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A k-Nearest Neighbor Classification 
Rule Based on Dempster-Shafer Theory 

Thierry Denceux 

Abstract-In this paper, the problem of classifying an unseen 
pattern on the basis of its nearest neighbors in a recorded data set 
is addressed from the point of view of Dempster-Shafer theory. 
Each neighbor of a sample to be classified is considered as an item 
of evidence that supports certain hypotheses regarding the class 
membership of that pattern. The degree of support is defined as 
a function of the distance between the two vectors. The evidence 
of the k nearest neighbors is then pooled by means of Dempster's 
rule of combination. This approach provides a global treatment 
of such issues as ambiguity and distance rejection, and imperfect 
knowledge regarding the class membership of training patterns. 
The effectiveness of this classification scheme as compared to the 
voting and distance-weighted k-NN procedures is demonstrated 
using several sets of simulated and real-world data. 

I. INTRODUCTION 

N classification problems, complete statistical knowledge I regarding the conditional density functions of each class is 
rarely available, which precludes application of the optimal 
Bayes classification procedure. When no evidence supports 
one form of the density functions rather than another, a good 
solution is often to build up a collection of correctly classified 
samples, called the training set, and to classify each new 
pattern using the evidence of nearby sample observation. One 
such non-parametric procedure has been introduced by Fix 
and Hodges [ l l ] ,  and has since become well-known in the 
Pattem Recognition literature as the voting k-nearest neighbor 
(k-NN) rule. According to this rule, an unclassified sample 
is assigned to the class represented by a majority of its k 
nearest neighbors in the training set. Cover and Hart [4] have 
provided a statistical justification of this procedure by showing 
that, as the number N of samples and k both tend to infinity 
in such a manner that k / N  i 0. the error rate of the IC- 
NN rule approaches the optimal Bayes error rate. Beyond 
this remarkable property, the k-NN rule owes much of its 
popularity in the Pattem Recognition community to its good 
performance in practical applications. However, in the finite 
sample case, the voting k-NN rule is not guaranteed to be 
the optimal way of using the information contained in the 
neighborhood of unclassified patterns. This is the reason why 
the improvement of this rule has remained an active research 
topic in the past 40 years. 

The main drawback of the voting k:-NN rule is that it 
implicitly assumes the k nearest neighbors of a data point :c 
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to be contained in a region of relatively small volume, so that 
sufficiently good resolution in the estimates of the different 
conditional densities can be obtained. In practice, however, 
the distance between II: and one of its closest neighbors is not 
always negligible, and can even become very large outside 
the regions of high density. This has several consequences. 
First, it can be questioned whether it  is still reasonable in 
that case to give all the neighbors an equal weight in the 
decision, regardless of their distances to the point IC to be 
classified. In fact, given the k nearest neighbors ~ ( ' 1 .  . . . . :I;(') 
of :I:. and d' ) .  . . . . d'") the corresponding distances arranged 
in increasing order, it is intuitively appealing to give the label 
of x ( ~ )  a greater importance than to the label of z (J )  whenever 
d'j < d ( 3 ) .  Dudani [ 101 has proposed to assign to the ith 
nearest neighbor x : ( ~ )  a weight w ( ' )  defined as: 

The unknown pattem IC is then assigned to the class for 
which the weights of the representatives among the k nearest 
neighbors sum to the greatest value. This rule was shown by 
Dudani to be admissible, Le. to yield lower error rates than 
those obtained using the voting k-NN procedure for at least 
one particular data set. However, several researchers, repeating 
Dudani's experiments, reached less optimistic conclusions [ 11, 
[16], [6]. In particular, Baily and Jain [ l ]  showed that the 
distance-weighted k-NN rule is not necessarily better than 
the majority rule for small sample size if ties are broken in 
a judicious manner. These authors also showed that, in the 
infinite sample case ( N  + s), the error rate of the traditional 
unweighted k-NN rule is better than that of any weighted k- 
NN rule. However, Macleod et al. [15] presented arguments 
showing that this conclusion may not apply if the training set 
is finite. They also proposed a simple extension of Dudani's 
rule allowing for a more effective use of the kth neighbor in 
the classification. 

Apart from this discussion, it can also be argued that, be- 
cause the weights are constrained to span the interval [O, l], the 
distance-weighted k-NN procedure can still give considerable 
importance to observations that are very dissimilar to the 
pattem to be classified. This represents a serious drawback 
when all the classes cannot be assumed to be represented 
in the training set, as is often the case in some application 
areas as target recognition in noncooperative environments 
[5] or diagnostic problems [9]. In such situations, it may 
be wise to consider that a point that is far away from any 
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previously observed pattern most probably belongs to an 
unknown class for which no information has been gathered in 
the training set, and should therefore be rejected. Dubuisson 
and Masson [9] call distance reject this decision, as opposed 
to the ambiguity reject introduced by Chow [3] and for which 
an implementation in a k-NN rule has been propoposed by 
Hellman [ 121. Dasarathy IS] has proposed a I;:-” rule where 
a distance reject option is made possible by the introduction of 
the concept of an acceptuble neighbor, defined as a neighbor 
whose distance to the pattern to be classified is smaller than 
some threshold learnt from the training set. If there is less than 
some predefined number of acceptable neighbors of one class, 
the pattern is rejected and later considered for assignment to 
a new class using a clustering procedure. 

