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Abstraet--A new method is presented to find prototypes for a nearest neighbour classifier. The prototype 
locations are opfimised through a gradient descent and a deterministic annealing process. The proposed 
algorithm also includes an initialisation strategy which alms to provide the maximum classification rate on the 
training set with the minimum number of prototypes. Experiments show the efficiency of this algorithm on both 
real and artificial data. Copyright © 1997 Pattern Recognition Society. Published by Elsevier Science Ltd. 
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1. INTRODUCTION 

Nearest neighbour classification is one of the best 
known pattern classification methods. This is a distance- 
based technique which classifies an unknown case by 
looking at the classes of the nearest cases in a set of 
reference instances.  It is well  known that  these 
classifiers suffer from some drawbacks such as needing 
a lot of memory and computational resources (for large 
data sets), and also from the difficulties in determining 
an optimal value for the number  of nearest neighhours to 
consider in the allocation rule (especially in a noisy 
environment). This is why numerous studies have been 
carried out on this technique since the 70s, as is shown 
by the excellent survey by Dasarathy. (1) For example, 
editing and condensing methods have been developed to 
reduce the number  of reference instances to be stored. 
However, these methods, which select some instances 
among the available ones, cannot avoid a degradation of 
the classifying performance. °) 

Another approach, initiated by Chang (2) and now 
developed in pattern classification as well as in neural 
networks, (3-5) consists of generating new prototype 
reference vectors instead of selecting reference cases 
from among the available instances. This approach is a 
kind of supervised (i.e. class-dependent) vector quanti- 
sation, called the "Lea rn ing  Vector Quant isat ion 
(LVQ)" by Kohonen (4), where a discrimination purpose 
is taken into consideration. With computational effi- 
ciency (in the classification phase) as their objective, 
prototype-based classifiers also aim to improve general- 
isation performances. It should be noted that any 
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classification approach based on nearest neighbour 
concepts makes the hypothesis that the proximity in 
the data space generally expresses the membership of 
the same class (and thus for each class, there are regions 
of instance space where the majority of cases belong to 
the given class). A data set which is in complete 
opposition to this condition cannot be treated by such an 
approach and will not be considered in the present 
paper. 

The aim of the present work is to propose a new 
prototype-based classifier for which the prototype 
locations are optimised through a gradient descent 
mixed with a deterministic annealing process. This 
ensures the distribution of the prototypes within each 
class while minimising the total classification error rate 
at the end of the process. This classifier also has a 
"natural"  implementation in terms of an artificial neural 
network similar to Kohonen's LVQ network. (4) This 
aspect will not be detailed in this paper (but can be 
found in a technical report(6)). 

One important issue of this work is the control of the 
effective complexity of the model (here, the number  of 
prototypes) to ensure good generalisation capacities. In 
practice, this means that the model complexity has to be 
optimised for a given training data set. One of the most 
frequently employed techniques (as in the case of neural 
networks) is cross-validation. However, this method 
may well require a large amount of processing time. In 
the present work, complexity control is realised without 
the use of cross-validation. Firstly, an initialisation 
strategy gives an initial set of prototypes as a function of 
the training data set. This heuristic process includes a 
pruning strategy aimed at providing the maximum 
classification rate on the training set with the minimum 
number  of prototypes. Hence, redundant prototypes are 
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eliminated and the remaining prototypes are forced to 
cover larger areas in the pattern space. The second one 
is a consequence of the optimisation process itself. This 
process is able to completely inactivate some proto- 
types. These useless prototypes must be suppressed in 
order to realise the classification task. 

Experiments show that the classification rate (on test 
data sets) of the proposed prototype-based classifier is 
as good in noise-free context as the nearest neighbour 
classifier performances and, indeed, better in the case of 
noisy data. In relation to traditional neural networks, 
Multilayer Perceptron (MLP), Radial Basis Function 
(RBF) and LVQ networks, and symbolic classifiers 
(Decision tree), the proposed classifier gives a degree of 
accuracy comparable with the best classifier. Further- 
more, the complexity of the proposed model (number of 
prototypes) is generally at its lowest when compared to 
the other classifiers (e.g. the number of hidden units for 
neural networks and the number of rules for decision 
trees). 

