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A Bootstrap Technique for Nearest 
Neighbor Classifier Design 

Yoshihiko Hamamoto, Member, IEEE Computer Society, 

Shunji Uchimura, and Shingo Tomita 

Abstract-A bootstrap technique for nearest neighbor classifier design is 
proposed. Our primary interest in designing a classifier is in small training 
sample size situations. Conventional bootstrapping techniques sample 
the training samples with replacement. On the other hand, our technique 
generates bootstrap samples by locally combining original training 
samples. The nearest neighbor classifier is designed on the bootstrap 
samples and is tested on the test samples independent of training 
samples. The performance of the proposed classifier is demonstrated on 
three artificial data sets and one real data set. Experimental results show 
that the nearest neighbor classifier designed on the bootstrap samples 
outperforms the conventional k-NN classifiers as well as the edited 
1 -NN classifiers, particularly in high dimensions. 

Index Terms-Bootstrap, nearest neighbor classifier, error rate, peaking 
phenomenon, small training sample size, high dimensions, outlier. 

+ 
1 INTRODUCTION 
IN the nonparametric framework the nearest neighbor (1-NN) 
approach was first introduced by Fix and Hodges [121, [13] and 
later studied by Cover and Hart [l]. Cover and Hart [l] show that 
the error for the I-NN classifier is bounded by twice the Bayes 
error when an infinite number of samples is available. However, in 
practice, we never have an infinite number of samples, and, due to 
the finite sample size, the 1-NN estimates have large biases and 
variances. Our primary interest in designing a classifier is in small 
training sample size situations. Fukunaga and Hummels 121 show 
that the 1-NN estimates may be severely biased even for the large 
sample size if the dimensionality of the data is large. This is a ma- 
jor obstacle in many practical situations where the ratio of the 
training sample size to the dimensionality is small. Both Fukunaga 
and Hummels 171 and Chandrasekaran and Jain 1221 recommend a 
decision threshold, t, to take into account the bias in density estima- 
tion. Then, the decision rule can be given by 

Classify x into class wk if 

fi(xlw,)>fj(xlw,)+tforallj=l ,..., m;i# k 

where $(XI )denotes the estimated density and m is the number of 
classes. Fukunaga and Hummels [7] show that the proper selection 
of the decision threshold is an extremely important procedure for 
k-NN error estimates. However, it is difficult to determine the opti- 
mal value of the threshold because of its complexity. We wish to 
learn as much as possible about the pattern distributions that a given 
training set may have. One possible way of doing this is to generate 
an artificial training set from the original training set. This technique 
is called the bootstrap method, and the artificial samples are called 
the bootstrap samples [3]. The bootstrap method has been success- 
fully applied to error estimation 141, [51, [6] ,  1211. In this paper, we 
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propose a bootstrap technique for the I-NN classifier design. Ex- 
perimental results show that the 1-NN classifier based on our boot- 
strap technique outperforms the conventional k -NN classifiers as well 
as edited 1-NN classifiers, particularly in high-dimensional spaces. 

2 BOOTSTRAP TECHNIQUES 
Bootstrapping is similar to other resampling schemes such as 
cross-validation and jackknifing. There could be many possible 
ways to generate bootstrap samples. We will focus on the genera- 
tion of the bootstrap samples. Let XN, = {xi,& ..., .;$} be an 

original training set from class CO,. We now consider four bootstrap 
techniques of generating a bootstrap set X i z  = {xl:, x,:, . . . , xk, } of 

size NI. 

2.1 Bootstrapping I 

Select a sample x:, from XNt randomly. 

Find the rnearest neighbor samples xi,, xk2, ..., x;, of xio, 
using the Euclidean distance. 
Compute a bootstrap sample xp, = xi=, wix)cJ where wi is a 

weight. The weight wI is given by 

Ai w =--- , , O s I I r  
I CC4 AC 

where A,is chosen from a uniform distribution on [0, 11. 
Note that cr w = 1. 