Another limitation of the voting k-NN procedure is that i t  
offers no obvious way to cope with uncertainty or imprecision 
in the labelling of the training data. This may be a major 
problem in some practical applications, as in the diagnostic 
domain, where the true identity of training patterns is not 
always known, or even defined, unambiguously, and has to 
be determined by an expert or via an automatic procedure that 
is itself subject to uncertainty. From a slightly different point 
of view, it  may also be argued that patterns, even correctly 
labelled, have some degree of “typicality” depending on their 
distance to class centers, and that atypical vectors should be 
given less weight in the decision than those that are truly 
representative of the clusters [14]. Fuzzy sets theory offers a 
convenient formalism for handling imprecision and uncertainty 
in a decision process, and several fuzzy k-NN procedures 
have been proposed 1131, [ 141. In this approach, the degree 
of membership of a training vector .I’ to each of M classes is 
specified by a number of I / , .  with the following properties: 

/ I ,  E [O. 11 ( 3 )  
JI 1 / I ;  = 1. (4) 

i=l 

The membership coefficients %I, can be given (e.g. by 
experts) or computed using the neighbors of each vector in the 
training set [ 141. The membership of an unseen pattern in each 
class is then determined by combining the memberships of its 
neighbors. Keller et al. [I41 have proposed a rule in which 
membership assignment is a function of both the vector’s 
distance from its k nearest neighbors, and those neighbors’ 
memberships in the possible classes. Beyond an improvement 
in classification performance over the crisp k-NN procedure, 
this approach allows a richer information content of the 
classifier’s output by providing membership values that can 
serve as a confidence measure in the classification. 

In this paper, a new classification procedure using the 
nearest neighbors in a data set is introduced. This procedure 
provides a global treatment of important issues that are only 
selectively addressed in the aforementioned methods, namely: 
the consideration of the distances from the neighbors in  the 
decision, ambiguity and distance rejection, and the consider- 
ation of uncertainty and imprecision in class labels. This is 
achieved by setting the problem of combining the evidence 
provided by nearest neighbors in the conceptual framework of 

Dempster-Shafer (D-S) theory. As will be seen, this formal- 
ism presents the advantage of permitting a clear distinction 
between the presence of conflicting information-as happens 
when a pattern is close to several training vectors from 
different classes-and the scarcity of information-when a 
pattern is far away from any pattern in the training set, or 
close to patterns whose class memberships are not defined 
precisely. In the following section, the basics of D-S theory 
are recalled. The application to a new k-NN procedure is then 
described, and experimental results are presented. 

11. DEMPSTER-SHAFER THEORY 

Let 6) be a finite set of mutually exclusive and exhaustive 
hypotheses about some problem domain, called the frame of 
discernment [ 191. It is assumed that one’s total belief induced 
by a body of evidence concerning 0 can be partitioned into 
various portions, each one assigned to a subset of 0.  A basic 
probability assignment (BPA) is a function r r i  from 2@. the 
power set of 0. to [O, 11, verifying: 

r u ( 0 )  = O ( 5 )  

srr/,(A) = 1. (6) 
.A c (-1 

The quantity m(A), called a basic probabilify number, can 
be interpreted as a measure of the belief that one is willing 
to commit exactly to A, and not to any of its subsets, given 
a certain piece of evidence. A situation of total ignorance is 
characterized by ‘ r r i 3 ( O )  = 1. 

Intuitively, a portion of belief committed to a hypothesis 
A must also be committed to any hypothesis it implies. To 
obtain the total belief in A. one must therefore add to m ( A )  the 
quantities 7ra( I?) for all subsets B of A .  The function assigning 
to each subset (1 of (3 the sum of all basic probability numbers 
for subsets of il is called a belief,function: 

B d ( A )  = I r a ( L 3 )  (7) 
B C A  

B e l ( A ) .  also called the credibilig of A ,  is interpreted as a 
measure of the total belief committed to A. The subsets A 
of 0 such that m ( A )  > 0 are called the ,focal elements of 
the belief function, and their union is called its core. The 
V ~ C U O U S  belief function has 0 for only focal element, and 
corresponds to complete ignorance. Other noticeable types of 
belief functions are Bayesian belief functions, whose focal 
elements are singletons. and simple support functions, that 
have only one focal element in addition of 0.  

It can easily be verified that the belief in some hypothesis 
11 and the belief in its negation 2 do not necessarily sum 
to 1,  which is a major difference with probability theory. 
Consequently, - Brl (n )  does not reveal to what extent one 
believes in A .  i.e. to what extent one doubts A .  which is 
described by B d ( 2 ) .  The quantity P1(A) = 1 - Bel(2). 
called the plausibility of ‘4. defines to what extent one fails 
to doubt in A. i.e. to what extent one finds A plausible. It is 
straightforward to show that: 

P ~ ( A )  = na(B). (8) 
nn.4#@ 
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As demonstrated by Shafer [ 191, any one of the three functions 
711.  Bel and P l  is sufficient to recover the other two. This 
follows from the definition of PI(A) as 1 - Bel(if) .  and: 

(9) 
BC.4 

A BPA can also be viewed as determining a set of proba- 
bility distributions P over 2" satisfying: 

Rcl (n )  5 P ( A )  5 P l ( A )  (10) 

for all ,4 C 8. For that reason, Bel and PI are also called 
lower and upper probabilities, respectively. This fundamental 
imprecision in the determination of the probabilities reflects 
the "weakness", or incompleteness of the available informa- 
tion. The above inequalities reduce to equalities in the case of 
a Bayesian belief function. 