2. PROTOTYPE OPTIMISATION 

2.1. Initialisation strategy 

As stated in Section 1, an initialisation strategy is 
used to propose initial prototypes which will be adapted 
during the optimisation process. This strategy tries to 
generate a "reasonable" initial number of prototypes in 
accordance with the complexity control purpose ex- 
plained above. The strategy operates in three phases, 
mixing an unsupervised search for prototypes in each 
class with a supervised elimination of inaccurate 
prototypes. Firstly, a standard k-means is performed 
separately on each class, with a large number of training 
instances randomly chosen as initial centroids (in 
practice, between 10 and 20 per class, depending on 
the training set size; see the experiments). This gives a 
good chance that each cluster in the training set will be 
represented by at least one prototype. Secondly, an 
elimination rule proposed by Kohonen et aI. (7) is applied 
to discard each non-representative prototype, i.e. if the 
majority of the/c nearest neighbours of the prototype in 
the training set does not have the same class label (in 
practice, k = 3). Thirdly, a second elimination rule 
proposed by Van de Merckt (s) discards redundant 
prototypes, i.e. ones which can be eliminated without 
decreasing the classification quality of the training set 
(with respect to a nearest neighbour classifier). To do so, 
the prototypes are sorted as functions of the size of their 
corresponding cluster (number of patterns attracted in 
the training set). Following the increasing order so 
defined, the classification rate is computed on the 
training set in both the presence and the absence of each 
prototype. The prototypes which do not contribute to a 
strict increase in the classification rate are eliminated. 

2.2. Optimisation process 

Let P1,P2, . - . ,P i , . . . ,P~ be the location vectors 
(coordinates in the data space) of the prototypes 

resulting from the initialisation strategy. Each prototype 
Pi is representative of a cluster of patterns Ci inside a 
given class a priori defined in the data set. As is used by 
Rose eta/ .  (9-11) in clustering, the probability that a 
pattern X belongs to the cluster Ci is defined as follows: 

Zi(X) exp[ dai /Tl 
-- ~ k e x p [  d2/Tl, (1) 

where T is a "temperature" parameter that decreases 
during training (see Section 2.3) and di is the Euclidean 
distance (or another) between the two vectors X and Pi 
(d i = [ I X -  Pill). Equation (1) defines a Gibbs distribu- 
tion for all the possible allocations of a pattern to one of 
the n clusters defined by the prototypes. Hence the 
following propetty holds: 

Zi(X) = 1. (2) 
i 

We now define a cost function to optimise the 
prototype locations. As is usual in neural network 
approaches, the cost function is a measure of the 
classification error and is defined as a function of 
some "desired" answers imposed on the model. 
Similarly, desired probabilities Z/*(X) can be defined 
for our prototype-based model. They express the 
desired condition that a pattern, X, belongs to cluster 
Ci with zero probability if X and Pi do not belong to 
the same class.  Hence ,  let us def ine  C(X)=  
{k I prototype Pk belongs to the class of X}. Des i red  
probabilities Z[ (X) are then 

0 if i ~ C(X), 
z ; ( x )  = ( ox~!-4/~l ~ (3) 

\~k~c(x~ expE-d~/rl" if  i C C(X). 

The above definition preserves property (2) by redis- 
tributing the probabilities not equal to zero to the 
prototypes of the correct class. In the following section 
we shall see that, as the temperature decreases, the 
desired output of the prototype nearest to the correct 
class gradually comes closer to 1. 

Now let us define the cost function in terms of the 
differences between observed and desired probabilities: 

E(X) = 1-r ~ ( Z ; ( X )  - Zi(X)) 2, (4) 
2 i 

where temperature, T, is introduced in order to simplify 
the gradient expression (see equation (6)). 

