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Abstract. In this paper, a new adaptive approach to training set size reduction, esti-
mating probability density functions is presented. This scheme consists of defining a
very small number of prototypes that represent all the original instances, using mix-
tures of gaussians. Although the ultimate aim of the algorithm proposed here is to
obtain a strongly reduced training set, the performance is empirically evaluated over
eleven real datasets by comparing not only the reduction rate but also the classification
accuracy.

1 Introduction

Currently, in many domains the size of the datasets is so extremely large that real-time sys-
tems cannot afford the time and storage requirements to process them. Under these condi-
tions, classifying, understanding or compressing the available information can become a very
problematic task. This problem is specially dramatic in the case of using some distance-based
learning algorithm, such as the Nearest Neighbour (NN) rule [5]. The basic NN scheme must
search through all the available training instances (large memory requirements) to classify a
new input sample (slow during classification). On the other hand, since the NN rule stores
every prototype in the training set (TS), noisy instances are stored as well, which can consid-
erably degrade the classification accuracy.

The many existing proposals can be categorised into twomain groups. First, those schemes
that merely select a subset of the original prototypes [1, 6, 10, 19, 20] and second, those that
modify them [2, 3, 4, 13] (adaptive schemes). One problem related with using the original
instances is that there may not be any vector located at the precise point that would make the
most accurate learning algorithm. Correspondingly, prototypes can be artificially generated
to exist exactly where they are needed.

This paper focuses on the problem of appropriately reducing the TS size by artificially
generating a subset of prototypes. The primary aim of the proposal presented in this paper is
to obtain a considerable size reduction rate, but without an important decrease in classification
accuracy. This approach is based on the estimation of the probability density functions (pdf)
using a mixture of gaussians. In order to obtain this, we use an optimisation method based on
the well-know expectation-maximisation (EM) algorithm [7, 15, 16].

In the establishment of a pattern recognition system, situations where the class conditional
distribution of the system is unknown, are not strange. So, having only one TS whose points
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are labelled in several classes is usual. Apart from the rather trivial cases where the informa-
tion is governed by a simple distribution, it is necessary to obtain an estimator that collects
the different class-conditional pdf. Mixture models are able to represent arbitrarily complex
pdf. This fact makes them an excellent choice for representing complex class conditional pdf
in Bayesian supervised learning scenarios [11, 12].

The structure of the rest of this paper is as follows. Section 2 provides a description of em-
ployment of mixtures of gaussians in multi-modal class distributions. Section 3 introduces a
new adaptive condensing scheme, here calledMixtGauss, which is based on moving mixtures
of gaussians to optimal locations in the feature space. The databases used and the experiments
carried out are described in Section 4. Results are shown and discussed in Section 5. Finally,
the main conclusions along with further extensions are depicted in Section 6.

2 Mixtures of Gaussians in Multi-Modal Class Distributions

In general, we have a TS withNt instances, where each instance x is a point x = {x1, . . . , xd}
∈ "d, in a d-dimensional feature space. Then, for a given sample, the aim is to assign it to
the correct class where C = {c1, . . . , cJ} is a finite set of the different J classes in the TS.
The different points of the TS follow a spatial class distribution according to their true class-
conditional pdf P (x|cj) and the respective a priori probability P (cj), cj ∈ C. So, we can say
that a vector x can be then optimally classified using the Bayes rule or maximum a posteriori
probability decision rule based on the knowledge of the components P (cj)P (x|cj) for each
class cj.

In practice, these class-conditional pdf do not have any underlying structure assumed and
any prior knowledge about the shapes of these pdf are not required to solve the problem. So,
it is only necessary to obtain a density estimation of the distribution.

A simplification of the Bayes rule, which consists of assuming that the features may be
statistically independent, will be used in the algorithm proposed in this paper. This supposes
that for the multivariate case, independence can be defined through the product of the prob-
abilities in each feature as p(x) =

∏d
k=1 p(xk). This rule is called Naive-Bayes [18] and can

be defined as follows:

CBayes = max
j=1...cJ

P (cj)P
∗(x|cj) = max

j=1...cJ

P (cj)
d∏

k=1

f ∗(xk|cj) (1)

where f∗(xk|cj) is an estimation of class-conditional pdf of cj in the feature k.
A natural way to deal with a density estimator is to consider a mixture density of modes.