]=0 i 

Repeat steps 1,2, and 3, NI times. 
the ordinary bootstrap presented by Efron 133, the bootstrap set 

of size Ni is a set xi,, xi*, . . . , xi, } randomly selected from the origi- 

nal training set XN, with replacement. In Bootstrapping I, Efron's 

bootstrap set is needed. In order to verlfy the necessity of Efron's boot- 
strap set, the following bootstrapping method is considered 

2.2 Bootstrapping II 

I "  * 

1) Select one sample xio from X N ,  . 
2) Find the r nearest neighbor samples xil, xL2, ..., xlr of xio, 

using the Euclidean distance. 
3) Compute a bootstrap sample = ~ ~ = , w ~ x ~ ~ ,  where wi is a 

weight. The weight wj is given by 

w. = ~ ' 1  , o < j i u  
J E:$ 

where Ai is chosen from a uniform distribution on [0,1] and 

C:=owj = 1. 
4) Repeat steps 1,2, and 3, until all N, samples are selected. 
In Step 1 of Bootstrapping 11, the samples are chosen so that no 

sample is selected more than once. In both Bootstrappings I and 11, 
the original training samples are linearly combined by using ran- 
dom weights. Next, in order to verify the necessity of the random 
weights, the following bootstrapping method is considered: 

2.3 Bootstrapping 111 

1) Select a sample x i ,  from XN, randomly. 

2) Find the Y nearest neighbor samples xi,, xL2, ..., xi, of xi, 

3) Compute a bootstrap sample xp, = & ~ i = o x ~ l .  

4) Repeat steps 1,2, and 3, Ni times. 
In Step 3 of Bootstrapping 111, a bootstrap sample is given as a 

local sample mean. Finally, a bootstrapping method without either 
Efron's bootstrap set or random weights is considered. 

. .  

using the Euclidean distance. 
I 

2.4 Bootstrapping IV 

1) Select one sample x i ,  from x ~ , .  
2) Find the Y nearest neighbor samples xI1, xi2, ..., xk, of xio, i 

using the Euclidean distance. 
3) Compute a bootstrap sample xp, = &ci=ox;, 
4) Repeat Steps 1,2, and 3, until all Ni samples are selected 
In Step 1 of Bootstrapping IV, the samples are chosen so that no 

sample is selected more than once. 
The most important difference between our bootstrapping and 

the ordinary bootstrapping presented by Efron [3] lies in the man- 
ner in which bootstrap samples are generated. In our bootstrap- 
ping, the bootstrap samples are created (not selected) by locally 
combining the original training samples. Chernick et al. [51 point 
out that one of the problems with the ordinary bootstrapping is 
the discreteness of the empirical distribution function. The use of 
our bootstrap samples xis may give a smoothing of the distribu- 

tion of the training samples. In our bootstrap approach, the prob- 
lem is in determining the number of near neighbors, Y, which will 
be studied in Section 4. 

Now we describe the 1-NN classifier with XiI ( l  5 i I m). Let 

xil c X i l  U . . . U X i m  be the nearest neighbor of a test pattern x .  

Then the test pattern x is classified to the class q represented by 
the nearest neighbor xLj. That is, 

Classify x into class w k  if 

where d(a, b)  denotes the Euclidean distance between U and b. On 
the other hand, the conventional 1-NN classifier is given as fol- 
lows: 

Classify x into class wk if 

The error rate is the most effective measure of the performance 
of a classifier. In order to predict the future performance of a clas- 
sifier accurately, the independence between the training and test 
sets must be maintained. In addition, a large test sample should be 
used. When using artificial data, we estimated the error of classifi- 
ers by using 5,000 test samples per class independently generated 
from distributions of the training samples. It follows that the test 
samples are also independent of the bootstrap samples. Note that 
the estimated error rate is a random variable. Thus, it is preferable 
to repeat the experiment several times independently. Each ex- 
periment with artificial data involves 100 independent trials. 
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2.5 Experiment 1 
The purpose of Experiment 1 is to compare the performance of 
four bootstrap techniques in small training sample size situations. 
This experiment is based on two data sets (1-1 and nonnormal data 
sets). The 1-1 and nonnormal data sets were used in 171, [SI to study 
the behavior of the k-NN classifier in finite sample conditions. We 
briefly describe the above artificial data sets. 

