, proceedings
of the 14th international conference (pp. 385-393). Morgan Kaufmann.

Torgo, L. (2000). Partial linear trees. In P. Langley (Ed.), Machine learning, proceedings of the 17th international
conference (pp. 1007-1014). Morgan Kaufmann.

Utgoff, P. (1988). Percepton trees—A case study in hybrid concept representation. In Proceedings of the seventh
national conference on artificial intelligence (pp. 601-606). AAAI Press.

Utgoff, P., & Brodley, C. (1991). Linear machine decision trees. Coins technical report, 91-10, University of
Massachusetts.

Witten, 1., & Frank, E. (2000). Data mining: Practical machine learning tools and techniques with Java imple-
mentations. Morgan Kaufmann Publishers.

Wolpert, D. (1992). Stacked generalization. Neural Networks (vol. 5, pp. 241-260). Pergamon Press.

Received September 3, 2002
Revised January 19, 2004
Accepted January 20, 2004

Final manuscript January 20, 2004