Given two belief functions Bell and Beln over the same 
frame of discernment, but induced by two independent sources 
of information, we must define a way by which, under some 
conditions, these belief functions can be combined into a single 
one. Dempster's rule of combination is a convenient method 
for doing such pooling of evidence. First, Brll and Br'ls 
have to be combinable, i.e. their cores must not be disjoint. 
If / r i , 1  and 7f12 are the BPAs associated with Br.ll and Bt'ls, 
respectively, this condition can also be expressed as: 

c 
4nB4 

If Brll and BclJ are combinable. then the function 711 : 2') H 
[O. 11. defined by: 

m ( B )  = 0 (12) 

is a BPA. The belief function B P ~  given by rn, is called the 
orthogonal sum of Bell and Bel*. and is denoted Diell.ijBel~. 
For convenience, r r i  will also be denoted r m l  8 rri,. The core 
of Blcl equals the intersection of the cores of Bell and Bcl2. 

Although Dempster's rule is hard to justify theoretically, 
it has some attractive features, such as the following: it is 
commutative and associative; given two belief functions Bel1 
and Bels. if Brll is vacuous, then Bell ct. Uc12 = Bel,; if 
Bell is Bayesian, and if Bell @ Bel2 exists, then i t  is also 
Bayesian. 

The D-S formalism must also be considered in the perspec- 
tive of decision analysis 121. As explained above, under D-S 
theory, a body of evidence about some set of hypotheses (-1 
does not in general provide a unique probability distribution, 
but only a set of compatible probabilities bounded by a belief 
function Bvl and a plausibility function Pl.  An immediate 
consequence is that simple hypotheses can no longer be 
ranked according to their probability: in general, the rankings 
produced by Br.l and Pl will be different. This means that, as 
a result of lack of information, the decision is, to some extent, 
indeterminate. The theory does not make a choice between 
two distinct strategies: select the hypothesis with the greatest 

degree of belief-the most credible, or select the hypothesis 
with the lowest degree of doubt-the most plausible. 

This analysis can be extended to decision with costs. In the 
framework of D-S theory, there is nothing strictly equivalent 
to Bayesian expected costs, leading unambiguously to a single 
decision. It is however possible to define lower and upper 
bounds for these costs, in the following way 171, [21. Let M 
be the number of hypotheses, and I J  be an M x M matrix such 
that Ul,J is the cost of selecting hypothesis H, if hypothesis H, 
is true. Then, for each simple hypothesis H ,  E (3. a lower 
expected cost E,[Hi] and an upper expected cost E*[Hi] can 
be defined: 

The lower (respectively: upper) expected cost can be seen as 
being generated by a probability distribution compatible with 
r r i .  and such that the density of 'rri(A) is concentrated at the 
element of A with the lowest (respectively: highest) cost. Here 
again, the choice is left open as to which criterion should be 
used for the decision. Maximizing the upper expected cost 
amounts to minimizing the worst possible consequence, and 
therefore generally leads to more conservative decisions. Note 
that, when U verifies: 

[ J ; , J  = 1 - b -  1.J (16) 

where hl.J is the Kronecker symbol, the following equalities 
hold: 

E,  [ H ; ]  = 1 - PI( { 0;) )  
E* [ H , ]  = 1 - Bel( { H , } ) .  

(17) 

(18) 

In the case of (0. l}  costs, minimizing the lower (respectively: 
upper) expected cost is thus equivalent to selecting the hypoth- 
esis with the highest plausibility (respectively: credibility). 

111. THE. METHOD 

A. The Decision Rule 

Let X = { . I ; '  = ( : r i . .  . . . .~;b)l i  = 1..  . . . N }  be a collection 
on N P-dimensional training samples, and C = { C1. . . . . C.11) 

be a set of n/L classes. Each sample x i  will first be assumed 
to possess a class label L' E { 1.. . . . M }  indicating with 
certainty its membership to one class in C. The pair ( X . C ) ,  
where C is the set of labels, constitutes a training set that can 
be used to classify new patterns. 

Let :rS be an incoming sample to be classified using the 
information contained in the training set. Classifying :r' means 
assigning it to one class in C. i.e. deciding among a set of M 
hypotheses: :I;,' E C,. y = 1. . . . . M .  Using the vocabulary of 
D-S theory. C can be called the ,frame q j  discernment of the 
problem. 

