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Abstract

Many classification algorithms require that training examples contain only discrete values. In order to use these algorithms when some
attributes have continuous numeric values, the numeric attributes must be converted into discrete ones. This paper describes a new way
of discretizing numeric values using information theory. Our method is context-sensitive in the sense that it takes into account the value
of the target attribute. The amount of information each interval gives to the target attribute is measured using Hellinger divergence, and
the interval boundaries are decided so that each interval contains as equal amount of information as possible. In order to compare our
discretization method with some current discretization methods, several popular classification data sets are selected for discretization. We
use naive Bayesian classifier and C4.5 as classification tools to compare the accuracy of our discretization method with that of other

methods.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Discretization is a process which changes continuous
numeric values into discrete categorical values. It divides
the values of a numeric attribute into a number of intervals,
where each interval can be mapped to a discrete categorical
or nominal symbol. Most real-world applications of classi-
fication algorithm contains continuous numeric attributes.
When the feature space of data includes continuous attri-
butes only or mixed type of attributes (continuous type
along with discrete type), it makes the problem of classifi-
cation vitally difficult. For example, classification methods
based on similarity-based measures are generally difficult, if
not possible, to apply to such data because the similarity
measures defined on discrete values are usually not com-
patible with similarity of continuous values. Alternative
methodologies such as probabilistic modeling, when
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applied to continuous data, require an extremely large
amount of data.

In addition, poorly discretized attributes prevent classi-
fication systems from finding important inductive rules.
For example, if the ages between 15 and 25 mapped into
the same interval, it is impossible to generate the rule about
the legal age to start military service. Furthermore, poor
discretization makes it difficult to distinguish the non-pre-
dictive case from poor discretization. In most cases, inaccu-
rate classification caused by poor discretization is likely to
be considered as an error originated from the classification
method itself. In other words, if the numeric values are
poorly discretized, no matter how good our classification
systems are, we fail to find some important rules in
databases.

In this paper, we describe a new way of discretizing
numeric attributes. We discretize the continuous values
using a minimum loss of information criterion. Our discret-
ization method is supervised one since it takes into consid-
eration the class values of examples, and adopts
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information theory as a tool to measure the amount of
information each interval contains. A number of typical
machine learning data sets are selected for discretization,
and these are discretized by both other current discretiza-
tion methods and our proposed method. To compare the
correctness of the discretization results, we use the naive
Bayesian classifier and C4.5 as the classification algorithms
to read and classify data.

The structure of this paper is as follows. Section 2 intro-
duces some current discretization methods. In Section 3, we
explain the basic ideas and theoretical background of our
approach. Section 4 explains the brief algorithm and cor-
rectness of our approach, and experimental results of dis-
cretization using some typical machine learning data sets
are shown in Section 5. Finally, conclusions are given in
Section 6.

2. Related work

Although discretization influences significantly the effec-
tiveness of classification algorithms, not many studies have
been done because it usually has been considered a periph-
eral issue. Among them, we describe a few well-known
methods in machine learning literature.

A simple method, called equal distance method, is to
partition the range between the minimum and maximum
values into N intervals of equal width. Thus, if L and H
are the low and high values, respectively, then each interval
will have width W= (H — L)/N. However, when the out-
comes are not evenly distributed, a large amount of infor-
mation may be lost after discretization using this method.
Another method, called equal frequency method, chooses
the intervals so that each interval contains approximately
the same number of training examples; thus, if N =10,
each interval would contain approximately 10% of the
examples. These algorithms are very simple, easy to imple-
ment, and in some cases produce a reasonable discretiza-
tion of data. However, there are many cases where they
cause serious problems. For instance, suppose we are to
discretize attribute age, and reason about the retirement
age of a certain occupation. If we use the equal distance
method, ages between 50 and 70 may belong to one inter-
val, which prevents us from knowing what the legal retire-
ment age is. Similarly, if we use the equal frequency
method to discretize attribute weight, the weights greater
than 180 pounds may belong to one interval, which pre-
vents us to reason about the health problem of the persons
who are overweight.

