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ABSTRACT 

Real-life data usually are presented in databases by real numbers. On the other hand, 
most inductive learning methods require a small number of  attribute values. Thus it is 
necessary to convert input data sets with continuous attributes into input data sets with 
discrete attributes. Methods of  discretization restricted to single continuous attributes 
will be called local, while methods that simultaneously convert all continuous attributes 
will be called global. In this paper, a method of  transforming any local discretization 
method into a global one is presented. A global discretization method, based on cluster 
analysis, is presented and compared experimentalty with three known local methods, 
transformed into global. Experiments include tenfold cross-validation and leaving-one- 
out methods for ten real-life data sets. © 1996 Elsevier Science Inc. 

K E Y W O R D S :  discretization, quantization, continuous attributes, machine 
learning from examples, rough set theory 

1. INTRODUCTION 

The process of  converting data sets with continuous attributes into input 
data sets with discrete attributes, called discretization, was studied in many 
papers; see, e.g., [1-3, 5, 7, 10, 11, 13, 15]. We will assume that input data 
sets contain examples, characterized by attribute and decision values. A 
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concept is defined as a set of all examples that have the same value w for 
decision d. 

A data set may be either consistent or inconsistent. We need a measure 
of consistency for inconsistent data sets. Our measure, called a level of 
consistency, is based on rough set theory, a tool to deal with uncertainty, 
introduced by Z. Pawlak in [12]. Let  U denote the set of all examples of 
the data set. Let P denote a nonempty subset of the set of all variables, 
i.e., attributes and a decision. Obviously, set p defines an equivalence 
relation ~o on U, where two examples e and e '  from U belong to the same 
equivalence class of ~ if and only if both e and e '  are characterized by the 
same values of each variable from P. The set of all equivalence classes of 
~0, i.e., a partition on U, will be denoted P*. 

Equivalence classes of ~o are called elementary sets of P. Any finite union 
of elementary sets of P is called a definable set in P. Let X be any subset 
of U. In general, X is not a definable set in P. However, the set X may be 
approximated by two definable sets in P. The first one is called a lower 
approximation of X in P, denoted by _PX and defined as follows: 

U{Y ~ P*[Y G X}. 

The second set is called an upper approximation of X in P, denoted by PX 
and defined as follows: 

U { Y ~ P * I Y n X  ~ 0} .  

The lower approximation of X in P is the greatest definable set in P 
contained in X. The upper  approximation of X in P is the least definable 
set in P containing X. A rough set of X is the family of all subsets of U 
having the same lower and the same upper approximations of X. 

A data set is consistent with respect to decision d if and only if 
~¢* _< {d}*, where ~ is the set of all attributes. Furthermore,  a level of 
consistency, denoted L c, is defined as follows: 

E x  ~ {dr I~XI 
Lc = IUI 

In rough set theory, the level of consistency is known as the degree of 
dependency of d from a¢; see, e.g., [12]. For  a data set that is consistent 
with respect to decision d, Lc = 1. 

Let A be a continuous attribute, and let the domain of A be the 
interval [a, b]. A partition ~a on [a, b] is defined as the following set of k 
subintervals: 

~'.4 = {[a0, a l ) ,  [al ,  a2) . . . .  , [ a k - 1 ,  ak ] } ,  

where a o = a, a i_ a < ai for i = 1, 2 . . . . .  k, and a k = b. Thus, discretiza- 
tion is the process that produces a partition ~r a on [a, b]. The simplest 
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discretization scheme is one where the discretized attribute's domain is as 
small as possible, i.e., 17rAI = 2. Hence the simplest (not necessarily the 
best) discretization is binary. We exclude the case where the size of the 
new domain is one (unary discretization), as the information presented in 
such an attribute is lost. Although there are infinitely many binary dis- 
cretizations for any interval [a,b], any attribute in a data set of m 
examples can only take on m distinct values. Hence, up to m - 1 binary 
discretizations schemes are practically possible. 

