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Abstract 

In this paper, the Gabriel and Relative Neighbourhood graphs are used to select a suitable subset of prototypes for the 
Nearest Neighbour rule. Experiments and results are reported showing the effectiveness of the method and comparing its 
performance to those obtained by classical techniques. © 1997 Elsevier Science B.V. 
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1. Introduct ion  

The Nearest Neighbour (NN) rule has been in prac- 
tice one of the most widely used non-parametric clas- 
sifters. Apart from other advantages common to most 
non-parametric approaches, the NN rule and its exten- 
sion to k neighbours (or k-NN rule, in which the k 
closest neighbours "vote" for the label of the sample) 
combine their conceptual simplicity with the fact that 
their asymptotic error rate is conveniently bounded in 
terms of the optimal Bayes error. 

However, the NN rules also present some draw- 
backs. First, the number of prototypes is usually not 
large enough to achieve the expected asymptotic per- 
formance. Second, the set of prototypes may contain 
noisy or mislabelled prototypes which usually lead to 
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a decrease in performance. 
Prototype Selection (PS) techniques have been 

proposed as a way of minimizing these problems: they 
consist of selecting an appropriate reduced subset of 
prototypes and applying the 1-NN rule using only 
the selected prototypes. Two different families of PS 
methods exist in the literature. First, condensing aims 
at selecting a sufficiently small subset of prototypes 
that leads to approximately the same performance as 
the 1-NN rule using the whole set. Second, editing 
eliminates erroneous prototypes from the original set 
and "cleans" possible overlapping among classes, 
which usually leads to significant improvements in 
performance. 

The heuristic nature of most condensing algorithms 
contrasts with the strong statistical foundation of the 
most popular edited NN rules. In fact, the well-known 
Multiedit algorithm (Devijver and Kittler, 1982) is 
asymptotically optimal in the sense of Bayes. Never- 
theless, when the number of prototypes is not large 
enough, the classical editing techniques are no longer 
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optimal (Ferri and Vidal, 1992) and some alterna- 
tive schemes (Kuncheva, 1995) have been proposed 
to partially overcome this problem. 

In this paper the concept of proximity graph (PG) is 
used to obtain some editing algorithms. This geomet- 
ric approach arises from previous PG-based condens- 
ing algorithms (Toussaint et al., 1985). As in the case 
of condensing, the editing technique proposed here 
appears to be a valid alternative to classical schemes 
in many interesting cases. The comparative results us- 
ing synthetic and real databases suggest that PG-based 
editing can be specially suited in the case in which 
the reference set size is small compared to its intrinsic 
dimensionality, that is, when classical editing can no 
longer behave as asymptotically optimal. Finally, some 
extensions involving combined application of editing 
and condensing both based on PG are also presented. 
These combined techniques include a fast recompu- 
tation of the corresponding graph structure in a very 
simple way. 

2. Proximity graphs 

ing in the hypersphere centered at their middle point 
and whose diameter is the distance between them; 
namely, hypersphere of influence of xi and xj (Jarom- 
czyk and Toussaint, 1992). 

Analogously, the set of edges in the RNG is defined 
as follows: 

(Xi ,Xj)  E E 

¢:> d(x i ,x j )  <~ max(d(xi,  x~ ) , d ( x j , x k ) )  

Vxk E X, k ~ i,j. (2) 

Its corresponding geometric interpretation is based on 
the concept of lune (Jaromczyk and Toussalnt, 1992), 
defined as the disjoint intersection between two hy- 
perspheres centered at xi and xj and whose radii are 
equal to the distance between them. Two points are 
relative neighbours if and only if their lune does not 
contain other points from X. 

The Minimal Spanning Tree and Delaunay Triangu- 
lation (DT),  which are also some kind of PG, along 
with the GG and RNG have been used to solve geo- 
metric problems in various domains (Jaromczyk and 
Toussaint, 1992). 