With both of these discretizations it would be very diffi-
cult or almost impossible to learn certain concepts. The
main reason for this is that they ignore the class values
of the examples, making it very unlikely that the interval
boundaries will just happen to occur in the places which
best facilities accurate classification.

Some classification algorithms such as C4.5 [14], CART
[3], and PVM [19] take into account the class information
when constructing intervals. For example, in C4.5, an

entropy measure is used to select the best attribute to
branch on at each node of the decision tree. And that mea-
sure is used to determine the best cut point for splitting a
numeric attribute into two intervals. A threshold value,
T, for the continuous numeric attribute A4 is determined,
and the test 4 < T is assigned to the left branch while
A>T is assigned to the right branch. This cut point is
decided by exhaustively checking all possible binary splits
of the current interval and choosing the splitting value that
maximizes the entropy measure. CART, developed by [3],
takes into account the class information as well but it just
splits the range into two intervals. It selects the interval
boundary which makes the information gain gap between
the two intervals maximum. This process is carried out as
part of selecting the most discriminating attribute.

Fayyad [8] has extended the method of binary discretiza-
tion in CART [3]and C4.5 [14], and introduced multi-inter-
val discretization using minimal description length (MDL)
technique. In this method, the data are discretized into two
intervals and the resulting class information entropy is cal-
culated. A binary discretization is determined by selecting
the cut point for which the entropy is minimal amongst
all candidates. The binary discretization is applied recur-
sively, always selecting the best cut point. A minimum
description length criterion is applied to decide when to
stop discretization. This method is implemented in this
paper, and used in our experimental study.

Fuzzy discretization, proposed by Kononenko [10], ini-
tially forms k equal-width intervals using equal width dis-
cretization. Then it estimates p(a; < X; < b;|C=c¢) from
all training instances rather than from instances that have
value of X; in (a;,b;). The influence of a training instances
with value v of X; on (a;,b;) is assumed to be normally dis-
tributed with the mean value equal to v. The idea behind
fuzzy discretization is that small variation of the value of
a numeric attribute should have small effects on the attri-
bute’s probabilities, whereas under non-fuzzy discretiza-
tion, a slight difference between two values, one above
and one below the cut point can have drastic effects on
the estimated probabilities. The number of initial intervals
k is a predefined parameter and is set as 7 in our experi-
ments. This method is also implemented and used in our
experimental study.

BRACE [18] concentrates on finding the natural bound-
aries between intervals and creates a set of possible classi-
fications using these boundaries. All classifications in the
set are evaluated according to a criterion function and
the classification that maximizes the criterion function is
selected. It creates a histogram of the data, finds all local
minima, and ranks them according to size. The largest is
then used to divide the data into a two-interval classifica-
tion. A three-interval classification is then created using
the two largest valleys and so on until a v-interval classifi-
cation has been created (where v is the number of local
minima in the histogram). These classifications are then
used to predict the output class of the data, and the classi-
fication with the best prediction rate is selected.
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Even though some algorithms use dynamic discretiza-
tion methods, it might still be preferable to use static dis-
cretization. Using static discretization as a preprocessing
step, we can see significant speed up for classification algo-
rithm with little or no loss of accuracy [5,7,17]. The
increase in efficiency is because the dynamic algorithm,
such as C4.5/CART, must re-discretize all numeric attri-
butes at every node in the decision tree while in static dis-
cretization all numeric attributes are discretized only once
before the classification algorithm runs. One of the major
problems in dynamic discretization is that it is expensive.
Although it is polynomial in complexity, it must be evalu-
ated N — 1 times for each attribute where N means the
number of distinct values. Since classification programs
are designed to work with large sets of training sets, NV is
typically very large. Therefore, algorithms like C4.5 runs
very slowly when continuous attributes are present. In
addition, the real performance of binary discretization is
not proven when there are more than two classes in the
problem. As the algorithm attempts to minimize the
weighted average entropy of the two sets in the candidate
binary partition, the cut point may separate examples of
one class in an attempt to minimize the average entropy.

