
Pergamon
Pattern Recognition, Vol. 30, No. 2, pp. 281-288, 1997

Copyright © 1997 Pattern Recognition Society. Published by Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0031-3203/97 $17.00+.00

PII:S-0031-3203(96)00072-6

FINDING PROTOTYPES FOR NEAREST NEIGHBOUR
CLASSIFICATION BY MEANS OF GRADIENT DESCENT

AND DETERMINISTIC ANNEALING

CHRISTINE DECAESTECKER*
Institute of Interdisciplinary Research and Development in Artificial Intelligence (IRIDIA),

Universit6 Libre de Bmxelles-CP 194/6, 50 Av. E Roosevelt, Brussels 1050, Belgium

(Received 13 December 1995; in revised form 25 March 1996; received for publication 13 May 1996)

Abstraet--A new method is presented to find prototypes for a nearest neighbour classifier. The prototype
locations are opfimised through a gradient descent and a deterministic annealing process. The proposed
algorithm also includes an initialisation strategy which alms to provide the maximum classification rate on the
training set with the minimum number of prototypes. Experiments show the efficiency of this algorithm on both
real and artificial data. Copyright © 1997 Pattern Recognition Society. Published by Elsevier Science Ltd.

Nearest neighbour Classifier Supervised learning
Optimisation Gradient Annealing

Prototypical reference vectors

1. INTRODUCTION

Nearest neighbour classification is one of the best
known pattern classification methods. This is a distance-
based technique which classifies an unknown case by
looking at the classes of the nearest cases in a set of
reference instances. It is well known that these
classifiers suffer from some drawbacks such as needing
a lot of memory and computational resources (for large
data sets), and also from the difficulties in determining
an optimal value for the number of nearest neighhours to
consider in the allocation rule (especially in a noisy
environment). This is why numerous studies have been
carried out on this technique since the 70s, as is shown
by the excellent survey by Dasarathy. (1) For example,
editing and condensing methods have been developed to
reduce the number of reference instances to be stored.
However, these methods, which select some instances
among the available ones, cannot avoid a degradation of
the classifying performance. °)

Another approach, initiated by Chang (2) and now
developed in pattern classification as well as in neural
networks, (3-5) consists of generating new prototype
reference vectors instead of selecting reference cases
from among the available instances. This approach is a
kind of supervised (i.e. class-dependent) vector quanti-
sation, called the "Lea rn ing Vector Quant isat ion
(LVQ)" by Kohonen (4), where a discrimination purpose
is taken into consideration. With computational effi-
ciency (in the classification phase) as their objective,
prototype-based classifiers also aim to improve general-
isation performances. It should be noted that any

* Tel.: +32 2 650 3165; fax: +32 2 650 2715; e-mail:
cdecaes@ulb.ac.be.

classification approach based on nearest neighbour
concepts makes the hypothesis that the proximity in
the data space generally expresses the membership of
the same class (and thus for each class, there are regions
of instance space where the majority of cases belong to
the given class). A data set which is in complete
opposition to this condition cannot be treated by such an
approach and will not be considered in the present
paper.

The aim of the present work is to propose a new
prototype-based classifier for which the prototype
locations are optimised through a gradient descent
mixed with a deterministic annealing process. This
ensures the distribution of the prototypes within each
class while minimising the total classification error rate
at the end of the process. This classifier also has a
"natural" implementation in terms of an artificial neural
network similar to Kohonen's LVQ network. (4) This
aspect will not be detailed in this paper (but can be
found in a technical report(6)).

One important issue of this work is the control of the
effective complexity of the model (here, the number of
prototypes) to ensure good generalisation capacities. In
practice, this means that the model complexity has to be
optimised for a given training data set. One of the most
frequently employed techniques (as in the case of neural
networks) is cross-validation. However, this method
may well require a large amount of processing time. In
the present work, complexity control is realised without
the use of cross-validation. Firstly, an initialisation
strategy gives an initial set of prototypes as a function of
the training data set. This heuristic process includes a
pruning strategy aimed at providing the maximum
classification rate on the training set with the minimum
number of prototypes. Hence, redundant prototypes are

281

282 C. DECAESTECKER

eliminated and the remaining prototypes are forced to
cover larger areas in the pattern space. The second one
is a consequence of the optimisation process itself. This
process is able to completely inactivate some proto-
types. These useless prototypes must be suppressed in
order to realise the classification task.