Let us denote by @,' the set of the k-nearest neighbors of :r;' 
in X. according to some distance measure (e.g. the euclidian 
one). For any .I:' E a'. the knowledge that I,' = y can 
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be regarded as a piece of evidence that increases our belief 
that 2" also belongs to Cy. However, this piece of evidence 
does not by itself provide 100% certainty. In D-S formalism, 
this can be expressed by saying that only some part of our 
belief is committed to C,. Since the fact that L' = q does 
not point to any other particular hypothesis, the rest of our 
belief cannot be distributed to anything else than C. the whole 
frame of discernment. This item of evidence can therefore be 
represented by a BPA rr ih . '  verifying: 

d , ' ( { C y } )  = (Y (19) 
71/,'.' (C) = 1 - ( Y  (20) 
v/,""(A) = O  VA E 2 @  \ {C. { C ; } }  (21) 

with 0 < IY < 1. 
If ,I:' is far from :r". as compared to distances between 

neighboring points in C,,. the class of :i:' will be considered 
as providing very little information regarding the class of :I-'; 

in that case, 0: must therefore take on a small value. On the 
contrary, if :I , '  is close to :r". one will be much more inclined 
to believe that .I:' and .cq belong to the same class. As a 
consequence, it seems reasonable to postulate that ( Y  should 
be a decreasing function of d".'. the distance between .r3 and 
.c'. Furthermore. if we note: 

( Y  = ~ V O < / I q ( d h . ' )  (22) 

where the index q indicate\ that the influence of (1' ' may 
depend on the class of . r " .  the following additional conditions 
must be imposed on (10 and @,,: 

The first two conditions indicate that, even if the case of 
a zero distance between :I;' and . r s .  one still does not have 
certainty that they belong to the same class. This results from 
the fact that several classes can, in general, simultaneously 
have non zero probability densities in some regions of the 
feature space. The third condition insures that. in the limit, as 
the distance between .r? and :r:' gets infinitely large, the belief 
function given by m".' becomes vacuous, which means that 
one's belief concerning the class of rS is no longer affected 
by one's knowledge of the class of . I : ' .  

There is obviously an infinitely large number of decreasing 
functions (i) verifying (24) and (25), and it  is very difficult to 
find any a priori argument in favor of one particular function 
or another. We suggest to choose 411 as: 

with y, > 0 and /j E { 1.2.  . . .}. [j can be arbitrarily fixed to 
a small value ( 1  or 2). Simple heuristics for the choice of 
and y, will be presented later. 

For each of the k-nearest neighbors of zl. a BPA depending 
on both its class label and its distance to .cs can therefore be 
defined. In order to make a decision regarding the class assign- 
ment of r'. these BPAs can be combined using Dempster's 

rule. Note that this is always possible, since all the associated 
belief functions have C as a focal element. 

Let us first consider two elements ic' and zJ of a" belonging 
to the same class C,. The BPA mS>('.;) = ~n' .~@m'. j  resulting 
from the combination of m".' and rrt,".J is given by: 

7r,  s. ( i . j 1 ({C,})  = 1 - (1 ~ q]$h,(#q)(l - m)$h , (P ) )  
(27) 

(28) 

If we denote by the set of the k-nearest neighbors of z" 
belonging to C,. and assuming that '3,; # 0, the result of the 
combination of the corresponding BPAs ,rig = eZ2 Ea: n ~ " . ~  
is given by: 

!rr~i({C,}) = 1 - (1 - trO$h,(d".')) (29) 

(30) 

rr/,".('..')(C) = (1 - trodq(d".'))(l  - ( ~ $ , ( d " . ' ) ) .  

Z ' E Q ,  

7 1 1 ; ( ~ )  = n (1 ~ ( Y g 4 , ( ( ~ . ~ ) ) .  

s7 E@; 

If 4: = 8. then 711; is simply the BPA associated with the 
vacuous belief function: 7 n ; ( C )  = 1 .  

Combining all the BPAs 711; for each class, a global BPA 
ms = 7 n 8  is obtained as: 

.1 I n ,/1; (C) 
y = l  

r n ' ( C )  = ~ 

K 
where K is a normalizing factor: 

2 1  11 

q = l  7 f 1 1  y = l  

y = 1 / ' # 9  q=l 

The focal elements of the belief function associated with 
711" are the classes represented among the k-nearest neighbors 
of :I.,'. and C. The credibility and plausibility of a given class 
C, are: 

(35)  L3dq ( { c, } ) = 77/>s ( { c, } ) 
PI"({C,}) = 7 r L ~ s ( { C : q } )  + m"(C). (36) 

Therefore, both criteria produce the same ranking of hypothe- 
ses concerning 2'. 

If an AI x M cost matrix II is given, where U',,) is the 
cost of assigning an incoming pattern to class i. if i t  actually 
belongs to class j .  then lower and upper expected costs are 
defined for each possible decision: 

(37) 

.II 
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(39) 

Note that minimizing the lower or upper expected cost do 
not necessarily lead to the same decision, as can be seen 
from the following example. Let us consider the problem 
of assigning an incoming sample .r' to one of three classes 
( M  = 3). It is assumed that the consideration of the I;- 
nearest neighbors of :[;,' has produced a RPA r11.~' such that 
rr/P({c1 } )  = 0.2. rrcs({C~})  = 0. r r a ' ( (  C, ,} )  = 0.4 and 
r r a " ( C )  = 0.4. The cost matrix is: 

t r =  1 0  1 . (:' I :) 
The lower and upper expected costs are, in that case: 

E*[C1] = 0.4 E, [C'j] = 0.6 E, [C:,] = 0.2 

E'*[C1] =0.8  E*[c',] = 1.0 E*[(",] :1.0 

Thus. C':j minimizes E,. while C, minimizes E*. 
However, in the case of  { 0. I} costs, that will exclusively 

be considered henceforth, minimizing the lower (resp. upper) 
expected cost amounts to maximizing the plausibility (resp. 
credibility). In that case, and under the assumption that the 
true class membership of each training pattem is known. both 
criteria therefore lead to the same decision rule D :  

~ ~ ~ l ~ , x  = arg liiiix r r r " (  { + D(.I .")  = (/,",,,, (41) 
1' 

where D( . r s )  is the class label assigned to . I . ' .  