2.5.1 The I-! Data Set 
First, we describe the I-I data set. The available samples were in- 
dependently generated from n-dimensional normal distributions 
N(,q, C,) with the following parameters: 

T T 
,U, = LO, . . ., 01 , ~ 1 2  = [,U, 0, . . ., 01 , c1 = I,, C, = I ,  

where pl is the n-dimensional zero vector and I ,  is the n x n iden- 
tity matrix. In the data set, both Z, and Z2 are I,,. The value of ,U 
controls the overlap between the two distributions. We used 
,U = 2.56, which gives the Bayes error of 10%. Even when the di- 
mensionality of the data changes, the Bayes error stays the same 
for a fixed ,U. 

2.5.2 The Nonnormal Data Set 
Next, we describe a nonnormal data set, which is from Experi- 
ment 7 on page 335 of [81. Each class consists of two normal distri- 
butions as follows: 

1 1 
2 p 2 ( x )  = -N(Pz1,In) + $ W * 2 J n )  

where 
pI1 = [O, 0, ..., OlT, p12 = 16.58,0, ..., OIT 

h1 = [3.29,0, ..., 01 , h 2  = [9.87,0, ..., 0lT T 

Even when the dimensionality of the data changes, the Bayes error 
of this data set is 7.5%. The following experiment was conducted. 

Data: I-I and nonnormal 

N, = N2 = 8,16,32 
5,000 per class 

I, 11,111, IV and Efron 
N/16, N/8, N/4, N - 1 

Dimensionality: n = 8 
No. of training samples: 

No. of test samples: 

Bootstrappings: 
Classifiers: the I-NN classifier 

Values of r 
For comparison, the performance of the 1-NN classifier with 

Efron's bootstrap set is presented. In general, it is recommended that 
the ratio of the training sample size to the dimensionality is large. 
Jain and Chandrasekaran [lo] point out that the number of training 
samples per class should be at least five to 10 times the dimensional- 
ity. As previously mentioned, we are mainly interested in the practi- 
cal situations where the ratio of the training sample size to the di- 
mensionality is small. Therefore, in Experiment 1, the values of the 
ratio ranged from one to four. All experimental results which were 
derived from a Monte Carlo analysis are shown in Table 1 and Ta- 
ble 2. Experimental results showed no clear preference between four 
bootstrap techniques as used here. All techniques yielded very com- 
parable error rates for each I .  From Table 2, we see that the value of Y 

can have a strong effect on results. 

2.6 Experiment 2 
The purpose of Experiment 2 is to compare the performance of 
four bootstrap techniques in high-dimensional spaces. In this ex- 
periment, we used the Ness data set [91. This data set was used in 
[9] to study the performance of the Parzen, linear and quadratic 
classifiers in high dimensions. 

2.6.1 The Ness Data Set 
The available samples were independently generated from n- 
dimensional normal distributions AV&, xi) with the following pa- 
rameters: 

pl = [O, ..., Ol', iu, = IA/2,0, ..., 0, A/21T 

where A is the Mahalanobis distance between class w, and class q. 
Note that in this data set, both the mean vectors and covariance 
matrices differ. The Bayes error varies depending on the value of A 
as well as n. The following experiment was conducted. 

Data: 
Dimensionality: n = 50 

No. of training samples: 
No. of test samples: 

Bootstrappings: 
Values of Y : 

Ness (A = 2,4, and 6 ) 

NI = N2 = 100 
5,000 per class 

1, 11,111, IV, and Efron 
N/16, N/8, N/4, N- 1 

Classifiers: the 1-NN classifier 

Note that by varying the value of A, we can control the Bayes er- 
ror. That is, the Bayes error decreases with increase in A. By vary- 
ing the value of A, we can observe how bootstrap techniques per- 
form as a function of the Bayes error. Hence, we used this data set. 
The results are shown in Table 3. Again, Bootstrappings I, 11, 111, 
and IV gave very similar results for each I ,  regardless of the Bayes 
error. The 1-NN classifier with Efron's bootstrap set performed 
poorly. 