Finally, the optimisation of prototype locations Pi is 
performed through an adaptive gradient procedure 
which minimises the error function given in equa- 
tion (4). After each presentation of pattern Xz+l we 
modify each prototype location, Pi, according to 

Pi(t 4- 1) = el(t) -- ~ i ( t  4- 1), (5) 

wi th  AkPi(t + 1) = - rl(t 4- 1)ViE(Xt+l) + tzZkPi(t), 
w h e r e  Vi E is the gradient of E with respect to Pi, 17(t) 
a gradient step which decreases over time and # a 
momentum term (usually fixed at 0.9). 

While desired probabilities Z* are computed as 
functions of the prototype locations (see equation (3)), 
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they are not considered in this way in the gradient 
process. The fact that the answers desired of a classifier 
depend on the values of the adaptive parameters (here, 
the prototype locations) does not make sense in an 
optimisation process. In our algorithm, it is only a 
device to obtain desired values which are coherent with 
the model and which allow the smooth adaptation of the 
parameters. In the gradient calculation these desired 
values are thus considered as constants independent of 
the prototype locations. In accordance with this 
hypothesis, we obtain (using the Kronecker notation (~ij) 

- V i E  = (X - e i )z i  (X) ~ (Z; (X) - Zj (X)) (~ij - Zj (X)). 
J 

(6) 

Let us try to interpret the adaptation rule defined by 
equation (6). Note that each prototype Pj makes a 
contribution to -VIE, in the direction of ( X -  Pi). Let 
13j be this contribution, we have 

;~j = (Z; (X) - Zj(X))(~ij - Zj(X)). 

Thus, 

(a) i f j  = i a n d j  E C(X) then ,~j > 0; 
(b) if  j i and j ¢ C(X) then/3j < 0; 
(c) i f j  ¢ i a n d j  C C(X)} then/3j < 0; 
(d) if  i ¢ j and j ¢ C(X) then/32 > 0. 

Rule (4) thus expresses three complementary effects 
on the prototypes. First, there is a classical attraction- 
repulsion effect between Pi and X (according to whether 
or not they belong to the same class, see (a) and (b)). 
The second effect (see (c)) introduces a competition 
between the prototypes of the correct class and the third 
(see (d)) expresses a discrimination effect between the 
different classes. 

2.3. Deterministic annealing 

Annealing is introduced by varying T in the above 
optimisation process, i.e. starting with a high value and 
ending with a low one (T > 0). 

We have the following properties: 

lim Zi(X) = (~ip, (7) 
T ~ 0  

where Pp is the nearest prototype to X. 

lim Z/*(X) = ~it. (8) 
T ~ 0  

where Pt is the nearest prototype to X and belongs to the 
same (i.e. correct) class. 

The annealing process starts at high T, for which all 
the probabilities, Zi, are more or less similar. The same 
observation can be made for desired probabilities Z/* not 
equal to zero in equation (3). Each input pattern thus 
influences all the prototypes of its class in a similar way, 
and (in another way) all the prototypes of the other 
classes (because Z* 0). During training, the gradual 
decrease of T increases the bias in favour of the nearest 
prototype belonging to the correct class (see equa- 
tion (8)). Thus, at low temperatures we obtain a drastic 
classifier, and error function E measures the total error 

rate of classification on the training set (by substituting 
equations (7) and (8) in equation (4)). 

Expression (1) can also be interpreted as a fuzzy 
membership function (of the cluster defined by proto- 
type Pi). The annealing process then realises a 
progressive "defuzzing" of the prototype areas of 
influence which become "crisp" (Voronoi diagram) 
when the temperature is sufficiently low (near zero). 
However, the training process is stopped if the value of 
the error function (cumulated on the whole training set) 
remains stationary (or increases again), possibly before 
total defuzzing (see the algorithm given in Section 2.4). 
This depends on the data configuration. 

In conclusion, the process distributes the prototypes 
in each class while minimising the total error rate of 
classification. Another property of annealing is that it 
helps to avoid local minima in function optimisation; 
this has been shown by previous experiments in 
clustering techniques. (9'1°'1~) 

2.4. Outline of the complete optimisation algorithm 

As stated in Section 1, the proposed optimisation 
process mixing a gradient descent and a deterministic 
annealing process is able to automatically prune the set 
of prototypes by "deactivating" some of them. This is 
principally due to the deterministic annealing compo- 
nent which progressively transforms the classifier into a 
nearest neighbour one. When T is sufficiently low, only 
the nearest prototype has a membership probability 
above zero (see equation (8)). Some prototypes may 
thus become inactive (they do not attract any training 
pattern) at the end of the optimisation process. These 
prototypes are then considered useless for the classifica- 
tion task and are eliminated. 