Let X = {xl . . . . .  xn} be a set of points in R ~, where 
n is the number of prototypes and d is the dimension- 
ality of the feature space. A PG, G = (V,E), is an 
undirected graph with a set of vertices V = X, and a 
set of edges, E, such that (x i ,x j )  E E if and only if 
xi and xj satisfy some neighbourhood relation. In this 
case, we say that xi and xj are graph neighbours. The 
graph neighbours of a given point constitute its graph 
neighbourhood. The graph neighbourhood of a subset, 
S c_ V, consists of the union of all the graph neigh- 
bours of every node in S. The PGs used in this work 
are the Gabriel Graph (GG) and the Relative Neigh- 
bourhood Graph (RNG) (Tticeryan and Chorzempa, 
1991; Jaromczyk and Toussaint, 1992). 

Let d ( . , . )  be the Euclidean distance in R a. The GG 
is defined as follows: 

(xi, xj) E E 

¢:~ d2(xi ,  x j )  ~ d2(x i ,Xk)  " l -d2(x j ,Xk) ,  

Vx~ E X, k ~ i,j. (1) 

In this case, xi and xj are said to be Gabriel neigh- 
bours. In other words, two points are Gabriel neigh- 
bours if and only if there is no other point from X lay- 

3. Using geometric information in editing 

Apart from the DT, the GG and the RNG have also 
been already used in PS to obtain a condensed set of 
prototypes (Toussaint et al., 1985). This goal is ac- 
complished by retaining only prototypes with at least 
one graph neighbour from a different class. As in other 
condensing algorithms (Hart, 1968), this leads to a 
reduced subset of prototypes in which the decision 
boundaries among classes are close to the ones ob- 
tained from the whole set. 

Condensing algorithms, and PG-based ones in par- 
ticular, implicitly assume that there are no noisy or 
mislabelled prototypes in the set. Even more, they as- 
sume that there is no overlap among classes. Other- 
wise, the 1-NN decision boundaries approximated by 
these algorithms are heavily distorted with regard to 
the optimal ones given by the Bayes classifier. Unfor- 
tunately, the situation just described is the most com- 
mon in practice and this is the reason why editing is 
used. 

Most classical editing algorithms consist of dis- 
carding prototypes with a sufficiently heterogeneous 
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neighbourhood in terms of labels. PGs can be used as 
well to obtain an edited set of prototypes. The heuristic 
approach presented here is also based on the general 
idea of estimating the label of each prototype from 
its neighbours but taking into account the concept of 
graph neighbourhood instead of the Euclidean or other 
norm-based distance neighbourhood. 

Taking into account the definitions given in Sec- 
tion 2, the graph neighbourhood of a point requires 
that no other point lies inside the union of the zones 
of influence (i.e., hypersphere or lune of  influence) 
corresponding to all its graph neighbours. From this 
neighbourhood relation, we manage to encircle com- 
pletely a prototype by means of a variable number of 
neighbours (that is, all its graph neighbours). 

It is possible to define classification rules based on 
the distance induced by the topology in the graph. In 
particular, k nearest neighbours can be replaced by the 
graph neighbourhood of a point in the corresponding 
rule (S~inchez et al., 1997). Consequently, this mod- 
ified rule can also be used to define new editing pro- 
cedures to discard prototypes. 

The application of PGs to editing has some addi- 
tional properties with regard to the conventional meth- 
ods: first, they consider the number of neighbours as 
a variable feature which depends on every prototype. 
Second, since the graph neighbourhood of a prototype 
always tends to surround it, the information extracted 
from prototypes close to decision boundaries, where 
uncertainty is highest, may be richer in the sense of 
the distribution of prototypes. 

After computing the graph neighbourhood of every 
prototype in the input data set, all the graph neigh- 
bours of a sample (instead of its k nearest neighbours) 
"vote" for its class. In other words, all prototypes that 
are surrounding a sample take part in the process of 
estimating whether it is an outlier or not, regardless of 
their actual distance to the sample. A first approach to 
this editing scheme can be expressed in the following 
way. 