Experiments show that the classification rate (on test
data sets) of the proposed prototype-based classifier is
as good in noise-free context as the nearest neighbour
classifier performances and, indeed, better in the case of
noisy data. In relation to traditional neural networks,
Multilayer Perceptron (MLP), Radial Basis Function
(RBF) and LVQ networks, and symbolic classifiers
(Decision tree), the proposed classifier gives a degree of
accuracy comparable with the best classifier. Further-
more, the complexity of the proposed model (number of
prototypes) is generally at its lowest when compared to
the other classifiers (e.g. the number of hidden units for
neural networks and the number of rules for decision
trees).

2. PROTOTYPE OPTIMISATION

2.1. Initialisation strategy

As stated in Section 1, an initialisation strategy is
used to propose initial prototypes which will be adapted
during the optimisation process. This strategy tries to
generate a "reasonable" initial number of prototypes in
accordance with the complexity control purpose ex-
plained above. The strategy operates in three phases,
mixing an unsupervised search for prototypes in each
class with a supervised elimination of inaccurate
prototypes. Firstly, a standard k-means is performed
separately on each class, with a large number of training
instances randomly chosen as initial centroids (in
practice, between 10 and 20 per class, depending on
the training set size; see the experiments). This gives a
good chance that each cluster in the training set will be
represented by at least one prototype. Secondly, an
elimination rule proposed by Kohonen et aI. (7) is applied
to discard each non-representative prototype, i.e. if the
majority of the/c nearest neighbours of the prototype in
the training set does not have the same class label (in
practice, k = 3). Thirdly, a second elimination rule
proposed by Van de Merckt (s) discards redundant
prototypes, i.e. ones which can be eliminated without
decreasing the classification quality of the training set
(with respect to a nearest neighbour classifier). To do so,
the prototypes are sorted as functions of the size of their
corresponding cluster (number of patterns attracted in
the training set). Following the increasing order so
defined, the classification rate is computed on the
training set in both the presence and the absence of each
prototype. The prototypes which do not contribute to a
strict increase in the classification rate are eliminated.

2.2. Optimisation process

Let P1,P2, . - . ,P i , . . . ,P~ be the location vectors
(coordinates in the data space) of the prototypes

resulting from the initialisation strategy. Each prototype
Pi is representative of a cluster of patterns Ci inside a
given class a priori defined in the data set. As is used by
Rose eta/ . (9-11) in clustering, the probability that a
pattern X belongs to the cluster Ci is defined as follows:

Zi(X) exp[dai /Tl
-- ~ k e x p [d2/Tl, (1)

where T is a "temperature" parameter that decreases
during training (see Section 2.3) and di is the Euclidean
distance (or another) between the two vectors X and Pi
(d i = [I X - Pill). Equation (1) defines a Gibbs distribu-
tion for all the possible allocations of a pattern to one of
the n clusters defined by the prototypes. Hence the
following propetty holds:

Zi(X) = 1. (2)
i

We now define a cost function to optimise the
prototype locations. As is usual in neural network
approaches, the cost function is a measure of the
classification error and is defined as a function of
some "desired" answers imposed on the model.
Similarly, desired probabilities Z/*(X) can be defined
for our prototype-based model. They express the
desired condition that a pattern, X, belongs to cluster
Ci with zero probability if X and Pi do not belong to
the same class. Hence , let us def ine C(X)=
{k I prototype Pk belongs to the class of X}. Des i red
probabilities Z[(X) are then

0 if i ~ C(X),
z ; (x) = (ox~!-4/~l ~ (3)

\~k~c(x~ expE-d~/rl" if i C C(X).

The above definition preserves property (2) by redis-
tributing the probabilities not equal to zero to the
prototypes of the correct class. In the following section
we shall see that, as the temperature decreases, the
desired output of the prototype nearest to the correct
class gradually comes closer to 1.

Now let us define the cost function in terms of the
differences between observed and desired probabilities:

E(X) = 1-r ~ (Z ; (X) - Zi(X)) 2, (4)
2 i

where temperature, T, is introduced in order to simplify
the gradient expression (see equation (6)).

Finally, the optimisation of prototype locations Pi is
performed through an adaptive gradient procedure
which minimises the error function given in equa-
tion (4). After each presentation of pattern Xz+l we
modify each prototype location, Pi, according to

Pi(t 4- 1) = el(t) -- ~ i (t 4- 1), (5)

wi th AkPi(t + 1) = - rl(t 4- 1)ViE(Xt+l) + tzZkPi(t),
w h e r e Vi E is the gradient of E with respect to Pi, 17(t)
a gradient step which decreases over time and # a
momentum term (usually fixed at 0.9).