The simplest method to discretize a continuous attribute is to partition 
its domain into equal-width intervals--the equal-interval-width method. A 
method of attribute discretization through adaptive discretization was pro- 

_posed in [3]. The domain of an attribute is first partitioned into two 
equal-width intervals, and a learning system is run to induce rules. Then, 
the quality of the rules is tested by evaluating rule performance. If the 
performance measure falls below a fixed threshold, one of the partitions is 
subdivided further, and the process is repeated. The principal disadvantage 
of this method is the repetition of the learning process until the final 
performance level is reached. 

A discretization based on maximal marginal entropy was introduced in 
[15]. This process involves partitioning the domain of the continuous 
attribute so that the sample frequency in each interval is approximately the 
same; it is called equal-frequency-per-interval method. The only parameter 
supplied by the user is the number of intervals to be induced on the 
original domain. 

Another discretization, with class entropy as a criterion to evaluate a list 
of "best" breakpoints which together with the domain boundary points 
induce the desired intervals (minimal-class-entropy method), was suggested 
in [7]. A similar method of discretization is used in C4.5 [13]. The class 
information entropy of the partition induced by a breakpoint q is defined 
a s  

1Sl1 1521 
E(A,  q; U) = ~-~E(S,) + - ~ E ( S 2 ) ,  

where E(S) is the entropy of the set S. The breakpoint q for which 
E(A, q; U) is minimal among all the candidate breakpoints is taken to be 
the best breakpoint. This determines the binary discretization for the 
attribute A. In this paper, in order to induce k intervals, the procedure 
outlined above is applied recursively k -  1 times. Having computed the 
binary discretization on U that partitions U into two sets U 1 and I./2, we 
now compute binary discretizations on/_/1 and U a. Let E(A, ql;/']1) be the 
class information entropy associated with the best breakpoint in U 1. Let 
E(A, q2; U 2) be the class information entropy associated with the best 
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breakpoint in U 2. Then, if 
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E ( A ,  ql; U1) > E ( A ,  q2; U2), 

we partition U 1. Otherwise we partition U 2. Thus, the worse of the sets U 1 
and U 2 is partitioned. 

In this paper we propose a method to discretize attributes by using 
hierarchical cluster analysis. When clustering cannot be performed any 
further, suitable postprocessing using a class-entropy measure is per- 
formed to fuse neighboring intervals. This method of discretization is 
called the cluster analysis method. 

The discretization methods presented here can be classified as either 
local or global. Local methods are characterized by operating on only one 
attribute. The methods cited above as equal interval width, equal fre- 
quency per interval, and minimal class entropy are local, while cluster 
analysis is global. Global methods are characterized by considering all 
attributes (rather than one) before making a decision where to induce 
interval breakpoints. Section 2 on the globalization of local discretization 
methods discusses the steps we have taken to improve local methods by 
minimizing user interaction. 

2. GLOBALIZATION OF LOCAL DISCRETIZATION METHODS 

Local methods suffer from the inability to predict how many intervals 
should be induced for a given domain of a continuous attribute A. Often, 
only an expert can tell accurately into how many intervals the domain of A 
should be partitioned and how the partitioning ought to be done. Being 
unaware of how many intervals to induce, which method to use, or how 
many times to perform the discretization for each continuous attribute can 
seriously jeopardize the outcome of the discretization process. We can, 
however, suggest the following guidelines that seem likely to insure suc- 
cessful discretization: 

• Complete discretization. We are seldom interested in discretization of 
just one continuous attribute (unless there is only one such attribute 
in a data set). 

• Simplest result of discretization. In general, the smaller the size of an 
attribute's domain after discretization, the simpler the rules that are 
induced from discretized data. As a result, the knowledge encom- 
passed by such an attribute is more general. 
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• C o n s i s t e n c y .  Data sets with continuous attributes are almost always 
consistent (L c = 1). When a discretization scheme applied to an 
attribute's values is "bad," an inconsistent data set may be obtained. 
When this happens, we lose valuable information. We should keep the 
level of consistency of the new discretized data set as close as possible 
to that of the original data. 