1st order graph neighbourhood editing 
Step 1. Construct the corresponding PG. 
Step 2. Discard those prototypes that are misclassified 

by their graph neighbours (by the usual voting cri- 
terion). 

A further refinement of this general idea consists of 

taking not only the graph neighbours of a point, but 
also the neighbours of the graph neighbours from its 
same class (i.e., some of the second level graph neigh- 
bours). Actually, what we are trying is to add reliabil- 
ity to the detection of outliers close to the boundaries 
between classes. Therefore, the previous algorithm can 
be modified as follows. 

2nd order graph neighbourhood editing 
Step 1. Construct the corresponding PG. 
Step 2. For each sample, p, misclassified by its graph 

neighbours: 
Step 2.1. Consider the subgraph, S, given by p and all 

its graph neighbours from its same class. 
Step 2.2. Discard p if the graph neighbourhood of S 

has a majority of neighbours from different class 
than p. 

Note that these algorithms do not depend on any 
critical or tuning parameter, such as number of neigh- 
bours or iterations. On the other hand, if we consider 
the GG and the RNG, we have in principle four dif- 
ferent editing algorithms. 

4. Combined application of editing and 
condensing 

The algorithms just introduced can be extended in 
a number of ways. One of the most obvious con- 
sists of obtaining an edited-condensed set using the 
same graph structure. In fact, editing and condensing 
are two closely related and complementary techniques 
(Devijver and Kittler, 1982). As mentioned in Sec- 
tion 3, condensing makes sense only when the classes 
are clustered and well-separated, which constitutes the 
aim of the editing algorithms. 

There exist some practical advantages if we are 
to apply both editing and condensing using PG ap- 
proaches. In particular, computation can be saved if 
part of the proximity information used for editing can 
be reused for condensing. We propose a simple way to 
apply PG-based editing-condensing while keeping the 
computational burden very close to the cost of com- 
puting the PG only. 

To apply PG-based condensing (Toussaint et al., 
1985) after the editing algorithms proposed in Sec- 
tion 3 using the same graph structure, the edges must 
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be recomputed when the discarded prototypes along 
with all their edges are removed from the graph. After 
this step, it may be necessary to add new edges be- 
tween pairs of non-neighbouring nodes. From the def- 
inition of graph neighbours given in Section 2, we can 
conclude that only pairs of nodes whose zone of in- 
fluence held an eliminated node can have a new edge. 
Otherwise, the reason which made a pair of points 
non-neighbours still holds after editing. 

Bearing this in mind, it is possible to store for each 
pair of non-neighbouring nodes the first detected node 
inside its zone of influence when the graph was com- 
puted for the first time. This makes selection of new 
edges much faster because only the (few) pairs of 
nodes whose marked prototype has been discarded 
during editing need to make a search through the 
whole set. Note that the nodes are arranged in random 
order and, therefore, the "first detected node" can be 
any node. Thus, the algorithm can be written as fol- 
lows. 

Graph neighbourhood editing-condensing 
Step 1. Construct the corresponding PG, G = (V,E), 

and for each pair of points (Pi, Pj)  E E mark the 
first node that lies inside its zone of influence. 

Step 2. PG-based editing. 
Step 3. Construct the subgraph, G ~ = (W, U ) ,  corre- 

sponding to non-discarded nodes. 
Step 4. For each pair pi, Pj from V I, (Pi, P j )  ~ U and 

whose stored node is not in V', put an edge if no 
other node from V' lies inside its zone of influence. 

Step 5. PG-based condensing (Toussaint et al., 1985) 
with the recomputed graph. 

It is worth pointing out that modification in Step l 
requires no extra time, while Step 4 is expected to be 
applied to a reduced number of edges, as confirmed 
by experimental tests. 