Note that the consideration of the distances makes the 
probability of a tie taking place much smaller than in the 
simple majority rule, whose relationship with II can also be 
described by the following theorem: 

Tl?eorrrn 1; If the X: nearest neighbors of ;I data point .I-' 

are located at the same distance of P.  and if pl = (/)z . . = 
(i).jl = GI]. then the decision rule D produces the same decision 
as the majority rule. 

Pro($ Let us denote by ! the distance between .I' and all 
of its X. nearest neighbors .I;' E as. For all (1 t { 1. . . . . -U}. 
is defined by: 

rr/>;({C,/}) = 1 - (1 - ( Y O ( / ) ( I ) ) " l ' , ! l  (42) 

rra;(C) = ( I  - (Y ( ,d l ( l ) ) (< ' tY .  (43) 

(1 - ( I  - ~ v ( ) q ( ! ) ) ~ ~ ~ ' ~ ~ ) ( l  - f k ( , ~ I ( I ) ) ~ ~ + J ; ?  

Thus: 

/ d (  { ('(/}) = 
K 

(I€ (1  . . . . . M  } (44) 

(45) 

Therefore: 

B. Reject Options 

The decision rule D can easily be modified so as to include 
ambiguity and distance reject options. The ambiguity reject 
option, as introduced by Chow [3] consists in  postponing 
decision-making when the conditional error of making a 
decision given :rh is high. This situation typically arises in 
regions of the feature space where there is a strong overlap 
between classes. In that case, an incoming sample :I.' to be 
classified will generally be close to several training vectors 
belonging to different classes. Hence, this can be viewed as a 
problem of conflicting information. 

The distance reject option discussed in 191 corresponds to 
a different situation, where the point .I.' to be classified is far 
away from any previously recorded sample, and is therefore 
suspected of belonging to a class that is not represented in the 
training set. The problem here no longer arises from conflict 
i n  the data, but from the weakness or scarcity of available 
information. 

In our framework, the first case will be characterized by 
a BPA m' that will be uniformly distributed among several 
classes. As a consequence, both the maximum plausibility 
PI"( { CqA,a, } )  and the maximum credibility Rrl"({ C q E l ~ , x } )  
will take on relatively low values. In the second case, most of 
the probability mass will be concentrated on the whole frame 
of discernment C. As a consequence, only Bel"( { C,,AL',x } )  will 
take on a small value; as the distance between .rs and its closest 
neighbor goes to infinity, RfJI"({  C } )  actually goes to zero, 
while I>/ , ' (  { C'cl,,3,Lx } )  goes to one. 

As a result, i t  is possible to introduce ambiguity and distance 
reject options by imposing thresholds I'llrrin and Bd,l,i,l on the 
plausibility and credibility, respectively. The sample :r' will 
be ambiguity rejected if  l ' l , ' ( {  CqilZx}) < PlnliI1. and it will be 
distance rejected if Rf,l"( { CcI~l,Lx } )  < Bdrl1ir,. Note that, in the 
case of { 0. 1} costs, these thresholds correspond to thresholds 
E, Illax and E,:,,, on the lower and upper expected costs, 
respectively: 

E* max = 1 - P1liiiri (49) 
(50) EI*LlaS = 1 - B(d,,lill. 

The determination of I~lIll i lr has to be based on a trade- 
off between the probabilities of error and reject, and must 
therefore be left to the designer of the system. The choice of 
B~~lll l i l l  is more problematic, since no unknown class is, by 
definition, initially included in the training set. A reasonable 
approach is to compute Bdi({C,;, ,: ,x}) for each .I? in the 
training set using the leave-one-out method, and define a 
distinct threshold U P I ~ ~ ~ ~ ~  for each class C, as: 
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C. Imperfect Labelling 

In some applications, it may happen that one only has 
imperfect knowledge concerning the class membership of 
some training patterns. For example, in a three class problem, 
an expert may have some degree of belief that a sample :I:' 

belongs to a class C,. but still consider as possible that it  
might rather belong to C1 or C2. Or, he may be sure that 
.,I:' does not belong to C;. while being totally incapable of 
deciding between C1 and C2. In D-S formalism, one's belief 
in the class membership of each training pattern .rl can be 
represented by a BPA 711' over the frame of discernment C. 
For example, if the expert is sure that :r7 does not belong to C:3. 
has no element to decide between C1 and C2. and evaluates 
the chance of his assessment being correct at 8096, then his 
belief can be represented in the form of a BPA as: 

with all remaining ,rra'(A) values equal to zero. 
The approach described in above can easily be generalized 

so as to make use of training patterns whose class membership 
is represented by a BPA. If zJ is a sample to be classified, 
one's belief about the class of .I." induced by the knowledge 
that .r' E can be represented by a BPA r r i h . '  deduced from 
711' and d". ' :  

m,' . i (A)  = ( x , j ~ ( ( Y ~ ' ) ~ t n ' ( A )  V A  E 2" \ c (54) 

7 r 1 1 . L ( ~ )  = 1 - 7 1 1 8 ' 8 ( ~ ~ )  (55) 
.i E 2" \c 

where 4 is a monotonically decreasing function verifying (24) 
and (25). 