By way of recapitulation, the outline of the prototype 
optimisation algorithm is as follows: 

1. Choose an arbitrary set of patterns in each class as an 
initial set of prototypes. 

2. Apply the initialisation strategy (detailed in Sec- 
tion 2). 

3. Set gradient step 7(0) at a low value and temperature 
T at a high one. 

4. Make one iteration on the whole training set in 
accordance with equation (5). 

5. Decrease ~/(t). If T > Tm~n, decrease T. 
6. If the process has converged (stabilisation of the error 

function or ~](t) is too small) go to step 7, otherwise 
go to step 4. 

7. Detect and eliminate the inactivate prototypes. 

Certain issues must be specified. Hence the number of 
initial prototypes in each class depends on the size of the 
data set (see experiments). This number must be 
sufficient to allow some eliminations in the initialisation 
strategy. While the initial value of the gradient step must 
be small (e.g. r](0) 0.05), the precise value is not 
important because it decreases over time. In all our 
experiments, the decrease was fixed at 50% for each 
iteration (~ ( t+  1 ) =  0.57/(t)). The initial T value is 
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modulated as a function of the difficulty of the 
classification task (evaluated on the training set). If  the 
classification rate on the training set is already high (e.g. 
> 90%) after the initialisation strategy, the initial 
temperature must not be very high (between 20 and 
50), and conversely. In our experiments, an initial 
temperature of 100 has generally given good results for 
tasks of average difficulty. The decrease in T was fixed 
at 10% for each iteration in all our experiments. A non- 
zero Tn~, value is numerically required and depends on 
the computational capacities of the computer used. The 
algorithm did not really appear to be sensitive to all 
these internal parameter values. For example, other 
decreasing rates were tested for the gradient step and 
temperature without any significant modifications in the 
results being observed. The values proposed here 
seemed sufficiently good and did not require fine tuning 
for the various experiments. 

Theoretically, all the prototypes of a class could be 
eliminated. This would mean that this class could not be 
distinguished from any other without a decrease in the 
classification rate over the training set. One conclusion 
is that the data set had not been constructed well enough 
(regarding the choice of instances and/or descriptive 
variables) to realise the classification task by a 
prototype-based method as stated in Section 1, since 
for these data spatial proximity does not express 
membership of the same class. The user can possibly 
insert into the algorithm a rule fixing a minimum 
number of prototypes by class. (This was never required 
in our numerous experiments on real as well as artificial 
data sets.) 

3. E X P E R I M E N T S  

A number of experiments have been conducted on 
both simulated and real data. The first series concerned 

the behaviour of the proposed prototype-based classifier 
(Sections 3.1 and 3.2). The second one concerned the 
comparisons on performances with other classifiers such 
as neural networks and symbolic inductive systems 
(Section 3.3). We do not give experimental results 
related to the contribution of each component of the 
algorithm (initialisation, annealing process, etc.). They 
are detailed elsewhere. (6) 

3.1. Problem decomposition and cognitive 
interpretation 

The purpose of this experiment was to illustrate both 
how the proposed algorithm produces piecewise-linear 
decision boundaries by breaking a problem down into 
convex areas localised by the prototypes, and how the 
prototype locations can be interpreted from a cognitive 
point of view. As can be seen from the problem 
presented in Fig. 1, each prototype draws a convex 
decision surface in the pattern space. This surface 
results from the nearest neighbour competitive process. 
The combination of these individual regions constructs a 
final region for each class. The difference between the 
real frontier and the decision surface produced by the 
algorithm results from the lack of training patterns in 
some areas of the pattern space (only 200 patterns in 
each class). An extension of the proposed algorithm (see 
Section 4) will give a solution to this kind of problem. 