With these points in mind, the first step in transforming local discretiza- 
tion method into a global one is as follows. Using a chosen method (e.g., 
equal-interval-width discretization, equal-frequency-per-interval discretiza- 
tion, minimal-class-entropy discretization), we partition each continuous 
attribute's domain into two intervals (binary discretization). Thus we 
achieve two out of three goals: complete and simplest discretization. At 
this time, exactly one of the following is true: (a) L ° = L c or (b) L~ ° < L c, 
where Lc ° is the level of consistency of the new discretized data set and L c 

is the level of consistency of the original data set. 
If (a) is true, we have produced the simplest discretization possible, 

discretized all candidate attributes, and maintained the original consis- 
tency level, thereby minimizing information loss due to discretization. If 
(b) is true, we need to do more work. It is necessary to rediscretize the 
attribute's domain whose initial (binary) discretization was "poorest." 
Rediscretization will involve inducing k + 1 intervals on the domain of an 
attribute if k are currently present (using the same local discretization 
method). Determining which attribute's domain exhibits the "poorest" 
partitioning, however, is not straightforward. One way to do it is to play a 
series of what-if scenarios for each attribute. In turn, we compute the gain 
in the level of consistency of the data set as each attribute is rediscretized 
from k to k + 1 intervals. The attribute whose rediscretization produces 
the highest gain in level of consistency of the information system is 
selected and rediscretized. While this is an intuitively attractive method, it 
requires many time-consuming computations of the level of consistency to 
play out the various scenarios. 

We propose a method to measure the performance of an attribute (after 
discretization) based on the class entropy of attribute values. The rationale 
for using class entropy comes from the fact that if for some block 
B ___ {A}* the class entropy of B is zero, then there exists a concept C in 
{d}* such that B ___ C, i.e., the block B is sufficient to describe (in part or 
whole) the concept C. This indicates that the current partitioning is good 
at least with respect to the block B. 

The higher the entropy of the block B, the more randomness is 
encountered with respect to a concept and hence the greater the chance of 
"poor"  discretization. Since we are looking at whole attributes rather than 
just blocks of attribute-value pairs, we will compute the average block 
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entropy of  an attribute A. We compute this measure according to the 
following formula: 

EB ~ tAor (IBI/IUI) E( B ) 
~AO r = I { a O } , l  

where {A°} * is the partition induced by the discretized attribute A D. A 
candidate attribute for which {A°} * is maximum is selected as the next 
attribute for rediscretization. The merit of computing the average block 
entropy for an attribute is that we need only recompute this measure for 
the attribute which was last picked for rediscretization. It is not a computa- 
tionally intensive procedure. 

3. DISCRETIZATION BASED ON CLUSTER ANALYSIS 

The purpose of cluster analysis is to search for similar objects and group 
them into classes, or clusters [6]. Objects are points in n-dimensional space 
which are defined by n characteristic values. During agglomerative duster  
formation, objects that exhibit the most similarity are fused into a duster.  
Once this process is completed, clusters can be analyzed in terms of all 
attributes. 

The intent of the first step of this discretization method (cluster forma- 
tion) is to determine initial intervals on the domains of the continuous 
attributes. During the second step (postprocessing) we hope to minimize 
the number of intervals that partition the domain of each continuous 
attribute. 

3.1. Cluster Formation 

There  exist many different clustering techniques, none of which is a 
solution to all potential clustering needs. For  our purposes, we have 
elected to use the median cluster analysis method. 

Let  m = IUI, and let {A1, A 2 . . . . .  h i ,  h i+ 1 . . . . .  A n} be the set of all 
attributes, where attributes A 1, A 2 . . . . .  A i are continuous and attributes 
Ai+l ,  Ai+ 2 . . . . .  A n are discrete (1 < i < n ) .  Le t  e ~ U. We define the 
continuous component  of e as 

econtinuous = (X~, X~ . . . . .  X e)  

and the discrete component  of e as 

x e e . , X D .  ediscrete = ( i + l , X i + 2 ,  . .  
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In cases where continuous attributes' values are not of the same scale 
(foot, pounds, light-years, etc.), we must standardize attribute values to 
zero mean and unit variance for clustering to be successful. This is done by 
dividing the attribute values by the corresponding attribute's standard 
deviation (derived from the complete set of values for the attribute) [6]. 