One approach to solve P ∗(x|cj), is retaining the capacity to reflect the local structure of the
distribution by means of blocks of mixtures Pm(x|cj), where each block is the product of the
probabilities in each feature as [18]:

P ∗(x|cj) =
M∑

m=1

αm|jPm(x|cj) =
M∑

m=1

αm|j

d∏

k=1

Θm|kj(xk) (2)

whereM is the number of modes, αm|j is an a priori probability of the modemth in the class
cj , and Θm|kj is its class-conditional pdf projected on the feature k.

Then, we can consider the characterisation of the distribution like a parametric unsuper-
vised learning problem [8] using a mixture of modes of multidimensional normal distribution.
The EM algorithm will be here used to estimate these unknown modes.
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3 An Adaptive Condensing Scheme

The final aim of the condensing process proposed here is to obtain a point distribution repre-
senting a class, for every class present in the TS. These point distributions should represent
the decision boundaries. The general shape of the decision boundaries is maintained, while
some Gaussians are used for representing each class. The more Gaussians are included in
the point distribution, the more accurate the representation of the decision boundaries is. In
addition, a consistency criterion will be applied to the points representing a class, for in-
stance, in Hart’s algorithm, the consistency criterion consisted of the correct classification of
all prototypes in the TS by NN classification using the condensed set.

In the method here presented, a condensed setCS is said to be consistentwith respect to a
TS if the estimation error is small, when the class for each pattern in the TS is estimated by the
NN rule for the condensed set. Given a set of prototypes representing the class distribution,
we can use the classification rate of the TS in order to measure how much consistent it is.

As the consistent condition is maintained, the smaller the number of prototypes needed
for representing a class in the condensed set, the better the result is. On the other hand, for
some applications it is useful to be able to pre-fix the condensed set size.

To look for a point distribution, imagine a problem of two Gaussian distribution classes,
in the euclidean space. The best condensed set would be the mean of the Gauss function in
each class. Therefore, let us suppose a class distribution that could be modelled by a mixture
of gaussians. The centre of these gaussians could become the set of prototypes representing
the class distribution. That is, the condensed set.

3.1 Initialisation

The EM algorithm for finite mixture fitting has several drawbacks [9]: it is a local method,
thus it is sensitive to initialisation because the likelihood function of a mixture model is not
unimodal. Another important issue in mixture modelling is the selection of the number of
components. With too many components, the mixture may over-fit the data, while a mixture
with too few components may not be flexible enough to approximate the true underlying
model.

We assume that all the components have the same functional form. For example, they are
all d-variate gaussians, each one being thus fully characterised by the parameter vector Θm.

Taking into account these facts, we have to provide a numberM of gaussians to represent
each class distribution; this number will correspond to the number of prototypes in each class
in the condensed set. At the initial stage, all the gaussians belonging to a class are located on
the centroid of the prototypes from that class. Adding random disturbances to the centroid
of a class, we obtain a mixture of gaussians that represents the class distribution. For each
gaussian, the initial variance is 1/10 of the range of each dimension.

3.2 Optimisation

After the initialisation stage, an iterative optimisation process, based on the EM algorithm, is
carried out in order to find an optimal location of the mixtures of gaussians. This iterative pro-
cedure converges to a maximum likelihood estimate of the mixture parameters. Accordingly,
to fit each class distribution to a mixture of gaussians, we iterate on the following steps:
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E-step Compute the contributions of prototypes xt in the class cj , to belong to the set {x1, . . . , xNj},
where Nj is the number of elements to cj. The conditional pdf for themth mode is:

Pm(xt|cj) =
αm|j

∏d
k=1 N(xt

k : µm|kj, σm|kj)∑M
l=1 αl|j

∏d
k=1 N(xt

k : µl|kj, σl|kj)
(3)

This function is normalised such
∑M

m=1 αm|j = 1. We represent the multidimensional
gaussians as a product of unidimensional normal distributions, with µm|kj and σm|kj as
the means and standard deviations.

M-step Compute the parameters of the modes mth for each value xt that exists in the class
cj .