From a cognitive point of view, what a prototype 
really is remains an open question (semantically, of 
course). In case of their use in classification functions, 
Medin and Barsalou (12) saw prototypes as a special case 
of reference points with which they associated an 
interpretation bearing on their location in the instance 
space. They distinguish three kind of locations: (i) at the 
boundaries of categories--a reference point entails 
salient attribute values that occur at boundaries between 
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Fig. 1. (a) A two-class problem with a uniform pattern distribution (200 training patterns in each class). (b) 
Prototypes and surface breakdown produced by the algorithm. 
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categories; (ii) at the centre of categories--a prototype 
represents the central tendency of its category; (iii) at 
ideal locations--a prototype represents an ideal ex- 
emplar that may never be observed (e.g. "things to eat 
on a diet" refers to a zero-calorie food which is ideal, 
but impossible). 

It is surprising to see that the semantic interpretation 
of the prototypes produced in Fig. 1 fits the view of 
Medin and Barsalou. Hence P4 and P5 are centre 
prototypes and P2 and P3 are clear cases of ideal 
prototypes (they are located outside the range of 
possible values) while P1 and P6 are discriminant 
reference points that encode the separation line between 
instances around value 15 on the vertical axis. It is 
interesting to see that initial prototypes derived from a 
k-means and thus are centre prototypes only. The fact 
that optimised prototypes represent the three types of 
reference points is a good indication that the process 
neatly adapts the prototype locations to the nature of the 
data. This was confirmed by the experimental results on 
various data sets. (6) 

3.2. Identification o f  optimal prototypes 

This experiment tests the capacity of the proposed 
algorithm to identify the optimal locations of prototypes 
(when they exist). A three class problem (shown in 
Fig. 2) was used for this purpose. The examples in each 
class were artificially generated by Gaussian distribu- 
tions (several per class). Each Gaussian centre is shown 
by A;  each standard deviation is proportional to the 
distance between the Gaussian centre and the centre of 
the nearest Gaussian distribution. The examples gener- 
ated were attributed to the class corresponding to the 
nearest centre. The decision surfaces therefore appear as 
shown in Fig. 2 and the centre • can be considered as 
optimal locations of prototypes to describe each class. 
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This problem was submitted to the proposed algorithm 
with eight prototypes per class (a total of 24) to begin 
the initialisation strategy. Finally the algorithm only 
retained 10 prototypes (shown by - o -  in Fig. 2) 
distributed near the 9 centres • .  

3.3. Comparisons with other classifiers 

The proposed algorithm was compared to other 
classifiers from different approaches such as the 
classical linear (logistic regression), the neural network 
and the symbolic inductive learning ones (decision tree 
produced by the C4.5 algorithm of Quinlan (13~) without 
forgetting the classical k-nearest neighbour algorithm 
(with k ---- 1). The neural network classifiers include the 
MLP (with one hidden layer) and the RBF networks 
(classical RBF and normalised version RBFN, see 
Decaestecker and Saerens (14~) together with Kobonen's 
LVQ3 network (4~ (another prototype-based algorithm). 

These comparisons were conducted on artificial and 
real data sets with non-linear class boundaries, class 
overlapping and noise: 

• Iris is Fisher's well-known set containing three 
classes of 50 instances each, where a class refers to 
a type of Iris plant. 

• Diabetes contains 145 records of three different 
diagnoses of diabetes based on five numerical 
variables representing chemical tests. 

• Geometrical Data is a two-class problem defined in 
a two-dimensional space. The classes are circum- 
scribed by two circles in a square (see Fig. 3). 
Class 1 is represented by grey areas and class 2 by 
a white ring. Instances are uniformly distributed 
over the whole surface of  the square. 

• Waveforms ~15~ consist of three classes, each of 
which is a linear combination of three distinct 
waveforms. Each instance consists of a vector of 21 
continuous values. These data are thus distributed 
over a large multidimensional space. Without the 
introduction of noise, this data set is easy to 
classify, and classifiers generally realise good 
performances (near 100% of accuracy). In contrast, 
this classification is known to be a difficult 
problem when noise is present (in this latter 
instance the Bayes rule gives a classification error 
rate of 14%). 