We begin cluster formation by computing an m × m distance matrix 
between every pair of continuous components of examples in U. The 
entries in the distance matrix correspond to squared Euclidean distances 
between data points in /-dimensional space. We initiate clusters by allow- 
ing each /-dimensional data point to be a duster. Thus, we originally have 
m clusters, each of cardinality one. 

New clusters are formed by merging two existing clusters that exhibit the 
most similarity. In our case, this involves finding two clusters that are 
separated by the smallest Euclidean distance. When such a pair is found 
(clusters b and c), they are fused to form a new cluster bc. The formation 
of the cluster bc introduces a new cluster into the space, and hence its 
similarity (distance) to all the other remaining clusters must be recom- 
puted. For this purpose, we use the Lance-Williams flexible method [6]. 
Given a cluster a and a new cluster bc to be formed from clusters b and c, 
the distance from bc to a is computed as 

da(bc ) = d(bc) a = Olbdab + otcdac + f ldbc + 'Y[dab -- dacl, 

where a b = a c = ½, /3 = J, and 3' = 0 for the median cluster analysis 
method. 

At any point during the clustering process the clusters formed induce a 
partition on the set of examples U. Examples that belong to the same 
duster  are indiscernible by the subset of continuous attributes. Therefore, 
we should continue cluster formation until the level of consistency of the 
partition { K I K  is a cluster} is equal to or greater than the original data's 
level of consistency L C. 

When the above condition fails, cluster formation stops, and we analyze 
the clusters to determine candidate intervals that will partition the domain 
of each of the i continuous attributes. Since the points in the clusters are 
defined by i attribute values, we can examine how the individual attributes 
define each duster. Let r be the number of clusters produced. Let K be a 
cluster. The set of data points of an attribute Aj (1 < j < i) that define 
a cluster K is 

DP~ = {x;le ~ g}.  

Hence, the defining interval Ir,.4j of cluster Kj with respect to attribute 
Aj is 

IK, Aj = [LK.A,,RK.A, ] = [min(DP~) ,max(DP~)] .  
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It is possible that for a given attribute A j, the domain that defines the 
cluster K is a subdomain of a domain that defines another cluster K' ,  i.e., 
Lr,  At > Lr ,  ' At and RK, At < Rr ,  ' At. From the perspective of the intervals 

IK, At = [LK, A~,Rr,  At ] and Ir , ,A j = [Lr , ,A t ,Rr , ,A t ]  

we can safely eliminate the subinterval I t ,  Aj from further consideration 
without compromising the discretization outcome. 

At this time we are ready to induce intervals on each attribute's 
continuous domain. For each attribute A/ where j ~ {1, 2 . . . . .  i} we con- 
struct two sets, LAt and RAt , which contain the left and right boundary 
points respectively of the defining intervals Ir,,A t for l ~ {1,2 . . . . .  r}. 
Hence, 

and 

LAj = (Lr, ,At  l ~ { 1 , 2 , . . . , r }  ) 

RA/ = (RK,,A/ I E {1,2 . . . . .  r}).  

The interval partition on the domain of the attribute A~ is equal to 

7rAj = ([min~(LAj), min2(LAj)), [min2(Laj) ,  min3(LAj)) . . . . .  

[m inr (LAj ) ,max(RA/ ) ] ) ,  

where mina(LAj) corresponds to the ath smallest element of LAj. 

3.2. Postprocessing 

Postprocessing involves merging adjacent intervals in an attempt to 
reduce the domain size of each of the discretized attributes. This final 
processing task is divided into two stages: "safe" merging of intervals and 
merging of intervals. 