In Experiments 1 and 2, no improvement was observed by us- 
ing Efron's bootstrap set and random weights. Thus, we think that 
the use of Efron's bootstrap set and random weights is not essen- 
tial. Rather, the idea of locally combining the original training 
samples is important. That is, local sample means, which act as 
representatives, play an important role in applying a bootstrap 
technique to the I-NN classifier design. Therefore, we will address 
only Bootstrapping IV, which is the simplest one. 

In Bootstrapping IV, when Y = 0, the proposed classifier corre- 
sponds to the conventional 1-NN classifier. By increasing the value 
of r, the nonparametric classifier is transformed into a parametric 
one. That is, when r = N, - 1, our classifier becomes the Euclidean 
distance classifier. By varying the value of r, the parametric and 
nonparametric classifiers may be considered in a unified framework. 

3 COMPARATIVE STUDY 
In this section, we evaluate the performance of the 1-NN classifier 
with our bootstrap samples, compared to those of k-NN classifiers 
and edited 1-NN classifiers. 

3.1 Experiment 3 
In general, when a fixed number of samples is used to design a 
classifier, the error of the classifier tends to increase as the dimen- 
sionality of the data gets large. This topic is called the peaking 
phenomenon [20]. In particular, the peaking phenomenon of the 1- 
3 NN classifier is known to be more severe than other parametric 
classifiers such as Fisher's linear and quadratic classifiers 171, [81. 
Thus, it is widely believed that the value of N, needed to achieve a 
given recognition accuracy would be prohibitively large, when the 
dimensionality of the data is high. 

The purpose of Experiment 3 is to compare the proposed classi- 
fier with k-NN classifiers in high-dimensional spaces. First, the fol- 
lowing experiment was performed. 
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lining samples 
16 

44.53 
(44.05, 45.01) 

15.07 
(14.15, 16.00) 

16.16 
(15.41, 16.91) 

18.92 
(18.16,19.68) 

44.72 
(44.26, 45.18) 

14.86 
(13.97, 15.75) 

15.99 
(15.38, 16.59) 

17.76 
(17.04,18.49) 

45.97 
(45.5 1,46.44) 

14.82 
(13.95, 15.69) 

15.72 
(15.01, 16.44) 

18.00 
(17.27,18.73) 

45.97 
(45.51,46.44) 

13.99 
(13.34,14.65) 

14.70 
(14.13,15.26) 

16.94 
(16.28,17.60) 

22.03 
(21.10,22.95) 

TABLE 1 
COMPARISON OF BOOTSTRAP TECHNIQUES 

ON THE 1-1 DATA SET IN TERMS OF THE ERROR RATE(%) 

No. of training samples per class 
8 I 16 I 32 

per class 
32 

46.23 
(45.97, 46.48) 

11.95 
(11.56, 12.34) 

12.80 
(12.44, 13.15) 

14.84 
(14.43,15.25) 

46.29 
(46.05, 46.53) 

11.84 
(11.46, 12.21) 

12.64 
(12.32, 12.96) 

14.35 
(13.98,14.72) 

46.59 
(46.40,46.77) 

11.60 
(11.24, 11.95) 

12.40 
(12.08, 12.72) 

14.22 
(13.83,14.61) 

46.59 
(46.40,46.77) 

11.39 
(11.01,11.77) 

12.10 
(11.78,12.42) 

13.82 
(13.48,14.15) 

18.76 
(18.15,19.37) 

Bootstrapping 
I 

r = N - 1  

r = N/4 

r = N/8 

r =  NI16 

r =  N -  1 

r =  N/4 

r =  N/8 

T =  NI16 

r = N - 1 

r = N/4 

r =  N/8 

r = NI16 

r =  N - 1  

r = N/4 

r = N/8 

r =  NI16 

3 

Bootstrapping 
I1 

I 

43.16 
(42.24, 44.08' 

24.85 
(23.05, 26.64: 

23.99 
(22.52, 25.46: 

25.95 
(24.70,27.20) 

43.15 
(42.18, 44.13: 

23.14 
(21.56, 24.73: 