While desired probabilities Z* are computed as
functions of the prototype locations (see equation (3)),

Classifier using prototypes 283

they are not considered in this way in the gradient
process. The fact that the answers desired of a classifier
depend on the values of the adaptive parameters (here,
the prototype locations) does not make sense in an
optimisation process. In our algorithm, it is only a
device to obtain desired values which are coherent with
the model and which allow the smooth adaptation of the
parameters. In the gradient calculation these desired
values are thus considered as constants independent of
the prototype locations. In accordance with this
hypothesis, we obtain (using the Kronecker notation (~ij)

- V i E = (X - e i)z i (X) ~ (Z; (X) - Zj (X)) (~ij - Zj (X)).
J

(6)

Let us try to interpret the adaptation rule defined by
equation (6). Note that each prototype Pj makes a
contribution to -VIE, in the direction of (X - Pi). Let
13j be this contribution, we have

;~j = (Z; (X) - Zj(X))(~ij - Zj(X)).

Thus,

(a) i f j = i a n d j E C(X) then ,~j > 0;
(b) if j i and j ¢ C(X) then/3j < 0;
(c) i f j ¢ i a n d j C C(X)} then/3j < 0;
(d) if i ¢ j and j ¢ C(X) then/32 > 0.

Rule (4) thus expresses three complementary effects
on the prototypes. First, there is a classical attraction-
repulsion effect between Pi and X (according to whether
or not they belong to the same class, see (a) and (b)).
The second effect (see (c)) introduces a competition
between the prototypes of the correct class and the third
(see (d)) expresses a discrimination effect between the
different classes.

2.3. Deterministic annealing

Annealing is introduced by varying T in the above
optimisation process, i.e. starting with a high value and
ending with a low one (T > 0).

We have the following properties:

lim Zi(X) = (~ip, (7)
T ~ 0

where Pp is the nearest prototype to X.

lim Z/*(X) = ~it. (8)
T ~ 0

where Pt is the nearest prototype to X and belongs to the
same (i.e. correct) class.

The annealing process starts at high T, for which all
the probabilities, Zi, are more or less similar. The same
observation can be made for desired probabilities Z/* not
equal to zero in equation (3). Each input pattern thus
influences all the prototypes of its class in a similar way,
and (in another way) all the prototypes of the other
classes (because Z* 0). During training, the gradual
decrease of T increases the bias in favour of the nearest
prototype belonging to the correct class (see equa-
tion (8)). Thus, at low temperatures we obtain a drastic
classifier, and error function E measures the total error

rate of classification on the training set (by substituting
equations (7) and (8) in equation (4)).

Expression (1) can also be interpreted as a fuzzy
membership function (of the cluster defined by proto-
type Pi). The annealing process then realises a
progressive "defuzzing" of the prototype areas of
influence which become "crisp" (Voronoi diagram)
when the temperature is sufficiently low (near zero).
However, the training process is stopped if the value of
the error function (cumulated on the whole training set)
remains stationary (or increases again), possibly before
total defuzzing (see the algorithm given in Section 2.4).
This depends on the data configuration.

In conclusion, the process distributes the prototypes
in each class while minimising the total error rate of
classification. Another property of annealing is that it
helps to avoid local minima in function optimisation;
this has been shown by previous experiments in
clustering techniques. (9'1°'1~)

2.4. Outline of the complete optimisation algorithm

As stated in Section 1, the proposed optimisation
process mixing a gradient descent and a deterministic
annealing process is able to automatically prune the set
of prototypes by "deactivating" some of them. This is
principally due to the deterministic annealing compo-
nent which progressively transforms the classifier into a
nearest neighbour one. When T is sufficiently low, only
the nearest prototype has a membership probability
above zero (see equation (8)). Some prototypes may
thus become inactive (they do not attract any training
pattern) at the end of the optimisation process. These
prototypes are then considered useless for the classifica-
tion task and are eliminated.

By way of recapitulation, the outline of the prototype
optimisation algorithm is as follows:

1. Choose an arbitrary set of patterns in each class as an
initial set of prototypes.

2. Apply the initialisation strategy (detailed in Sec-
tion 2).

3. Set gradient step 7(0) at a low value and temperature
T at a high one.

4. Make one iteration on the whole training set in
accordance with equation (5).

5. Decrease ~/(t). If T > Tm~n, decrease T.
6. If the process has converged (stabilisation of the error

function or ~](t) is too small) go to step 7, otherwise
go to step 4.