3. Hellinger-based discretization

With the traditional discretization methods, it is seldom
possible to feel confident that a given discretization is rea-
sonable because these methods do not provide any justifi-
cations for their discretizations. A classification algorithm
can hardly distinguish a non-predictive case from a poorly
discretized attribute and the user cannot do so without
examining the raw data. In general, it is seldom possible
to know what the correct or optimal discretization is unless
the users are familiar with the problem domain. Another
problem which complicates evaluation is that discretization
quality depends on the classification algorithms that will
use the discretization. Even though it is not possible to
have an optimal discretization with which to compare
results, some notion of quality is needed in order to design
and evaluate a discretization algorithm.

The primary purpose of discretization, besides eliminat-
ing numeric values from the training data, is to produce a
concise summarization of a numeric attribute. An interval
is essentially a summary of the relative frequency of classes
within that interval. Therefore, in an accurate discretiza-
tion, the relative class frequencies should be fairly consis-
tent within an interval (otherwise the interval should be
split to express this difference) but two adjacent intervals
should not have similar relative class frequencies (otherwise
the intervals should be combined to make the discretization
more concise). Thus, the defining characteristic of a high
quality discretization can be summarized as: maximizing
intra-interval uniformity and minimizing inter-interval
uniformity.

Our method achieves this notion of quality by using an
entropy function. The difference between the class frequen-

cies of the target attribute and the class frequencies of a
given interval is defined as the amount of information that
the interval gives to the target attribute. The more different
these two class frequencies are, the more information the
interval is defined to give to the target attribute. Therefore,
defining an entropy function which can measure the degree
of divergence between two class frequencies is crucial in our
method and will be explained in the following.

3.1. Measuring information content

The basic principle of our discretization method is to
discretize numeric values so that the information content
of each interval is as equal as possible. In other words,
we define the amount of information that a certain interval
contains as the degree of divergence between a priori distri-
bution and a posteriori distribution. Therefore, the critical
part of our method is to select or define an appropriate
measure of the amount of information each interval gives
to the target attribute.

In our approach, the interpretation of the amount of
information is defined in the following. For a given inter-
val, its class frequency distribution is likely to differ than
that of the target attribute. The amount of information
an interval provides is defined as the dissimilarity (diver-
gence) between these two class frequencies. We employ
an entropy function in order to measure the degree of
divergence between these two class frequencies. Some
entropy functions have been used in this direction in
machine learning literature. However, the purpose of these
functions are different from that of ours. They are designed
to decide the most discriminating attributes [14] or generate
inductive rules from examples [6]. Suppose X is the target
attribute and it has k discrete values, denoted as xj,
X,. .., Xk Let p(x;) denote the probability of x;. Assume
that we are going to discretize an attribute 4 with respect
to the target attribute X. Suppose 4 =¢a; and 4 =a;4
are boundaries of an interval, and this interval is mapped
into a discrete value a. Then the probability distribution
of X under the condition that @; < 4 < a;4 is possibly dif-
ferent from a priori distribution of X. We will introduce
several studies for measuring divergence from the informa-
tion theory literature and machine learning literature.

In machine learning literature, CN2 and C4.5 are
employing information theory-based functions to measure
the amount of information defined above. CN2, developed
by Clark [6], is a rule induction algorithm which searches
for classification rules. It uses, as an estimate of informa-
tion measure, the following formula for estimating the
information given from A about X:

k

H(X|a) =) p(xi|a)logp(xla), (1)

i=1

where H() denotes entropy function. It assigns the entropy
of a posteriori distribution to each inductive rule it gener-
ates. However, because it takes into consideration only a
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posteriori probabilities, it fails to measure the divergence of
two probability distributions correctly. For example, sup-
pose the value of H(X) is equal to that of H(X|4 = a),
and both of them are very high in value. Then even though
there is no difference between H(X) and H(X|A4 =a), we
have high value of information measure.