21.51 
(20.32, 22.71) 

22.02 
(21.22,22.83) 

44.53 
(43.68,45.39) 

24.07 
(22.21, 25.94) 

22.38 
(20.84, 23.91) 

27.13 
(25.87,28.39) 

44.53 
(43.68,45.39) 

21.53 
(20.03,23.03) 

19.96 
(18.78,21.13) 

22.02 
(21.22,22.83) 

26.09 

Bootstrapping 
I11 

r = N/8 

r = NI16 

Bootstrapping 
IV 

(17.71, 19.24) (14 79, 15.75) (13.04, 13.45) 
19.89 17.39 14.86 

(19.03, 20.76) (16.81, 17.97) (14.59, 15.13) 
22.55 18.68 16.24 

Efroi 

r =  N/8 

r =  NI16 

I (19.73, 21.82) I (17.24, 18.60) I (14.85, 15.43) 
r =  NI16 I 23.80 I 19.26 I 16.61 

(16 78,17 98) (14 31,15 00) (12 52,12 91) 
1941 16 47 14 11 

(18 65,20 16) (16 04,16 89) (13 85,14 37) 
2255 18 68 16 24 

I (22.41,25.19) I (18.43,20.09) I (16.19,17.03) 
r = N - 11 14.57 I 12.17 I 11.07 

((14.02, 15.12)1(11.93, 12.41)1(10.96, 11.18) 
r = N/4 I 18.47 I 15.27 I 13.25 

1 (21.32,23.77) I (17.97,19.38) I (15.89,16.59) 
r = N -  11 13.74 I 11.82 I 11.04 I (13.37,14.11) I (11.62,12.02) 1 (10.92,11.16) 
r = N/4 I 17.97 I 15.09 I 13.03 

I(17.12, 18.82)1(14.60, 15.59) l(12.83, 13.24) 
r = N/8 I 20.79 I 17.24 I 14.81 

1 (19.72, 21.86) I (16.63, 17.84) I (14.53, 15.10) 
r = N/16 I 23.80 I 18.57 I 16.13 I (22.45,25.15) I (17.83,19.32) I (15.77,16.49) 
r =  N -  11 13.74 I 11.82 I 11.04 I (13.37,14.11) I (11.62,12.02) I (10.92,11.16) 
r = N/4 I 17.38 I 14.66 I 12.72 

I (21.32,23.77) I (17.52,18.86) I (15.51,16.15) 
5 I 23.65 I 21.68 I 19.99 

bootstraDDinn 1 (22.33.24.98) I (20.78.22.571 I (19.44.20.541 

TABLE 2 
COMPARISON OF BOOTSTRAP TECHNIQUES 

ON THE NONNORMAL DATA SET IN TERMS OF THE ERROR RATE(%) 

I No. o f t  
R 

Bootstrapping 
I 

Bootstrapping 
I1 

Bootstrapping 
I11 

Bootstrapping 
IV 

Efroi 
bootstrapping I (24.70,27.49) 

The first and second lines of the table are the mean and 95% confidence interval from the 100 trials of experiment, respectively 

Note that the ratio of the training sample size to the dimension- 
ality is small. In all of the results reported in Tables 4-6, the proposed 
classifier with a proper r outperforms k-NN classifiers. It is impor- 
tant properly to select the value of r, particularly for nonnormal data, 
as shown in Table 6. It should be stressed that when A = 6, the error 
of the 1-NN classifier with bootstrap samples hardly increases as the 
dimensionality increases. This contradicts the common belief that the 
1-NN classifier needs a very large number of samples for 
high-dimensional data. Experimental results suggest that the peak- 
ing phenomenon of the 1-NN classifier with bootstrap samples will 
at least be not as severe as that of the conventional k-NN classifier. 