7. Detect and eliminate the inactivate prototypes.

Certain issues must be specified. Hence the number of
initial prototypes in each class depends on the size of the
data set (see experiments). This number must be
sufficient to allow some eliminations in the initialisation
strategy. While the initial value of the gradient step must
be small (e.g. r](0) 0.05), the precise value is not
important because it decreases over time. In all our
experiments, the decrease was fixed at 50% for each
iteration (~ (t+ 1) = 0.57/(t)). The initial T value is

284 C. DECAESTECKER

modulated as a function of the difficulty of the
classification task (evaluated on the training set). If the
classification rate on the training set is already high (e.g.
> 90%) after the initialisation strategy, the initial
temperature must not be very high (between 20 and
50), and conversely. In our experiments, an initial
temperature of 100 has generally given good results for
tasks of average difficulty. The decrease in T was fixed
at 10% for each iteration in all our experiments. A non-
zero Tn~, value is numerically required and depends on
the computational capacities of the computer used. The
algorithm did not really appear to be sensitive to all
these internal parameter values. For example, other
decreasing rates were tested for the gradient step and
temperature without any significant modifications in the
results being observed. The values proposed here
seemed sufficiently good and did not require fine tuning
for the various experiments.

Theoretically, all the prototypes of a class could be
eliminated. This would mean that this class could not be
distinguished from any other without a decrease in the
classification rate over the training set. One conclusion
is that the data set had not been constructed well enough
(regarding the choice of instances and/or descriptive
variables) to realise the classification task by a
prototype-based method as stated in Section 1, since
for these data spatial proximity does not express
membership of the same class. The user can possibly
insert into the algorithm a rule fixing a minimum
number of prototypes by class. (This was never required
in our numerous experiments on real as well as artificial
data sets.)

3. E X P E R I M E N T S

A number of experiments have been conducted on
both simulated and real data. The first series concerned

the behaviour of the proposed prototype-based classifier
(Sections 3.1 and 3.2). The second one concerned the
comparisons on performances with other classifiers such
as neural networks and symbolic inductive systems
(Section 3.3). We do not give experimental results
related to the contribution of each component of the
algorithm (initialisation, annealing process, etc.). They
are detailed elsewhere. (6)

3.1. Problem decomposition and cognitive
interpretation

The purpose of this experiment was to illustrate both
how the proposed algorithm produces piecewise-linear
decision boundaries by breaking a problem down into
convex areas localised by the prototypes, and how the
prototype locations can be interpreted from a cognitive
point of view. As can be seen from the problem
presented in Fig. 1, each prototype draws a convex
decision surface in the pattern space. This surface
results from the nearest neighbour competitive process.
The combination of these individual regions constructs a
final region for each class. The difference between the
real frontier and the decision surface produced by the
algorithm results from the lack of training patterns in
some areas of the pattern space (only 200 patterns in
each class). An extension of the proposed algorithm (see
Section 4) will give a solution to this kind of problem.

From a cognitive point of view, what a prototype
really is remains an open question (semantically, of
course). In case of their use in classification functions,
Medin and Barsalou (12) saw prototypes as a special case
of reference points with which they associated an
interpretation bearing on their location in the instance
space. They distinguish three kind of locations: (i) at the
boundaries of categories--a reference point entails
salient attribute values that occur at boundaries between

35

30

25

20

15

10

5

0

- 5

a -5

I I I I I I I
35

• P2

30

25

20

15

10

5

0

-5

-5 0 5 10 15 20 25 30 0 5 10 15 20 25 30 35 b

Fig. 1. (a) A two-class problem with a uniform pattern distribution (200 training patterns in each class). (b)
Prototypes and surface breakdown produced by the algorithm.

P $

Classifier using prototypes 285

categories; (ii) at the centre of categories--a prototype
represents the central tendency of its category; (iii) at
ideal locations--a prototype represents an ideal ex-
emplar that may never be observed (e.g. "things to eat
on a diet" refers to a zero-calorie food which is ideal,
but impossible).

It is surprising to see that the semantic interpretation
of the prototypes produced in Fig. 1 fits the view of
Medin and Barsalou. Hence P4 and P5 are centre
prototypes and P2 and P3 are clear cases of ideal
prototypes (they are located outside the range of
possible values) while P1 and P6 are discriminant
reference points that encode the separation line between
instances around value 15 on the vertical axis. It is
interesting to see that initial prototypes derived from a
k-means and thus are centre prototypes only. The fact
that optimised prototypes represent the three types of
reference points is a good indication that the process
neatly adapts the prototype locations to the nature of the
data. This was confirmed by the experimental results on
various data sets. (6)

3.2. Identification o f optimal prototypes

This experiment tests the capacity of the proposed
algorithm to identify the optimal locations of prototypes
(when they exist). A three class problem (shown in
Fig. 2) was used for this purpose. The examples in each
class were artificially generated by Gaussian distribu-
tions (several per class). Each Gaussian centre is shown
by A; each standard deviation is proportional to the
distance between the Gaussian centre and the centre of
the nearest Gaussian distribution. The examples gener-
ated were attributed to the class corresponding to the
nearest centre. The decision surfaces therefore appear as
shown in Fig. 2 and the centre • can be considered as
optimal locations of prototypes to describe each class.