0 20 40 60 80 100 120 140 

Fig. 2. A three-class problem with the locations of optimal 
prototypes (A) and those found (- o -) by the Ngorithm 

proposed. Fig. 3. Geometrical data (two-class problem). 
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Table 1. Experimental conditions for the four data sets tested 

Data Dim Classes Training Test Centroids 

Iris 4 3 30/75 120/75 9/24 
Diabetes 5 3 29/71 116/74 9/24 
Geometric aI 2 2 115/575 1000/1000 12/24 
Waves 21 3 30/300 5000/5000 9/24 

Table 2. Comparative results (1-NN, PNN and the best other classifier) on non-noisy data 

Small Large 

Model Cplx (Train) Acc% ± Sdt Cplx (Train) Acc% ± Sdt 

Iris 
1 - N N  30.0 94.2±2.39 75.0 94.74-1.65 
MLP 10.0 (98.3) 96.8±1.60 10.0 (97.9) 96.0±2.15 
PNN 5.3 (99.3) 93.8±3.21 5.4 (98.5) 95.6±2.15 

Diab 
1-NN 29.0 95.7±1.78 72.0 97.3±1.45 
RBFN 6.5 (97.9) 95.8±2.16 15.0 (98.9) 98.0±1.84 
PNN 3.0 (100.0) 98.3±1.16 3.0 (100.0) 99.1±0.87 

Geoff/ 
1-NN 115.0 90.3±1.36 575.0 95.5±0.58 
RBF 17.7 (96.6) 92.0±2.03 22.4 (95.6) 95.04-2.42 
PNN 13.4 (99.7) 90.4±1.72 18.9 (98.7) 95.2&0.65 

Waves 
1-NN 30.0 92.5±2.79 300.0 99.4±0.19 
MLP 10.0 (99.2) 92.1±3.60 10.0 (99.6) 98.9±0.59 
PNN 4.8 (100.0) 94.4±2.48 3.1 (100.0) 99.6±0.17 

Each data set was tested with two different amounts  
o f  training data (small and " reasonab le"  in quantity, see 
Table 1), before  and after the introduction of  noise. A 
Gauss±an noise on each attribute was added artificially, 
excep t  for geomet r ica l  data for wh ich  noise  was 
introduced by overlapping the classes. 

For  each data set, 10 exper iments  (or runs) were 
pe r fo rmed  with independent  training and test  sets 
(cross-validation-like process).  The results given were  
averaged over the 10 runs (see Tables 2 and 3). Table 1 

gives a summary of  the experimental  conditions relating 
to the d imension of  the pattern space (Dim), the number  
o f  classes, the two different sized training and test sets 
and the corresponding numbers  of  initial centroids 
submit ted to the initial±sat±on strategy. Our initial±sat±on 
strategy was also used for the LVQ3, and slightly 
adapted for the RBF, networks.  (~4~ 

In the interest o f  clarity, Tables 2 and 3 only give the 
results obtained with the proposed algorithm (labelled 
PNN for "proto type-based  nearest  ne ighbour") ,  the 

Table 3. Comparative results (1 NN, PNN and the best other classifier) on noisy data 

Small Large 

Model Cplx (Train) Acc% 4- Sdt Cplx (Train) Acc% 4- Sdt 

Iris 
1-NN 30.0 79.3±3.94 
MLP 10.0 (86.3) 81.54-1.19 
PNN 5.3 (95.0) 82.04-1.76 

Diab 
1 NN 29.0 82.1±3.53 
RBFN 5.5 (88.6) 83.7±3.74 
PNN 3.3 (93.1) 83.9±3.69 

Geom 
1 NN 115.0 80.4:t:2.84 
RBF 16.6 (88.4) 82.2±2.79 
PNN 11.9 (94.4) 81.6±2.13 

Waves 
1 - N N  30.0 71.74-2.79 
RBFN 6.7 (94.0) 79.44-3.30 
PNN 4.8 (100.0) 80.2±2.76 