As before, the m5.' can then be combined using Dempster's 
rule to form a global BPA: 

m1 = @ 7t/>i.'. (56)  

Note that, while the amount of computation needed to 
implement Dempster's rule increases only linearly with the 
number of classes when the belief functions given by the In,'.' 
are simple support functions as considered in Section IILA, the 
increase is exponential is the worst general case. However, 
more computationally efficient approximation methods such 
as proposed in 1211 could be used for very larger numbers of 
classes. 

.r I E a> 

IV. EXPERIMENTS 
The approach described in this paper has been successfully 

tested on several classification problems. Before presenting the 
results of some of these experiments, practical issues related 
to the implementation of the procedure need to be addressed. 

Leaving alone the rejection thresholds, for which a deter- 
mination method has already been proposed, and assuming an 
exponential form for 4cl as described in (26), the following 
parameters have to be fixed in order to allow the pratical use 
of the method: k .  0 0 .  yq. q = 1 . .  . . A i  and [j. 
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As in the standard k-NN procedure, the choice of k is 
difficult to make a priori. Although our method seems to be 
far less sensitive to this parameter than the majority rule, a 
systematic search for the best value of k may be necessary in 
order to obtain optimal results. 

For the choice of (10 and yq.  several heuristics have been 
tested. Good results on average have been obtained with a0 = 
0.95 and yu determined seperately for each class as l/d:; 
where d ,  is the mean distance between two training vectors 
belonging to class Cq.' The value of /? has been found to have 
very little influence on the performance of the method. A value 
of N = 1 has been adopted in our simulations. 

The following examples are intended to illustrate various 
aspects of our method, namely: the shape of the decision 
boundaries and reject regions for simple two-dimensional data 
sets, the relative performance as compared to the voting and 
distance-weighted k-NN rules for different values of k ,  and 
the effect of imperfect labelling. 

A. Experiment I 
The purpose of this experiment is to visualize the decision 

boundary and the regions of ambiguity and distance reject for 
two different two-dimensional data sets of moderate size. The 
first data set is taken from two Gaussian distributions with the 
following characteristics: 

c1 =0.251 c2 = I 

where I is the identity matrix. There are 40 training samples 
in each class. 

The second data set consists of two non-gaussian classes 
of 40 samples each separated by a non-linear boundary. 
Both data sets are represented in the Figs. 1 4 ,  together with 
the lines of equal maximum credibility Bel"( {Cq;,ax}) and 
plausibility Pl"( { C'q;l~,y}). for k = 9. As expected, the region 
of low plausibility is concentrated in each case around the 
class boundary, allowing for ambiguity reject, whereas small 
credibility valuts are obtained in the regions of low probability 
density. The distance reject regions, as defined in Section IILB, 
are delimited by dotted lines. 

For the first data set, the estimated error rate obtained using 
an independent test set of' 1000 samples is 0.084, against 0.089 
for the voting 9-NN rule. The corresponding results for the 
second data set and leave-one-out error estimation are 0.075 
for both methods. 

B. Experiment 2 

A comparison between the performances of the voting 
A:-NN procedure. the distance-weighted k-NN rule and our 
method was performed using one artificial and two real-world 
classification problems. In the majority rule, ties were resolved 
by randomly selecting one of the tied pattern classes. 

' This heuristic wa\ vuggcsted to me by 1,alla Meriem Zouhal 
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4 9 -2 -1 0 1 2 3 

Fig. 1. Lines of equal maximum credibility (BPI’( { C‘,z,x } ) )  for X. = 9 
(Gaussian data). Samples falling outside the region delimited by the dotted 
line are distance rejected. 

0 1 2 3 -3 -2 -1 

Fig. 2. 
(Gaussian data). 

Lines of equal maximum plausibility (PI’( { Ct,;l,Lx } ) )  for k = 3 

The first problem implies three gaussian distributions in a 
three-dimensional space, with the following characteristics: 

c1 = I  E:! = I  z;j = 21 

Training sets of‘ 30, 60, 120 and 180 samples have been 
generated using prior probabilities (1/3, 1/3, 1/3). Values of 
k ranging from 1 to 25 have been investigated. A test set of 
1000 samples has been used for error estimation. For each 
pair ( N .  k ) .  the reported error rates are averages over 5 trials 
performed with 5 independent training sets. The results are 
presented in Table I and Figs. 5-8. 

The second data set is composed of real-world data obtained 
by recording examples of the eleven steady state vowels of 
English spoken by fifteen speakers [8], [ 181. Words containing 
each of these vowels were uttered once by the fifteen speakers. 
Four male and four female speakers were used to build a 

Fig. 3 .  Lines of equal maximum credibility ( I ~ P ~ ’ ( { C < , ; ~ ~ ~ } ) )  for k z 9 
(non-gaussian data). Samples falling outside the region delimited by the dotted 
line are distance rejected. 