140

120

100

80

60

40

20

0

I I I I I I I I I I I I I I I I I • I I , ' I I ' I I

iiii:i:i:i:i!i:i:i:ii!i!ii:iii:!:!:!:!:i:i:i:i:::::::::::::::i:i:i:i:i~
:

i:i:!:i:i:i:i:i:i:i:i:i:i:i:?i:!:!:i:i:?:i:i:ii:i:!:!:!:i:i:i:i:i:i:;
:i:i:i:i:i:!:i:!:!:i:)?!:!:!:i:i:i:i:i:i:i:i:?!:!:i:!:i:i:i:i:i:i:i;
i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:i:!:i:iiiiiiiiiiiiiii!i~iiii!iiii
iiiiiiiiiiiiii~ili~iiiiiiiiiiiiiiiiiiiii~i~i~i~i!i~ii~i~i~i~iiiiiiii~?
:
: ' : ' : - : - . : . : . : - : . : . : , : , : . : q ' : - : - : ' ; ' : - : - : ' : ' : O : ' : ' : ' : ' : ' : - : - , ' , - . ' ~
. : . : . : : . : . : . : - : . ~ - : - : . ~ . : . : . ; . . : . . : . : ~

:
. : . : . ' . : : . : . : - : . : . : . : . : . : . : . : . : - ' ~
. - - • - - - • • ,
:
: . : . : - : . : . : . : . : . : . : . : . : . : - : . : . : - : - ~
. ' . : . ' . : : : : : : . : . : . : . : . : . : . : . : ~

ii]!i!]]~!!i!]!]!]!]iiiii]i][
:
. ' . . ' . ~ - . . , . ' . ~ . , . ' . ; , . ¢ .~ -~ .~ ' ¢~

a,
o
&

0

0 & O

5;,; , ; , ; , ; , ; , ; , ; , ;-; ,

' ' ' I ' ' ' I ' I ' I " ' ' I " ' " I ' ' ' I ~ ' '

This problem was submitted to the proposed algorithm
with eight prototypes per class (a total of 24) to begin
the initialisation strategy. Finally the algorithm only
retained 10 prototypes (shown by - o - in Fig. 2)
distributed near the 9 centres • .

3.3. Comparisons with other classifiers

The proposed algorithm was compared to other
classifiers from different approaches such as the
classical linear (logistic regression), the neural network
and the symbolic inductive learning ones (decision tree
produced by the C4.5 algorithm of Quinlan (13~) without
forgetting the classical k-nearest neighbour algorithm
(with k ---- 1). The neural network classifiers include the
MLP (with one hidden layer) and the RBF networks
(classical RBF and normalised version RBFN, see
Decaestecker and Saerens (14~) together with Kobonen's
LVQ3 network (4~ (another prototype-based algorithm).

These comparisons were conducted on artificial and
real data sets with non-linear class boundaries, class
overlapping and noise:

• Iris is Fisher's well-known set containing three
classes of 50 instances each, where a class refers to
a type of Iris plant.

• Diabetes contains 145 records of three different
diagnoses of diabetes based on five numerical
variables representing chemical tests.

• Geometrical Data is a two-class problem defined in
a two-dimensional space. The classes are circum-
scribed by two circles in a square (see Fig. 3).
Class 1 is represented by grey areas and class 2 by
a white ring. Instances are uniformly distributed
over the whole surface of the square.

• Waveforms ~15~ consist of three classes, each of
which is a linear combination of three distinct
waveforms. Each instance consists of a vector of 21
continuous values. These data are thus distributed
over a large multidimensional space. Without the
introduction of noise, this data set is easy to
classify, and classifiers generally realise good
performances (near 100% of accuracy). In contrast,
this classification is known to be a difficult
problem when noise is present (in this latter
instance the Bayes rule gives a classification error
rate of 14%).

0 20 40 60 80 100 120 140

Fig. 2. A three-class problem with the locations of optimal
prototypes (A) and those found (- o -) by the Ngorithm

proposed. Fig. 3. Geometrical data (two-class problem).