C4.5 [14], which generates decision trees from data, has
been widely used for rule induction. It uses the following
formula for estimating the information given from 4 about
X:

H(X) — H(X|a). (2)

It takes into consideration both a priori and a posteriori
probabilities. It calculates the difference between the entro-
py of a priori distribution and that of a posteriori distribu-
tion, and wuses the value to determine the most
discriminating attribute of decision tree. Although it uses
a more improved measure than CN2, it also fails to calcu-
late the divergence between two distributions correctly.
Calculating the average value of each probability, it cannot
detect the divergence of the distributions in the case that
one distribution is the permutation of the other.

In information theory literature, several studies are done
about divergence measure. Kullback [11] derived a diver-
gence measure, called I-measure, defined as

o plla)
Zp(xll ) log ) . (3)

This measure is the average mutual information between
the attributes X and 4 with the expectation taken with re-
spect to the a posteriori probability distribution of X. This
measure appears in the information theoretic literature un-
der various guises. It can be viewed as a special case of the
cross-entropy or the discrimination, a measure which de-
fines the information theoretic similarity between two
probability distributions. Another group of divergence
widely used in information theory literature are Bhatta-
charyya divergence [2] and Renyi divergence [15], and these
are defined, respectively, in the following:

—logz

1
1—ua

(x:)p(x;la) and

log Zp(xi)ap(xiwl_aa

where o > 0, and o # 0. In Renyi divergence, the range of
function can be changed depending on the value o. These
measures including Kullback divergence become zero if
and only if p(x;) = p(x;|a;) for all i, and have been used in
some statistical classification problems. However, since
these measures are originally defined on continuous vari-
ables, there are some problems when these are applied to
discrete values. These measures are not applicable in case
one or more than one of the p(x;)s are zero. Suppose that
one class frequency of a priori distribution is unity and
the rest are all zero. Similarly, one value of a posteriori dis-
tribution is unity and the rest are all zero. Then Kullback

divergence, Renyi divergence and Bhattacharyya diver-
gence are not defined in this case, and we cannot apply
these directly without approximating the original values.

Therefore, in this paper, we adopt Hellinger divergence
[9] which is defined as

1/2
> (Wplx) = Vpla)| (4)

It was originally proposed by Beran [1], and unlike other
divergence measures, this measure is applicable to any case
of probability distribution. In other words, Hellinger mea-
sure is continuous on every possible combination of a pri-
ori and a posteriori values. It can be interpreted as a
distance measure where distance corresponds to the
amount of divergence between a priori distribution and a
posteriori distribution. It becomes zero if and only if both
a priori and a posteriori distributions are identical, and
ranges from 0 to /2. Therefore, we employ Hellinger diver-
gence as a measure of divergence, which will be used as the
information amount of intervals. The entropy of an inter-
val I described above is defined as follows.

Definition 1. The entropy of an interval is / defined as
follows:

1/2

E(I) =Y (Vplx) = VplD)| ()

i

4. Discretizing algorithm

The algorithm consists of an initialization step and a
bottom up combining process. As part of the initialization
step, the training examples are sorted according to their
values for the attribute being discretized and then each
example becomes its own interval. The midpoint between
each successive pair of values in the sorted sequence is
called a potential cutpoint. Each cutpoint associates two
adjacent intervals (or point values), and its corresponding
entropy is defined as follows.

Definition 2. The entropy of a cutpoint C, adjacent to
interval @ and b, is defined in the following:

E(C) = E(a) — E(b). (6)

If the class frequency of these two intervals are exactly
the same, the cutpoint is called in-class cutpoint, and if
not, the cutpoint is called boundary cutpoint. In other
words, if two adjacent point values or intervals have differ-
ent class frequencies, their midpoint(cutpoint) is defined as
boundary cutpoint. Intuitively, discretization at in-class
cutpoints are not desirable because it separates examples
of one class. Therefore, boundary cutpoint must have high
priority to be selected for discretization.

In combining process, the amount of information that
each interval gives to the target attribute is calculated using
Hellinger divergence. For each pair of two adjacent
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intervals, the system computes the informational difference
between them. The least value of difference will be selected
and its corresponding pair of intervals will be merged.
Merging process continues until the system reaches the
maximum number of intervals (K) usually given by users.
The value of K, maximum number intervals, is determined
by selecting a desired precision level the user wants. The
standard recommended value of K is to set the value
between 5 and 10 depending on the domain to prevent an
excessive number of intervals from being created. Fig. 1
shows the abstract algorithm of the discretization method.