-3 -2 -1 0 1 2 3 

Fig. 4. 
(non-gaussian data). 

Lines of equal maximum plausibility (PI” ( {  C,,;IIIIx } ) )  for k = 9 

training set, and the other four male and three female speakers 
were used for building a test set. After suitable preprocessing, 
568 training patterns and 462 test patterns in a 10 dimensional 
input space were collected. Fig. 9 shows the test error rates 
for the three methods with k ranging from 1 to 30. 

The third task investigated concerns the classification of 
radar returns from the ionosphere obtained by a radar system 
consisting of a phased array of I6 high-frequency antennas 
[17], [201. The targets were free electrons in the ionosphere. 
Radar returns were manually classified as “good” or “bad” 
depending on whether or not they showed evidence of some 
type of structure in the ionosphere. Received signals were 
processed using an autocorrelation function whose arguments 
are the time of a pulse and the pulse number. This processing 
yielded 34 continuous attributes for each of the 351 training 
instances collected. The classification results for different 
values of k are described in Fig. IO.  The figures shown are 
leave-one-out estimates of the error rates, computed using the 
training data. 
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Fig. 5 .  Mean classilication error rates for the voting k-NN rule (-), the 
distance-weighted k-NN rule (-.) and our method ( - - )  as a function of k 
(Gaussian data, A\- = 30). 

. .  
1 I \  - 

I \  
'I ,'\,,, I 

\ ,  I\ 

, * \ I  \ \ _: 
\\ I' '\ ,', / I  \ \  

Not surprisingly, the performances of the two methods 
taking into account distance information are better than that 
of the voting k-NN rule, for the three classification problems 
investigated. Whereas the error rate of the voting A:-NN rule 
passes by a minimum for some problem-dependent number 
of neighbors, the results obtained by the two other methods 
appear to be much less sensitive to the value of k .  provided 
k is chosen large enough. Our method clearly outperforms the 
distance-weighted approach on the Gaussian data sets and the 
vowel recognition task. Both methods are almost equivalent 
on the ionosphere data. 

0.28 

0.27- 

C. Experiment 3 

In order to study the behavior of our method in case 
of imperfect labelling, the following simulation has been 
performed. A data set of 120 training samples has been 
generated using the three gaussian distributions of the previous 

. .  
1 I \  - 

I \  
'I ,'\,,, I 

\ ,  I\ 

, * \ I  \ \ _: 
\\ I' '\ ,', / I  \ \  

Gaussian data (N=60) 

N = 180 0.280 (18) 0.267 (14) // I 0.296 1 0.293 

0.249 (23) 

0.273 

k 

Fig. 6. Mean classification error rates for the voting k-NN rule (-), the 
distance-weighted k-NN rule (-.) and our method (--) as a function of k 
(Gaussian data, .Y = 60) 
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Fig. 7. Mean classification error rates for the voting I;-" rule (-), the 
distance-weighted k-NN rule (-.) and our method ( - - )  as a function of k 
(Gaussian data, -1- = 120). 

experiment. For each training vector z i .  a number p i  has 
been generated using a uniform distribution on [0, I ] .  With 
probability p i .  the label of zz has been changed (to any of the 
other two classes with equal probabilities). Denoting by L' the 
new class label of z i ,  and assuming that Li = (I. then the BPA 
m' describing the class membership of x i  has been defined as: 

,rnl({Cq}) = 1 - p i  (57) 
I l l i (C)  = p i  ( 5 8 )  

and m'('4) = 0 for all other A C C. Hence, m i ( C )  is an 
indication of the reliability of the class label of x i .  Using the 
D-S formalism, it is possible to make use of this information, 
by giving less importance to those training vectors whose class 
membership is uncertain. This property can be expected to 
result in a distinctive advantage over the majority rule in a 
situation of this kind. 
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Fig. 8. Mean classification error rates for the voting X.-NN rule (-), the 
distance-weighted k-NN rule ( - . j  and our method ( - - j  as a function of k 
(Gaussian data, -1- = 180). 

Fig. IO.  Mean classitication error rates for the voting k-NN rule ( G ) .  the 
distance-weighted A,-" rule ( - . j  and our rnethod ( - - j  21s a function of A 
(Ionosphere data). 
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Fig. 9. Mean classification error rates for the voting L+NN rule (-). the 
distance-weighted k-NN rule ( - , j  and our method ( - - j  as a function of k 
(Vowel data). of L, (Gausqian data, 'i = 120). 

Fig. I I .  Mean classification error rates for the voting k-NN rule ( 6 )  and our 
method with consideration of uncertainty in class labels (- -), as a function 

As can be seen from Fig. 11, our results support this 
assumption. The two curves correspond to the voting I;:-NN 
rule and our method with consideration of uncertainty in class 
labels. As before, the indicated error rates are averages over S 
trials. The lowest rates achieved, as estimated on an indepen- 
dent test set of 1000 samples, are 0.43 and 0.34, respectively. 
The percentages of performance degradation resulting from the 
introduction of uncertainty in the class labels are respectively 
S4% and 21%. These results indicate that the consideration 
of the distances to the nearest neighbors ~ i n d  of the BPAs of 
these neighbors both bring an improvement over the majority 
rule in that case. 