5. Experiments and results 

Experiments on synthetic and real databases have 
been performed to illustrate the behaviour of the al- 
gorithms presented in this paper. First, classical and 
proposed editing methods have been compared empir- 
ically. Second, different combined editing-condensing 
schemes are applied to the same problems. 

The Holdout method averaged over five different 
random partitions (half for training and half for test- 
ing) of each original database, has been used to obtain 
error rate estimates. Furthermore, the schemes involv- 
ing internal randomization (e.g. Multiedit) have been 
repeated five times for each partition. The editing al- 
gorithms used in this comparative study are Wilson's 
(Wilson, 1972), Holdout (Devijver and Kittler, 1982) 
and Multiedit (Devijver and Kittler, 1982). For con- 
densing, only Hart's method (Hart, 1968) has been 
considered. Typical settings for these algorithms have 
been tried and the ones leading to the best perfor- 
mance (in the case of Holdout and Multiedit) have 
been finally included in the figures. The results cor- 
responding to the classification accuracy of the k-NN 
rule, with increasing values of k (ranging from 1 to 
l 1), using the original reference set have been also 
included for comparison purposes. 

Three different experiments have been included in 
this section: the first two databases have been taken 
from a public data repository (Murphy and Aha, 
1991) for benchmarking purposes, and the third one 
from a particular application (Pla et al., 1993). Other 
experiments have been carried out in this framework 
(S~nchez et al., 1996), showing a behaviour very 
similar to that obtained here. 

5.1. The Gaussian database 

The first experiment consists of a set of seven syn- 
thetic databases corresponding to the same problem, 
but with dimensionality ranging from 2 to 8. There are 
two classes consisting of multivariate normal distri- 
butions with zero mean and standard deviation 1 and 
2 in all dimensions, respectively. There are a total of 
5,000 patterns: 2,500 in each class. 

In the case of editing (Fig. 1), all methods gave 
very similar performance up to dimension 4 but there 
is a clear separation in their behaviour as the dimen- 
sion increases. It can be said that the PG-based edited 
rules are more insensitive to the ratio between the size 
of the set of prototypes and its dimensionality. It is 
worth noting that Multiedit is the best in the lowest 
dimension as it could be expected from the asymptot- 
ical theoretical analysis (Devijver and Kittler, 1982), 
but its performance degrades from dimension 4 (all 
prototypes from one of the classes were systematically 
discarded). The same behaviour is reflected by Hold- 
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Fig. 1. Comparison of recognition accuracy with varying dimensionalities. (a) Editing. (b) Editing-condensing. 

out and Wilson's for higher dimension in a smoother 
way. 

All PG-based edited sets lead to a steadier perfor- 
mance for higher dimensions while keeping similar 
results for low and moderate dimensionality. The 1st 
order GG neighbourhood editing (GG 1 ) is clearly the 
best for this problem and there is a significant differ- 
ence between GG-based and RNG-based schemes for 
dimension 4 and lower. For this experiment, it is worth 
pointing out that all PG-based editing schemes gave 
similar results to the best reported ones using non- 
parametric approaches (Blayo et al., 1995). In addi- 
tion, these PG-based methods provide better results 
than the other techniques used in this work. 

About editing-condensing in Fig. 1 (b), the results 
are similar to those obtained in editing, although dif- 
ferences are more significant: the highest performance 
is clearly achieved using the GG. 

5.2. The phoneme database 

This database was first used in the European 
ROARS project (Alinat, 1993) for the development 
of a real time analytical system for French and Span- 
ish speech recognition. The aim of this experiment is 
to distinguish between two classes representing nasal 
and oral vowels. 

The database contains vowels coming from 1,809 

different isolated syllables. The amplitudes of the five 
first harmonics, normalized by the total energy, are 
used to characterize each vowel. There are 5,404 pat- 
terns: 3,818 for nasal vowels and 1,586 for oral ones. 