αm|j =
1

Nj

Nj∑

t=1

Pm(xt|cj) µm|kj =

∑Nj

t=1 Pm(xt|cj)xt
k∑Nj

t=1 Pm(xt|cj)
(4)

σm|kj =

∑Nj

t=1 Pm(xt|cj)(xt
k − µm|kj)2

∑Nj

t=1 Pm(xt|cj)
(5)

3.3 Stopping Criterion

The iterative optimisation process just described can cause an overlapping between the gaus-
sians from different classes, which will produce a deterioration in classification accuracy.
Therefore, this process should stop when no class obtains an increase in performance with
respect to a previous iteration.

To this end, after each iteration, the consistency criterion is estimated by calculating the
1-NN classification error over the TS using the centroids of the gaussians in their current
locations. Movement of the gaussians is carried out while any class obtains a classification
rate higher than that of the previous step.

3.4 MixtGauss Algorithm

The process introduced in the previous sections can be viewed as an adaptive condensing
scheme, in which the points of the resulting set will correspond to the centroids of the gaus-
sians. Algorithmically, it can be summarised as it is shown in Algorithm 1.

4 Description of Databases and Experiments

Eleven real datasets ( Table 1) have been taken from the UCI Repository [17] to assess the
behaviour of the algorithm here introduced. The experiments have been conducted to compare
MixtGauss algorithm to Chen’s scheme, in terms of both TS size reduction and accuracy of
the condensed 1-NN classification rule.

The algorithm proposed here as in the case of Chen’s, needs to be applied to overlap-free
(no overlapping among different class regions) datasets. Thus, as a general rule, and according
to previously published results [2, 21], the Wilson’s editing has been considered to properly
remove overlapping between classes. The parameter involved (k) has been obtained in our
experiments by performing a five-fold cross-validation experiment using only the TS and
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Algorithm 1:MixtGauss
(* initialisation *)
for c = 1..number of classes do

mean[c] = CalculateMean(c, TS)
for g = 1..number of gaussians per class do

gaussians[c, g] = mean[c] + RandomDisturbance()
end for

end for
(* optimisation *)
repeat

previous gaussians[c, g] = gaussians[c, g]
gaussians[c, g] = EMstep()
previous accuracy = current accuracy
current accuracy = CalculateAccuracy()
classes improve = 0
for c = 1..number of classes do
if current accuracy[c] > previous accuracy[c] then

classes improve = classes improve + 1
else
if current accuracy[c]! = previous accuracy[c] then
for g = 1..number of gaussians per class do

gaussians[c, g] = previous gaussians[c, g]
end for

end if
end if

end for
until classes improve == 0

computing the average classification accuracies for different values of k. The best edited set
(including the non-edited TS) is thus selected as input for the different condensing schemes.

Data set No. classes No. features TS size Test set size

Cancer 2 9 546 137
Pima 2 6 614 154
Glass 6 9 171 43
Heart 2 13 216 54
Liver 2 6 276 69
Vehicle 4 18 677 169
Vowel 11 10 422 106
Wine 3 13 142 36
Phoneme 2 5 4323 1080
Satimage 6 36 5148 1287
Texture 11 40 4400 1100

Table 1: Datasets used in the experiments.

The two algorithms compared here have some different characteristics that make them
not exactly with the same conditions for comparison. In MixtGauss algorithm, a number
M of gaussians per class has to be given, which results in a number of prototypes in the
condensed set equal to M · J (J denotes the number of classes). On the other hand, Chen’s
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scheme requires the size of the resulting condensed set, which will be defined as M · J in
each experiment, thus obtaining the same reduction rate in both schemes.

Another important difference betweenMixtGauss andChen’s condensing algorithms refers
to the fact that in the approach proposed here, each class is represented by the same number
of prototypes, while in Chen’s procedure, the size can be different for each class.

5 Experimental Results and Discussion

Tables 2 and 3 report the 1-NN accuracy (standard deviation in brackets) and the reduction
rate with respect to the edited TS when using a condensed set size of 3·J and 5·J , respectively.
Results corresponding to the edited set without condensing are also included in Table 2 for
comparison purposes.