Next, we compared the proposed classifier with k-NN classifiers 
on a real data set. In this data set, each class represents one of 10 
handwritten numerals. This data set contains 1,400 256-dimensional 
feature vectors per class. In feature extraction, 256 Gabor filters [141 
were applied to a character image. The outputs of Gabor filters pro- 
duce a 256-dimensional feature vector. Gabor filters tend to detect 
line and edge segments, which seem to be good discriminating fea- 
tures [15]. We call this the Gabor data set. For additional details refer 
to [16]. We need to assure the independence between training and 
test sets. Thus, the Gabor data set was randomly partitioned into two 
equally sized sets. One set was used to train a classifier and the other 
set was used to evaluate its performance. This procedure was re- 
peated four times independently and the average of the error rate 
and its standard deviation were calculated. Results are shown in 
Table 7. For small values of r, the proposed classifier worked well, 
even in high-dimensional spaces. Results show that our technique 
can be utilized to solve real world problems. The effectiveness of 
small values of r suggests that Gabor data may be nonnormal. 

3.2 Experiment 4 
It is believed in the pattern recognition field that classifier per- 
formance can be improved by removing outliers, which seem to 
distort the distribution. As previously mentioned, our bootstrap- 
ping method can act as a smoother of the empirical distribution. 
Thus, the main advantage of our technique seems to derive from 
the ability to remove outliers. On the other hand, in the NN classi- 
fier design, editing algorithms such as CNN 1171, R" [181, and 
VQ-NN [191 have been proposed for removing outliers from the 
training set. The purpose of Experiment 4 is to compare the pro- 
posed classifier with edited 1-NN classifiers in high-dimensional 
spaces. So far, we have assumed that the bootstrap sample size (or 
the number of representatives) and training sample size are the 
same. On the other hand, the performance of an edited 1-NN clas- 
sifier must be evaluated in terms of both the error rate and the 
reduction rate. Hence, one should compare the error of edited 1- 
NN classifiers when operating at the same range of the reduction 
rate. In order to reduce the bootstrap sample size, our bootstrap- 
ping method is now modified as follows: 

1) Select a sample x;, from X N i  randomly. 

2) Find the r nearest neighbor samples x k l  ' x k z '  "" x k r  

3) Compute a bootstrap sample 
4) Repeat Steps 1-3 NT(NI 2 N j )  times, un'd&r a condition that 

' of X;ia 
t i  

,, r t I - " I  

no sample is selected more than once. 



Data: 

No. of training samples: 
No. of test samples: 

Classifiers: 

Ness (A = 2,6) and nonnormal 

NI = N2 = 100 
5000 per class 
Proposed (r = N/4) ,  CNN, R”, 
and VQ-NN classifiers 

Dimensionality: n=50 

I r =  N - 1  

TABLE 3 
COMPARISON OF BOOTSTRAP TECHNIQUES ON THE NESS DATA SET 

Dimensionality n 
10 30 I 50 

I 1.31 1.38 1.25 

IN TERI 

1-NN classifier 

3-NN classifier 

r = N - I  (1.41,1.48) (1.87J.96) (2.34,2.46) 
2.60 6.67 12.33 

(2.52, 2.68) (6.43, 6.91) (11.97,12.69) 
1.89 5.10 10.83 Bootstrapping 

I 
I 1.73 5-NN classifier 

Bootstrapping 
I1 

4.75 I 10.45 

Bootstrapping 

P =  N -  1 

r = NI4 

I 
I r = N - l  

Dimensionality n 
10 30 50 

47.15 47.03 46.88 
(47.04,47.26) (46.91,47.15) (46.75,47.00) 

10.19 14.34 17.70 

Bootstrapping 

r = N  16 

The proposed 
classifier 

I 
Efron’s 

bootstrapping 

(9.95,10.42) (14.00,14.68) (17.32,18.07) 

(10.01,10.31) (13.27,13.77) (16.01,16.55) 

(10.81,11.09) (14.59,14.98) (17.63,18.04) 

r = N/8 10.16 13.52 16.28 

T = N/16 10.95 14.78 17.84 

S OF THE ERROR RATE(%) 

26.05 
(25 82, 26.27) (7.46,7.62) (1.32,1.38) 

8.67 
(27.91, 28.42) (8.58,8.77) (1.60,1.67) 

10.17 2.01 

2 49 

1-NN classifier 

3-NN classifier 

5-NN classifier 

26.06 

16.60 24.61 29.15 
(16.38,16.81) (24.34,24.88) (28.86,29.43) 