We have the following theorem which shows the correct-
ness of our discretization algorithm.

Theorem 1. The in-class cutpoints are not to be selected for
discretization unless all boundary cutpoints are exhausted for
discretization.

Proof. Suppose X is a in-class cutpoint and Y is a bound-
ary cutpoint. Let @ and b represent the adjacent intervals of
X. From the definition of in-class cutpoint, the entropy of
X is given as

E(X) = E(a) — E(b) =0 (7)

since interval ¢ and b have the identical class frequencies.
Let ¢ and d represent the adjacent intervals of Y, and c¢;,
¢, . and dy, d,...,d; denote the class frequencies of
¢ and d, respectively. From the definition of boundary cut-
point, 3i ¢; # d;, 0 < i < k. Therefore,

E(Y) = E(c) — E(d) > 0. 8)

From Egs. (7) and (8), we can see that the entropy of in-
class cutpoint is always less than that of boundary cut-

point. In addition, in case that two adjacent intervals
are separated by a in-class cutpoint, the class frequency
of combined interval is identical to that of original
intervals.

Therefore, as the algorithm selects a cutpoint which has
the least entropy, all in-class cutpoints are to be merged
before all boundary cutpoints are to be merged. [

This theorem implies that in our algorithm discretiza-
tion keeps occurring only at boundary cutpoints unless
it exhausts all boundary cutpoints. By doing so, it pre-
vents the in-class cutpoints from being selected for
discretization.

The computational complexity of our discretization
method is given as O((n — k)n), where n is the number of
examples and k is the the number of intervals.

Theorem 2. Suppose n is the number of examples, and k
represents the number of intervals. The complexity of the
proposed discretization method is given as

O((n — k)n). 9)

Proof. For each of the sorted numeric values, the algo-
rithm calculates the entropies of the cutpoints and inter-
vals. It requires O(n) time.

After that, the algorithm selects the cutpoints with the
least entropy value and its corresponding intervals are
merged. The complexity for selecting the least entropy
value requires O(n), and the above process is repeated for
n — k times until the total number of intervals reaches k.
Therefore, the computational complexity of the algorithm
is given as O((n — k)n). O

Input : a1, as, ..
ap = a1; AN+1 = AN

/* Initialization step */
for i=1 to N do

end
/* Entropy of each interval */
for each I, € INTVL do

., an (sorted and distinct numeric values)

K:=maximum number of interval;

INTVL= {I; = (ps, ¢i)|pi = (ai—1 + a:)/2,q; = (a; + aiz1)/2};

end
/* Entropy of each cutpoint */
for i=1 to N-1 do
E(pi) = E(L)
end
repeat N-K times do

= E(lit1);

end
return INTVL;

E(L;) = | 3;(v/Plaj) = VP(a;[1))*|'/?;

MERGE=cutpoint with least value of E;
merge two intervals of MERGE;

Fig. 1. Discretization Algorithm.
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5. Empirical results

Because our discretization method is not itself a classifi-
cation algorithm it cannot be tested directly for classifica-
tion accuracy, but must be evaluated indirectly in the
context of a classification algorithm. Therefore, our dis-
cretization method will be used to create intervals for two
well-known classification systems: naive Bayesian classifier
and C4.5 [14]. These system are chosen because they are
widely known, thus requiring no further description.

In our experimental study, we compare two discretiza-
tion methods in Section 2, as a preprocessing step to the
C4.5 algorithm and naive-Bayes classifier. C4.5 algorithm
is a state-of-the-art method for inducing decision trees.
The naive Bayes classifier computes the posterior probabil-
ity of the classes given the data, assuming independence
between the features for each class.