286 C. DECAESTECKER

Table 1. Experimental conditions for the four data sets tested

Data Dim Classes Training Test Centroids

Iris 4 3 30/75 120/75 9/24
Diabetes 5 3 29/71 116/74 9/24
Geometric aI 2 2 115/575 1000/1000 12/24
Waves 21 3 30/300 5000/5000 9/24

Table 2. Comparative results (1-NN, PNN and the best other classifier) on non-noisy data

Small Large

Model Cplx (Train) Acc% ± Sdt Cplx (Train) Acc% ± Sdt

Iris
1 - N N 30.0 94.2±2.39 75.0 94.74-1.65
MLP 10.0 (98.3) 96.8±1.60 10.0 (97.9) 96.0±2.15
PNN 5.3 (99.3) 93.8±3.21 5.4 (98.5) 95.6±2.15

Diab
1-NN 29.0 95.7±1.78 72.0 97.3±1.45
RBFN 6.5 (97.9) 95.8±2.16 15.0 (98.9) 98.0±1.84
PNN 3.0 (100.0) 98.3±1.16 3.0 (100.0) 99.1±0.87

Geoff/
1-NN 115.0 90.3±1.36 575.0 95.5±0.58
RBF 17.7 (96.6) 92.0±2.03 22.4 (95.6) 95.04-2.42
PNN 13.4 (99.7) 90.4±1.72 18.9 (98.7) 95.2&0.65

Waves
1-NN 30.0 92.5±2.79 300.0 99.4±0.19
MLP 10.0 (99.2) 92.1±3.60 10.0 (99.6) 98.9±0.59
PNN 4.8 (100.0) 94.4±2.48 3.1 (100.0) 99.6±0.17

Each data set was tested with two different amounts
o f training data (small and " reasonab le" in quantity, see
Table 1), before and after the introduction of noise. A
Gauss±an noise on each attribute was added artificially,
excep t for geomet r ica l data for wh ich noise was
introduced by overlapping the classes.

For each data set, 10 exper iments (or runs) were
pe r fo rmed with independent training and test sets
(cross-validation-like process). The results given were
averaged over the 10 runs (see Tables 2 and 3). Table 1

gives a summary of the experimental conditions relating
to the d imension of the pattern space (Dim), the number
o f classes, the two different sized training and test sets
and the corresponding numbers of initial centroids
submit ted to the initial±sat±on strategy. Our initial±sat±on
strategy was also used for the LVQ3, and slightly
adapted for the RBF, networks. (~4~

In the interest o f clarity, Tables 2 and 3 only give the
results obtained with the proposed algorithm (labelled
PNN for "proto type-based nearest ne ighbour") , the

Table 3. Comparative results (1 NN, PNN and the best other classifier) on noisy data

Small Large

Model Cplx (Train) Acc% 4- Sdt Cplx (Train) Acc% 4- Sdt

Iris
1-NN 30.0 79.3±3.94
MLP 10.0 (86.3) 81.54-1.19
PNN 5.3 (95.0) 82.04-1.76

Diab
1 NN 29.0 82.1±3.53
RBFN 5.5 (88.6) 83.7±3.74
PNN 3.3 (93.1) 83.9±3.69

Geom
1 NN 115.0 80.4:t:2.84
RBF 16.6 (88.4) 82.2±2.79
PNN 11.9 (94.4) 81.6±2.13

Waves
1 - N N 30.0 71.74-2.79
RBFN 6.7 (94.0) 79.44-3.30
PNN 4.8 (100.0) 80.2±2.76

75.0 80.7±2.51
10.0 (83.6) 83.0±1.34
5.7 (91.2) 83.04-1.13

575.0 82.0±0.85
21.2 (87.0) 85.1±1.47
15.5 (188.8) 84.4±1.07

300.0 76.4±0.79
20.7 (87.5) 84.9±0.50
12.7 (96.3) 83.8±0.88

72.0 84.14-1.40
12.7 (92.3) 87.0±1.39
4.3 (94.1) 87.7±0.90

Classifier using prototypes 287

nearest neighbour (1 - N N) and the best classifier (in
terms of classification accuracy on test sets) selected
from among the other ones. The results include the
complexity of the model (Cplx, the number of
prototypes for the nearest neighbour algorithms and
the number of hidden units for the neural networks), the
percentage of correct classifications over the training
sets given in brackets (Train, which illustrates the
network's ability to represent the data set), accuracy
(Acc%, the percentage of correct classifications over the
t e s t sets) and its standard deviation over the 10 runs
(±Sdt).