13.05 20.54 25.33 
(12.89,13.21) (20.26,20.83) (28.86,29.43) 

11.72 18.82 23.61 
(11.58,11.86) (18.52,19.12) (23.35,23.86) 

(32.17,32.70) 
26.29 

(26.10,26.47) 
27.69 

(27.45,27.93) 
29.42 

(29.14,29.70) 
31.23 

(30.99,31.48) 
42.24 

(41.98,42.50) 

The first and second lines of the tables are the mean and 95% confidence in- 
terval from the 100 trials of experiment, Yespectively. 

TABLE 4 
COMPARISON OF THE PROPOSED CLASSIFIER AND K-NN CLASSIFIERS 
ON THE NESS DATA SET(A = 2 ) IN TERMS OF THE ERROR RATE(%). 

(11.87~2.18) (2.66,2.80) 
7.61 1.38 

(7.53,7.68) (1.35J.41) 
8.38 1.54 

(8.29,8.48) (1.51,1.57) 
9.55 1.83 

(9.43,9.67) (1.79J.87) 
12.28 2 40 

(12.11J2.45) (2.34,2.46) 
28.55 12.90 

(28.02,29.08) (12.46J3.33) 

r = N - 1 
r = N/2 
r = N/4 

The proposed r = N/8 
classifier r = NI16 

r = NI32 
r = NI64 
P = NI128 

1-NN classifier 
3-NN classifier 
5-NN classifier 

Mean Standard 
deviation 

8.47 0.49 
4.52 0.27 
3.16 0.39 
2.49 0.39 
2.07 0.39 
1.85 0.40 
1.76 0.49 
1.77 0.54 
2.89 0.38 
2.86 0.19 
2.98 0.19 

The proposed I ; (23N1:03.91) 
classifier r = N 8 

10 30 

I (24.91,25.29) 
r = NI16 I 26.76 

50 

I (27.48,28.04) 

r = N - l  

r = NI4 
(24.86,25.18) I (26.10,26.47) 

25.99 I 27.69 

23.34 
(23.22,23.46) 

23.75 
(25.78,26.21) 1 (27.45,27.93) 

27.47 1 29.42 
(27.23,27.71) I (29.14,29.70) 

29.60 I 31.23 
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The first and second lines of the tables are the mean and 95% confidence in- 
terval from the 100 trials of experiment, respectively. 

TABLE 5 
COMPARISON OF THE PROPOSED CLASSIFIER AND K-NN CLASSIFIERS 
ON THE NESS DATA SET(A = 6 ) IN TERMS OF THE ERROR RATE (“/o) 

I (1.23,1.28) I (1.28,1.34) I (1.35,1.41) 
r =  NI4  I 1.25 I 1.41 I 1.54 

The proposed I (1.22,1.28) I (1.37,1.45) I (1.51,1.57) 
classifier T = N/8 I 1.33 I 1.61 I 1.83 I (1.31,1.36) I (1.56,1.65) I (1.79,1.87) 

r = N/16 1 1.44 I 1.91 I 2.40 

I (1.67.1.781 I (4.55.4.96) l(10.07. 10.83) 

The first and second lines of Table are the mean and 95% confidence interval 
from the 100 trials of experiment, respectively. 
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Fig.1. Comparison of the proposed classifier ( r  = N/4) and edited clas- 
sifiers on the Ness data set (A = 2). 
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Fig.2. Comparison of the proposed classifier ( r  = N/4) and edited clas- 
sifiers on the Ness data set (A = 6). 

By using the modified bootstrapping method, we can control the 
boobtrap sample size (i.e., the number of representatives). On the other 
hand, in CNN and RNN techniques, the number of representatives is 
itself a random variable and not under the control of the algorithms. 
Note that when N: = Ni, the modified bootstrapping method corre- 
sponds to Bootstrapping IV. The following experiment was conducted. 
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Fig.3. Comparison of the proposed classifier ( r  = Ni4) and edited clas- 
sifiers on the nonnormal data set. 