For the test data set, we have chosen ten datasets. Table
1 shows the datasets we chose for our comparison. These
datasets are obtained from the UCI repository [12] such
that each had at least one continuous attribute. We used
10-fold cross-validation technique and, for each fold, the
training data are separately discretized into seven intervals
by entropy minimization discretization (EMD) [8], fuzzy
discretization (FD) [10], and our proposed discretization
method, respectively. The intervals so formed are separate-
ly applied to the test data. The experimental results are
recorded as average classification accuracy that is the per-
centage of correct predictions of classification algorithms
in the test across trials.

Table 2 shows the classification results of naive Bayes
classifier using the different discretization methods. As we
can see, our discretization method shows better results in
most data sets. In five cases among ten datasets, our
method showed the best classification accuracy.

Table 3 shows the results of classification for each data
set using C4.5, and we can easily see that our discretization
method shows the better classification accuracy in most
cases. In six cases among ten datasets, our method showed
the best classification accuracy.

Determining the right value of maximum number of
interval significantly effects the correctness of discretiza-
tion. Too small number of interval prevents important cut-

Table 1

Description of datasets

Dataset Size Numeric Categorical Class
Anneal 898 6 32 6
Breast 699 10 0 2
German 1000 7 13 2
Glass 214 9 0 3
Heart 270 7 6 2
Hepatitis 155 6 13 2
Horse-colic 368 8 13 2
Hypothyroid 3163 7 18 2
Iris 150 4 0 3
Vehicle 846 18 0 4

Table 2

Classification results using naive Bayesian method

Dataset EMD FD Proposed method
Anneal 96.3 92.3 89.2

Breast 96.9 96.3 97.2

German 73.1 74.8 78.5

Glass 69.7 64.8 68.1

Heart 80.6 84.1 83.4

Hepatitis 84.4 87.7 88.3
Horse-colic 80.3 81.5 78.4
Hypothyroid 98.1 97.2 97.6

Iris 94.2 94.7 96.6

Vehicle 59.2 59.6 62.8

Table 3

Classification results using C4.5

Dataset EMD FD Proposed method
Anneal 91.2 89.2 88.1

Breast 96.6 91.5 95.8

German 70.6 71.8 73.1

Glass 68.6 69.2 70.1

Heart 80.2 78.3 75.1

Hepatitis 84.7 85.4 87.2
Horse-colic 85.3 81.5 82.7
Hypothyroid 99.1 98.8 99.3

Iris 94.5 95.6 96.3

Vehicle 68.4 62.7 69.4

Table 4

Classification accuracy versus number of intervals

Intervals 2 3 4 5 6 7 8 9 10

Accuracy (%) 91.2 944 946 963 975 96.6 90.8 86.7 77.3

points from being discretized while too many cuts produce
unnecessary intervals. In order to see the effect of the num-
ber of intervals, we applied naive Bayesian classifier to iris
data set with different number of intervals, and the results
are shown in Table 4. For iris data set, when the attribute is
discretized into 5-7 intervals, its classification result shows
better accuracies while the number of interval is greater
than 7 or less than 5, the classification accuracy drops
significantly.

6. Conclusion

In this paper, we proposed a new way of discretizing
numeric attributes, considering class values when discretiz-
ing numeric values. Using our discretization method, the
user can be fairly confident that the method will seldom
miss important intervals or choose an interval boundary
when there is obviously a better choice because discretiza-
tion is carried out based on the information content of each
interval about the target attribute. Our algorithm is easy to
apply because all it requires for users to do is to provide the
maximum number of intervals.

Our method showed better performance than other tra-
ditional methods in most cases. Our method can be applied
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virtually to any domain, and is applicable to multi-class
learning (i.e. domains with more than two classes — not just
positive and negative examples).

Another benefit of our method is that it provides a con-
cise summarization of numeric attributes, an aid to increas-
ing human understanding of the relationship between
numeric features and the class attributes.

One problem of our method is the lack of ability to dis-
tinguish between true correlations and coincidence. In gen-
eral, it is probably not very harmful to have a few
unnecessary interval boundaries; the penalty for excluding
an interval is usually worse, because the classification algo-
rithm has no way of making a distinction that is not in the
data presented to it.
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