Note that the best classifier selected in Tables 2 and 3
varies from one problem to another (from MLP to RBF
to RBFN). As can been seen, PNN offered performances
comparable to those of the best classifier--sometimes
slightly inferior, sometimes slightly superior. To be
more precise, the set of classifiers tested did not include
one which was always better than PNN whatever the
experimental conditions (data set, training set size, the
absence or presence of noise). In contrast, the complex-
ity of the PNN model (i.e. the average number of
prototypes retained) was always smaller than for the
model selected. Surprisingly, the low level of complex-
ity of the PNN models did not restrict their abilities to
represent the training data sets, as is shown by the
performances given in brackets (in Tables 2 and 3).
These performances over the training sets were always
better for PNN than for the best selected classifier.
Compared to 1 -NN, the reduced complexity of the
PNN did not decrease its ability to generalise (unlike the
classical editing methods, see Section 1). Hence PNN
performances (over test sets) were generally at least as
good as the 1 - N N ones in a noise-free context and
better in a noisy one.

4. CONCLUSIONS AND FUTURE WORKS

In the context of nearest neighbour classifiers, a lot of
work has been carried out since the 70s to improve in
the fields of computation and generalisation effi-
ciency. (1) This work is also related to more recent
studies in Machine Learning (Instance Based Learning).
Besides reducing the number of stored instances, these
algorithms also aim to be noise-resistant. (16) The
majority of the above methods are based on the selection
of a subset of training patterns. In the present work, we
propose a prototype-based approach which consists in
generating prototypical reference vectors instead of
selecting some instances from among those available.
This method is based on an optimisation process which
mixes a classical gradient descent with a deterministic
annealing process. This kind of optimisation process
cannot be used in selecting approaches because in this
latter instance, the search space is discrete.

The recent work by Yan (5) also fol lowed an
optimisation approach by using a two-layer perceptron.
However an additive process was required to map the
network back to a nearest neighbour classifier. Further-
more, no investigation has ever been made in choosing

the number and initial locations of the prototypes. In
contrast, one important issue in the present work is the
control of the effective complexity of the model (here,
the number of prototypes) to ensure good generalisation
capacities. One of the most traditional techniques for
doing this is cross-validation. It is used to compare a
range of models with different number of adaptive
parameters. The disadvantage of such an approach is
that it requires the optimisation (or training) process to
be repeated several times which, under some circum-
stances, could lead to the need for large amounts of
processing time. In the present work, we develop
heuristics to avoid this requirement. Firstly, an initi-
alisation strategy generated a reasonable set of initial
prototypes. This strategy was biased in order to provide
a good classification rate on a training set with a
minimum number of prototypes. Secondly, by its deter-
ministic annealing component, the optimisation process
was able to prune useless prototypes automatically. Our
initialisation strategy can also be used for iuitialising
other prototype-based classifiers for which the initiali-
sation problem was not really taken into account (e.g.
Kohonen's LVQ networks (4) or Yan's MLp(5)), and can
be easily adapted for RBF networks. (14)

Experiments have shown that the proposed algorithm
behaves as expected and satisfies the double objectives
of computational efficiency (by drastically reducing the
number of reference vectors to store) and generalisation
ability (by providing performances comparable to those
of the best classifier chosen from among a large set of
candidates).

Some extensions can be made to the algorithm
presented. Hence, in a recent work, (17) a reject option
has been proposed to exclude the (test) cases for which
the classification between two classes is too ambiguous.
The reject rule is based on an entropy criterion and can
easily be adapted to other prototype-based classifiers.
Some experiments have shown the efficiency of this
approach in relation to near boundary unsafe areas
generated by non-linear class boundaries, class over-
lapping and noise. In these cases, the error rate can be
reduced to half with a reasonable number of omissions.

While distance-based classifiers (including nearest
neighbour ones and RBF networks) have significant
advantages over others (such as MLR see the study by
Kramer and Leonard (is) for example), there is still a
critical problem encountered with distance-based clas-
sifiers. This problem is related to the presence of
irrelevant (or unimportant) variables in the cases where
it is impossible to distinguish relevant from irrelevant
variables a pr ior i . In these cases MLP is efficient
because the backpropagation algorithm is able to ignore
irrelevant variables. In contrast, when distance-based
classifiers have to cover a region artificially inflated by
an irrelevant variable (with substantial variance), their
required number of prototypes (or reference training
patterns or RBF units) may dramatically increase, as
may the complexity of the classification task, and
consequently the classification error rate produced by
the classifiers. To solve this critical problem, different

288 C. DECAESTECKER

approaches focussing the selection of useful features are
invest igated in the literature (19'2°) and could be adapted

for the algori thm proposed. They consis t principally of
determining appropriate feature weight ing during the
optimisat ion process.