Given an interval partition on the domain of an attribute Aj we can 
"safely" merge adjacent intervals provided that the outcome does not 
affect in any way the accuracy of the information system. Let 

~rAj = {[ao, a l ) , [ a l , a 2 ) , . . . , [ a k _ l , a k ]  } 

be the interval partition of attribute Aj. Consider any pair of adjacent 
intervals [a l_ 1, at) and [at, at+ 1)- We can fuse them safely into one interval 
Ii_a,l+ 1 = [at_l, al+ 1) if and only if the class entropy of the block associ- 
ated with It_l,t+ 1 is O. A class entropy value of 0 indicates that the new 
interval I t_ 1,t+ 1 describes one concept only (in part or in full). Therefore, 
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the consistency of the data set is not violated. Safe merging of intervals is 
applied sequentially to all attributes for which intervals have been induced. 
Merging involves exactly the same task as the previous step. However, 
since each of the merges performed may affect the consistency of the data 
set, two questions must be resolved first: 

1. which attribute's intervals to merge first, and 
2. which neighboring intervals to merge first. 
In order to solve these problems we utilize the class entropy function to 

determine the priority of interval merging. The rationale behind this 
choice is that we are interested in forming intervals whose blocks exhibit 
most class uniformity. Intervals whose blocks show high class entropy are 
not desirable, because they may contribute adversely to the rule induction 
process. 

To prioritize interval merging, we compute the class entropy of the block 
associated with every pair of adjacent intervals for all continuous at- 
tributes. We pick a pair of adjacent intervals for merging whose class 
entropy is the smallest amongst continuous attributes. By employing this 
procedure, we are not biasing merging to any particular attribute, and 
hence point 1 above is resolved. There may be some natural bias, however, 
especially if data contained in an attribute show high class correlation. 

Before a merge is performed, we must check if the accuracy of the data 
set will fall below a given threshold as a result of the merge. If the 
accuracy will still be adequate, we perform the merge. Otherwise, we mark 
this pair of adjacent intervals as nonmergeable and proceed to the next 
candidate. The process stops when each possible pair of adjacent intervals 
is marked as nonmergeable. 

4. EXPERIMENTS 

In order to compare the performance of discretization methods pre- 
sented in this report, we have subjected a sample of ten data sets to 
discretization. The data contain real-life information from fields such as 
medicine, insurance, banking, and science and have been used previously 
in testing pattern recognition and machine learning methods. Table 1 gives 
a summary of data sets used in experiments. 

The data sets GM, rocks, and bank were donated by W. Koczkodaj from 
Laurentian University, Canada. The first data set contains financial data 
gathered by General Motors; the second, information about volcanic rocks. 
The data set bank, describing bankruptcy data, was created by E. Altman 
and M. Heine at the New York University School of Business in 1968. 
R. A. Fisher is credited for the well-known iris data set. The data set hsv-r, 
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Table 1. Data Sets 

Data set 

Number Number of Number Number 
of continuous discrete of 

examples attributes attributes concepts 

GM 200 20 0 2 
rocks 1133 13 0 4 
iris 150 4 0 3 
bank 66 5 0 2 
hsv-r 122 9 2 4 
bupa 345 6 0 2 
glass 214 9 0 7 
wave 512 21 0 3 
image 210 19 0 7 
cars 193 14 9 6 

donated by R. Slowinski from Technical University of Poznan, Poland, 
represents raw data on treatment of duodenal ulcer by HSV. The remain- 
ing five data sets, as well as ir/s, were taken from the University of 
California at Irvine repository of machine learning databases. The data set 
bupa, describing a liver disorder, contains data gathered by BUPA Medical 
Research Ltd, England. The data set glass, representing glass types, has 
been created by B. German, Central Research Establishment, Home 
Office Forensic Science Service, Canada. The data set waveform, as 
described in [1], represents three types of waves. The data set image, 
created in 1990 by the Vision Group, University of Massachusetts, repre- 
sents image features: brickface, sky, foliage, cement, window, path, and 
grass. The data set cars, created in 1985 by J. C. Schlimmer, represents 
insurance risk ratings. All of the above ten data sets have level of 
consistency equal to 100%. 

Each of the data sets in the sample was discretized completely, i.e., all 
continuous attributes were processed. We have used the globalized version 
of the local methods equal interval width and equal frequency per interval, 
as well as the cluster analysis method, to perform discretization. Further- 
more, in order to minimize information loss due to discretization, we have 
maintained the original consistency level throughout the various discretiza- 
tion procedures. Hence, we have produced four consistent data sets from 
each data set in the sample. 