The results are shown in Figs. 1-3. The error curve is the average 
of 100 trials. Our main concern is to maintain the error rate while 
reducing the number of samples. In our bootstrapping method, 
selection of representatives was done randomly. Nevertheless, 
Fig. 1 and Fig. 2 show that the best performances were given by the 
proposed classifier at all the reduction rates. Fig. 3 also shows that at 
all almost reduction rates, ow classifier outperformed other edited 
classifiers. Thus, this technique can be effectively utilized to perform 
data reduction in the design of the I-NN classifier. It is interesting to 
note that the error curve of the proposed classifier in Fig. 3 tends to 
decrease rather slowly as the total number of representatives de- 
creases. A similar tendency was observed for the VQ-NN classifier. 
It has been believed that as the number of representatives decreases, 
the error increases. However, the results of Experiment 4 contradict 
the above common belief, and suggest that we may need only a 
relatively small number of representatives. 

Data: 

No. of training samples: 
No. of test samples: 

Ness (A = 2,6 ) and nonnormal 
Dimensionality: n = IO, 30,50 

NI = N2 = 100 
5,000 per class 

1-NN, 3-", and 5-NN classifiers 
Classifiers: the proposed classifier, 

4 OPTIMIZATION OF r 
Up till now, we have studied the performance of the 1-NN classi- 
fier based on our bootstrapping method, assuming that the value 
of r is given. From experimental results, the selection of Y is im- 
portant and strongly affects the classifier performance, especially 
for nonnormal data. In practice, its proper value must be selected 
by using only a finite number of training samples. In this section, 
we study an algorithm for selecting the value of r which mini- 
mizes the error rate estimated by the leave one out method [Ill. 

4.1 Experiment 5 
We assume that the bootstrap sample size and training sample size are 
the same. An algorithm for optimizing the value of r is as follows: 

1) Select a candidate r. 
2) One samde is excluded. 
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By using the r selected and remaining samples, generate the 
bootstrap samples. 
Test the excluded sample by the 1-NN classifier with the 
bootstrap samples. 
Repeat Steps 2-4 until all samples are tested and estimate 
the error rate. 
If all candidates are evaluated, go to Step 7. Otherwise go to 
Step 1. 
Find the value of Y which minimizes the estimated error 
rate. 
order to demonstrate the effectiveness of the above algo- 

I 

rithm, the following experiment was performed. 
Data: 

Dimensionality: n = 50 
No. of training samples: 

No. of test samples: 
Values of Y: 

Ness (A = 2,6) and nonnormal 

NI = N2 = 100 
5,000 per class 
N/16, N/8, N/4, N/2, N - 1 

For comparison, the performance obtained by the exhaustive 
method with test samples is presented. In the exhaustive method, 
we found the optimal value of Y which minimizes the error rate 
estimated by using test samples. Thus, this performance is viewed 
as the best one of our classifier. The results are shown in Table 8. 
The two methods gave similar results. Therefore, the effectiveness 
of using the leave-one-out method is verified and our technique 
has practical utility. 

TABLE 8 
COMPARISON OF OPTIMIZATION METHODS 

IN TERMS OF THE ERROR RATE(%). 

Data set 

Leave-one-out 26.81 16.75 

16.37 
method 

The first and second lines of Table are the mean and 95% confidence interval 
porn the 100 trials of experiment, respectively. 

5 CONCLUSIONS 
We have proposed a bootstrap technique for the I-NN classifier 
design. The performance of the 1-NN classifier based on bootstrap 
samples was demonstrated on several data sets. It was shown that 
the proposed classifier outperforms the conventional k-NN classi- 
fiers as well as the edited 1-NN classifiers. Experimental results 
suggest that the use of our bootstrap samples is an effective means 
of reducing the bias of the I-NN error. Moreover, we have dis- 
cussed the optimization of the parameter U, which depends strongly 
on the degree of the nonnormality. We feel that since our bootstrap 
technique acts as a smoother of the distribution of training samples, 
this advantage comes from removing the outliers. Therefore, the 
bootstrap technique should be considered in the design of the 1-NN 
classifier, particularly in high-dimensional spaces. 
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