REFERENCES

1. B. V. Dasarathy (ed.), Nearest Neighbor (NN) Norms: NN
Pattern Classification Techniques. IEEE Computer Society
Press, Los Alamitos, Caiifornia (1991).

2. C. L. Chang, Finding prototypes for nearest neighbor
classifiers, IEEE Trans. Comput. C-23, 1179-1184 (1974).

3. D. L. Reilly, L. N. Cooper and C. Elbaum, A neural model
for category learning, BioL Cybernetics 45, 35-41 (1982).

4. T. Kohonen, The self-organizing map, Proc. IEEE 9, 1464-
1480 (1990).

5. H. Yah, Prototype optimization for nearest neighbor
classifiers using a two-layer perceptron, Pattern
Recognition 2, 317-324 (1993).

6. C. Decaestecker, A prototype-based neural net classifier,
BENELEARN-94 (Proc. Belgian-Dutch Conference on
Machine Learning), Technical Report EUR-CS-94-05,
Department of Computer Sciences, Erasmus University
Rotterdam, 217-229 (1994).

7. T. Kohonen, J. Kangas, J. Laaksonen and K. Torkkola,
LVQ_PAK: A program package for correct appfication of
learning vector quantization algorithms, Proc. IEEE Int.
Joint Conf. on Neural Networks, Baltimore, 1.725-I.730
(1992).

8. T. Van de Merckt, NFDT: A system that learns flexible
concepts based on decision trees for numerical attributes,
in Machine Learning (Proceedings of the 9th International
Workshop), D. Sleeman and E Edwards, eds, pp. 322-331.
Morgan Kanfmann, Los Altos, California (1992).

9. K. Rose, E. Gm'ewitz and G. Fox, Statistical mechanics and
phase transitions in clustering, Phys. Rev. Lett. 8, 945-948
(1990).

10. K. Rose, E. Gurewitz and G. Fox, A deterministic
annealing approach to clustering, Pattern Recognition
Lett. 11, 589-594 (1990).

11. K. Rose, E. Gurewitz and G. Fox, Deterministic annealing,
constrained clustering and optimization, Proc. IEEE Int.
Joint Conf. on Neural Net., Singapore, 2515-2520 (1991).

12. D. L. Medin and L. W. Barsalou, Categorization processes
and categorical perception, in Categorical Perception: The
Groundwork of Cognition, S. Harnard, ed., pp. 455-490.
Cambridge University Press, Cambridge (1987).

13. J. R. Quinlan, C4.5: Programs for Machine Learning.
Morgan Kanfmann, San Marco, California (1993).

14. C. Decaestecker and M. Saerens, Comparisons of different
RBF networks for pattern classification, Proc. Int. Conf. on
Artificial Neural Networks (ICANN'95), Paris, 591-596
(1995).

15. L. Breiman, J. H. Friedman, R. A. Olshen and C. J. Stone,
Classification and Regression Trees. Wadsworth and
Brooks, Pacific Grove, California (1984).

16. D. W. Aha, D. Kibler and K. M. Albert, Instance-
based learning algorithms, Machine Learning 6, 37-66
(1991).

17. C. Decaestecker and T. Van de Merckt, How to "secure"
the decisions of a NN classifier, Proc. 1994 1EEE Int. Conf.
on Neural Networks, Orlando, U.S.A., 263-268 (1994).

18. M. A. Kramer and J. A. Leonard, Diagnosis using
backpropagat ion neural n e t w o r k s - - A n a l y s i s and
criticism, Comput. Chem. Engng. 14, 1323-1338
(1990).

19. D. G. Lowe, Similarity metric learning for a variable-
kernel classifier, Neural Comput. 7, 72-85 (1995).

20. E. Hartman and J. D. Keeler, Predicting the future:
Advantages of semilocal units, Neural Comput. 3, 566-
578 (1991).

About the Author--CHRISTINE DECAESTECKER obtained a Master's degree in Mathematics in 1984 from
the Universit6 Libre de Brnxelles, where she also obtained a Ph.D. in Pure Sciences in 1991. In 1992, she joined
the Institute of Interdisciplinary Research and Development in Artificial Intelligence (IRIDIA, ULB) as a
researcher, and is currently taking part in the BELON project (Integrated Research on Quantified Beliefs,
Doxatic Logics and Neural Networks). Her current research interests include data analysis, pattern recognition,
neural networks and machine learning,