As discretization is only a preprocessing step to concept acquisition 
through machine learning, it seemed worthwhile to investigate the quality 
of the knowledge base induced from the preprocessed data sets. To make 
this possible we have utilized the learning program LEM2 (Learning from 
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Examples Module, version 2) to induce rules from the discretized data sets. 
LEM2 is a typical member of the family of learning algorithms in that it 
finds a minimal discriminant description; see, e.g., [4, 8]. 

The most important performance criterion of the discretization method 
is the accuracy rate. A complete discussion on how to evaluate the error 
rate (and hence the accuracy rate) of a rule set induced from a data set is 
contained in [14]. We have used the following cross-validation guidelines in 
computing the accuracy rate: 

• If the number of examples was less than 100, the leaving-one-out 
method was used to estimate the accuracy rate of the rule set. This 
method involves m learn-and-test experiments (where m = IUI). Dur- 
ing the jth experiment, the j th example is removed from the data set, 
automatic concept acquisition is performed on the remaining m - 1 
examples (using LEM2), and the classification of the omitted example 
by rules produced is recorded. The accuracy rate is computed as 

_ 

total number of misclassifications 

total number of examples 

• If the number of instances in the data set was more than 100, the 
tenfold technique was used. This technique is similar to leaving one 
out in that it follows the learn-and-test paradigm. In this case, how- 
ever, the learning sample corresponds to 90% of the original data, the 
testing sample is the remaining 10%, and the experiments are re- 
peated ten times. This method is used primarily to save time at 
negligible expense in accuracy. The accuracy rate is computed in the 
same way as for the leaving-one-out method. 

5. CONCLUSIONS 

To analyze the results obtained (see Table 2), we have used the Wilcoxon 
matched-pairs signed-rank test; see, e.g., [9, pp. 546-561]. The purpose of 
this nonparametric test is to determine if significant differences exist 
between two populations. Paired observations from the two populations 
are the basis of the test, and magnitudes of differences are taken into 
account. This is a straightforward procedure to either accept or reject the 
null hypothesis, which is commonly taken to be identical population 
distributions. 

The cluster analysis method outperformed the equal-interval-width and 
equal-frequency-per-interval methods. The cluster analysis method is bet- 
ter than equal-interval-width method with 1% significance level for a 
one-tailed test. Also, the cluster analysis method is better than the equal- 
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Table 2. Accuracy Rate after Discretization 

Data set 

Equal Equal Minimal 
interval frequency class Cluster 
width per interval entropy analysis 

GM 68.0 59.0 73.0 69.0 
rocks 57.5 54.2 55.6 53.0 
iris 91.5 86.7 82.0 95.3 
bank 77.3 95.5 84.9 97.0 
hsv-r 42.5 35.8 46.7 48.3 
bupa 41.9 39.7 41.3 42.5 
glass 54.7 49.5 56.1 60.3 
wave 99.4 99.4 99.4 99.8 
image 69.0 70.0 73.8 77.6 
cars 58.0 59.6 67.8 63.7 

frequency-per-interval method with 0.5% significance level for a one-tailed 
test. Minimal class entropy showed no significant performance difference 
from any of the other methods, i.e., the null hypothesis that minimal class 
entropy performs like any other method could not be rejected even at the 
5% significance level for a one-tailed test. 

In view of these results, we would like to suggest that more study should 
be done to better  understand how clustering-based techniques can be used 
in discretization. Admittedly, we have selected one of the most straightfor- 
ward clustering methods. It would be worthwhile to examine how different 
clustering methods perform in this global approach to discretization. 

In the suggested globalization of local discretization methods, the search 
for a new attribute to be rediscretized is based on the maximum of the 
measure MtAo~.. This way the search is oriented toward looking for the 
worst attribute that should be modified. Other criteria should be investi- 
gated as well, e.g., looking for the best attribute. 

Finally, it is likely that certain local discretization methods work better 
with some types of data. It would be interesting to see whether a determi- 
nation could be made to select a given discretization method based solely 
on the data characteristics of an attribute or a data set. 
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