Even though the PS techniques are not particularly 
well-suited for this concrete problem (1-NN outper- 
forms any editing scheme), Fig. 2 clearly shows the 
better results of the PG-based methods compared to 
the classical ones. 

For the edited sets, the highest classification rate is 
achieved by the 2nd order RNG neighbourhood edit- 
ing algorithm (RNG2) and, as in the previous exper- 
iment, Multiedit gives the worst performance. About 
editing-condensing, the GG-based algorithms outper- 
form conventional combinations as well as the RNG- 
based procedures: this is consistent with the fact that 
the GG retains more information from the structure 
of the input data set than the RNG (Jaromczyk and 
Toussaint, 1992). 

5.3. The image database 

This data set was already used in (Pla et al., 1993) 
to study colour segmentation to locate oranges in out- 
door scenes under daylight conditions. It consists of 
values from RGB colour images. There are 19,164 pat- 
terns, distributed among three classes (oranges, leaves 
and sky), with two attributes (the angles of the spher- 
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Fig. 2. Accuracy levels for data from an uttered vowel recognition problem. (a) Editing. (b) Editing-condensing. 

Table 1 
Percentage of remaining prototypes after editing-condensing 

GG 1 GG 2 R N G 1  RNG2 Wilson + Hart Holdout + Hart Multiedit + Hart 

Phoneme 32.23 36.89 1 7 . 3 2  20.21 10.14 10.29 1.04 
Image 6.21 6.35 2.94 3.14 0.97 1.86 0.31 

ical coordinates of the colour vectors in the RGB 
space). 

For the experiments with this database, we have 
considered the same format as that used in (Pla et al., 
1993) for comparison purposes. Thus, only one un- 
balanced partition of the input data set (6,386 samples 
for training and 12,778 for testing) has been made. 

As can be seen in Fig. 3(a),  all PG-based schemes 
outperform the classical editing methods, and again 
the RNG2 gives the highest accuracy (97.95%). It is 
worth mentioning that performance achieved in (Pla 
et al., 1993), using a classifier specifically designed 
for this concrete problem, was close to 99%. From 
Fig. 3(b) ,  we can notice that the RNG-based com- 
bined algorithms obtain systematically worse results 
than the GG-based ones. This effect can be identified 
in all experiments in a more or less emphasized way. 

6. Concluding remarks 

In this paper, the GG and RNG have been used to 
discard mislabelled prototypes and prototypes belong- 

ing to overlapping class regions from the input data 
set. On the other hand, an algorithm to choose a re- 
duced (edited-condensed) set of prototypes has also 
been presented. This editing-condensing scheme in- 
cludes a fast reconstruction of the corresponding graph 
in a very simple way, keeping the computational bur- 
den very close to the cost of only computing the PG. 

The number of rejected prototypes by the PG-based 
and the conventional editing schemes are very similar. 
The classical methods eliminate about a 1-2% more 
prototypes than the algorithms proposed here. On the 
other hand, when applying condensing after editing, 
the subsets resulting from the PG-based approaches 
(Toussaint et al., 1985) are about 2-4 times the small 
number of prototypes retained by Hart's scheme, as 
can be seen in Table 1. 

With respect to editing, the most important fact 
is that the PG-based methods concentrate their at- 
tention on prototypes close to decision boundaries, 
which gives rise to better classification results than 
classical schemes in most situations. From a practical 
point of view, an additional advantage comes from the 
fact that those schemes deterministically yield edited- 
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Fig. 3. Classification accuracy for an image recognition problem. (a) Editing. (b) Editing-condensing. 

condensed sets independently from any critical tuning 
parameter. 

Currently, further work is directed to improve the 
algorithms that compute the PG for the first time 
since the editing schemes proposed in this paper use 
a heuristic approach (Toussaint et al., 1985) whose 
expected complexity, for an input data set with n 
points in d-space, is close to O(dn2). 
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