V. CONCLUSION 

Based on the conceptual framework of D-S theory. a new 
non parametric technique for pattern classification has been 
proposed. This technique essentially consists in considering 

each of the X: nearest neighbors of a pattern to be classified as 
an item of evidence that modifies one's belief concerning the 
class membership of that pattem. D-S theory then provides 
a simple mechanism for pooling this evidence in order to 
quantify the uncertainty attached to each simple or compound 
hypothesis. This approach has been shown to present several 
advantages. It provides a natural way of modulating the 
importance of training samples in the decision , depending 
on their nearness to the point to be classified. It allows for 
the introduction of ambiguity and distance reject options, that 
receive a unified interpretation using the concepts of lower 
and upper expected costs. Situations in which only imperfect 
knowledge is available concerning the class membership of 
some training patterns are easily dealt with by labelling each 
recorded sample using basic probability numbers attached 
to each subset of classes. Simulations using artificial and 
real-world data sets of moderate sizes have illustrated these 
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different aspects, and have revealed in each case a suuerioritv 141 T. M .  Cover and P. E. Hart. “Nearest neighbor uattern classification.” , . .  
of the proposed scheme over the voting k-NN procedure in 
terms of classification performance. In two cases, the results 

IEEE Trans. Inform. Theon., vol. IT-13, no. 1, pp. 21-27, 1967. 
[SI B. V. Dasarathy, “Nosing around the neighborhood: A new system 

structure and classification rule for recognition in partially exposed . .~ 
obtained with our method were also better than those obtained environments,” IEEE Trans. Pattern Anal. Machine Intell., vol. PAMI-2, 

no. 1, pp. 67-71, 1980. 
161 ~. “Nearest neighbor norms: NN pattern classification techniques,” 

IEEE computer Society press, L~~ Alamitos, CA, 1991. 
VI A. P. Dempster and A. Kong, “Comment,” Stat. Sei., vel. 2, no. 1, PP. 

32-36, 1987. 

tion,” Ph.D. thesis, University of Cambridge, 1989. 
191 B. Dubuisson and M. Masson, “A statistical decision rule with incom- 

plete knowledge about classes,” Pattern Recognition, vol. 26, no. 1, pp. 
155-165, 1993. 

[ I  O] S. A. Dudani, “The distance-weighted X-nearest-neighbor rule,” IEEE 

with the distance-weighted k-NN rule, while both methods 
yielded similar results in a third experiment. It should be 
noted that these results are obviously not sufficient to claim 

although no counterexample has been encountered up to now. 
The comparison with the weighted or unweighted k-” rules 

unanswered question. 

the superiority Of Our approach for possible data sets, 1x1 D, H. Deterding, “Speaker normalization for automatic speech recogni- 

in the infinite sample case is also an interesting, but so far 

Trans. Syst. Man Cyber., vol. 6, pp. 325-327, 1976. 
I I E, Fix and J ,  L, Hodges, -Discriminatory analysis, nonparametric 

discrimination: Consistencv urouerties.” Technical Reoort 4. USAF 

Another particularity of the technique described in this 
paper is the quantification of the uncertainty attached to the , .  
decisions, in a form that permits combination with the outputs 
of complementary classifiers, possibly operating at different 
levels of abstraction. For example, given three classes c1. c2 
and C3. one classifier may discriminate between class C1 
and the Other two, another One may to discern 

School of Aviation Medicine, Randolph Field, TX, 195 i .  
[ 121 M. E. Hellman, “The nearest neighbor classification rule with a reject 

option,” IEEE Trans. Syst. Man Cyber., vol. 3, pp. 179-185, 1970. 
[I31 A. Jozwik, “A learning scheme for a fuzzy k-NN rule,” Pattern 

Recognition Letters, vol. I ,  pp. 287-289, 1983. 
[I41 J. M. Keller, M. R. Gray, and J. A. Givens, “A fuzzy k,-NN neighbor 

algorithm,” IEEE Trans. Syst. Man Cyber., vol. 15, no. 4, pp. 580-585, 
1985. C2 and C3. By combining the BPAs produced by each of - 

these classifiers, D ~ ~ ~ ~ ~ ~ ~ ’ ~  rule offers a way to the 
reliability of the resulting classification. This approach is 
expected to be particularly useful in data fusion applications, 
where decentralized decisions based on data coming from 
disparate sensor sources need to be merged in order to achieve 

1151 J. E. Macleod, A. Luk, and D. M. Titterington, “A re-examination of the 
distance-weighted k-nearest neighbor classification rule,” IEEE Trans. 
S\.sr, Man Cvber,, vel, 17, no, 4, pp, 689-696, 1987, 

1161 R. L. Morin and D. E. Raeside, “A reappraisal of distance-weighted 
k.-nearest-neighbor classification for pattem recognition with missing 
data,” I€€€ Trans. Syst. Man Cyber., vol. 11, no. 3, pp. 241-243, 1981. 

1171 P. M. Murphy and D. w. Aha, “UCI Repository of machine learning 
a final decision. 
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