Edited Acc.% Edited Size Chen Acc.% MixtGauss Acc.% Size Reduc.%

Cancer 95.75 (2.50) 538 96.78 (1.11) 95.32 (4.21) 98.88
Pima 73.05 (3.57) 468 65.89 (1.84) 69.27 (3.66) 98.72
Glass 71.40 (3.78) 171 56.04 (10.02) 59.46 (15.54) 89.49
Heart 65.88 (4.69) 155 64.07 (5.91) 64.07 (7.45) 96.13
Liver 65.85 (5.25) 203 55.69 (3.06) 60.01 (2.28) 97.04
Vehicle 64.41 (2.11) 677 46.66 (4.91) 49.72 (7.33) 98.23
Vowel 97.90 (1.23) 422 42.71 (7.76) 65.44 (4.18) 92.19
Wine 71.35 (4.47) 109 72.37 (8.42) 73.56 (10.14) 91.77
Phoneme 72.05 (8.58) 3,945 69.45 (4.09) 75.27 (15.07) 99.85
Satimage 82.99 (12.50) 4,975 65.59 (9.60) 74.76 (13.66) 99.64
Texture 98.96 (0.38) 4,400 50.76 (4.29) 79.71 (0.83) 99.25
Average 78.15 62.36 69.69 96.47

Table 2: Results for the edited TS, and for the Chen’s andMixtGauss condensed sets with 3 · J prototypes.

Several comments can be made from the results in these tables. As expected, classifi-
cation accuracy strongly depends on the number of prototypes in the condensed set. Corre-
spondingly, the classification percentages obtained when using 5 · J prototypes (65.91% and
71.21% in average) are higher than those corresponding to 3 · J in most cases (62.36% and
69.69% in average). When comparing these accuracies with those provided by the edited set,
one can see that differences are not very important taking into account that the set size has
been reduced in more than 90%.

MixtGauss algorithm yields higher classification accuracy than Chen’s scheme in both
experiments. Differences between them are more significant when using a smaller number of
resulting prototypes, thus indicating thatMixtGauss algorithm is able to fit the class distribu-
tions in a more appropriate way than Chen’s procedure.

In order to emphasise the results just commented, in Fig. 1 we show the averaged accuracy
obtained with the resulting condensed sets for the Vowel database, for different sizes from
11 to 209 prototypes (that is, 50% of the edited set size: a smaller reduction seems to do not
make sense). As can be seen, differences between both methods are muchmore important as a
higher reduction has been applied. When the reduction level is close to 50%, the classification
accuracies are similar enough and they are very close to that of the edited set.
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Chen Accuracy % MixtGauss Accuracy % Size Reduction %

Cancer 96.34 (2.60) 94.30 (6.39) 98.14
Pima 69.54 (3.12) 68.88 (3.97) 97.87
Glass 63.99 (6.65) 61.34 (8.19) 82.48
Heart 65.15 (3.30) 63.33 (6.03) 93.56
Liver 57.12 (3.26) 56.86 (5.00) 95.06
Vehicle 50.20 (5.75) 54.96 (1.55) 97.04
Vowel 48.89 (5.67) 82.28 (2.94) 86.98
Wine 69.62 (7.30) 73.56 (10.14) 86.29
Phoneme 69.36 (3.99) 71.11 (19.77) 99.75
Satimage 70.87 (7.86) 77.01 (12.36) 99.40
Texture 63.92 (2.96) 79.73 (0.73) 98.75
Average 65.91 71.21 94.12

Table 3: Results for the Chen’s andMixtGauss condensed sets with 5 · J prototypes.
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Figure 1: Accuracy when varying the number of prototypes in the Vowel database.

6 Concluding Remarks

In this paper, a new adaptive approach to TS size reduction have been introduced. This algo-
rithm primarily consists of replacing each class of the original set by a given number of new
prototypes. The position of these new prototypes are estimated by using the EM algorithm to
optimise the location of a number of gaussians.

From the experiments carried out, it seems that MixtGauss algorithm provides good re-
sults, higher in accuracy rate than those obtained by other adaptive algorithms, while the size
reduction is the same. On the other hand, differences between them are more significant in
the case of a higher reduction in size.

Future work is now directed to get an independent number of gaussians for each class,
according to their spatial distribution. On the other hand, it is also necessary to conduct a more
extensive comparison ofMixtGauss with other adaptive methods present in the literature.
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