75.0 80.7±2.51 
10.0 (83.6) 83.0±1.34 
5.7 (91.2) 83.04-1.13 

575.0 82.0±0.85 
21.2 (87.0) 85.1±1.47 
15.5 (188.8) 84.4±1.07 

300.0 76.4±0.79 
20.7 (87.5) 84.9±0.50 
12.7 (96.3) 83.8±0.88 

72.0 84.14-1.40 
12.7 (92.3) 87.0±1.39 
4.3 (94.1) 87.7±0.90 
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nearest neighbour ( 1 - N N )  and the best classifier (in 
terms of classification accuracy on test sets) selected 
from among the other ones. The results include the 
complexity of the model  (Cplx, the number of 
prototypes for the nearest neighbour algorithms and 
the number of hidden units for the neural networks), the 
percentage of correct classifications over the training 
sets given in brackets (Train, which illustrates the 
network's ability to represent the data set), accuracy 
(Acc%, the percentage of correct classifications over the 
t e s t  sets) and its standard deviation over the 10 runs 
(±Sdt). 

Note that the best classifier selected in Tables 2 and 3 
varies from one problem to another (from MLP to RBF 
to RBFN). As can been seen, PNN offered performances 
comparable to those of the best classifier--sometimes 
slightly inferior, sometimes slightly superior. To be 
more precise, the set of classifiers tested did not include 
one which was always better than PNN whatever the 
experimental conditions (data set, training set size, the 
absence or presence of noise). In contrast, the complex- 
ity of the PNN model (i.e. the average number of 
prototypes retained) was always smaller than for the 
model selected. Surprisingly, the low level of complex- 
ity of the PNN models did not restrict their abilities to 
represent the training data sets, as is shown by the 
performances given in brackets (in Tables 2 and 3). 
These performances over the training sets were always 
better for PNN than for the best selected classifier. 
Compared to 1 -NN,  the reduced complexity of the 
PNN did not decrease its ability to generalise (unlike the 
classical editing methods, see Section 1). Hence PNN 
performances (over test sets) were generally at least as 
good as the 1 - N N  ones in a noise-free context and 
better in a noisy one. 

4. CONCLUSIONS AND FUTURE WORKS 

In the context of nearest neighbour classifiers, a lot of 
work has been carried out since the 70s to improve in 
the fields of computation and generalisation effi- 
ciency. (1) This work is also related to more recent 
studies in Machine Learning (Instance Based Learning). 
Besides reducing the number of stored instances, these 
algorithms also aim to be noise-resistant. (16) The 
majority of the above methods are based on the selection 
of a subset of training patterns. In the present work, we 
propose a prototype-based approach which consists in 
generating prototypical reference vectors instead of 
selecting some instances from among those available. 
This method is based on an optimisation process which 
mixes a classical gradient descent with a deterministic 
annealing process. This kind of optimisation process 
cannot be used in selecting approaches because in this 
latter instance, the search space is discrete. 

The recent work by Yan (5) also fol lowed an 
optimisation approach by using a two-layer perceptron. 
However an additive process was required to map the 
network back to a nearest neighbour classifier. Further- 
more, no investigation has ever been made in choosing 

the number and initial locations of the prototypes. In 
contrast, one important issue in the present work is the 
control of the effective complexity of the model (here, 
the number of prototypes) to ensure good generalisation 
capacities. One of the most traditional techniques for 
doing this is cross-validation. It is used to compare a 
range of models with different number of adaptive 
parameters. The disadvantage of such an approach is 
that it requires the optimisation (or training) process to 
be repeated several times which, under some circum- 
stances, could lead to the need for large amounts of 
processing time. In the present work, we develop 
heuristics to avoid this requirement. Firstly, an initi- 
alisation strategy generated a reasonable set of initial 
prototypes. This strategy was biased in order to provide 
a good classification rate on a training set with a 
minimum number of prototypes. Secondly, by its deter- 
ministic annealing component, the optimisation process 
was able to prune useless prototypes automatically. Our 
initialisation strategy can also be used for iuitialising 
other prototype-based classifiers for which the initiali- 
sation problem was not really taken into account (e.g. 
Kohonen's LVQ networks (4) or Yan's MLp(5)), and can 
be easily adapted for RBF networks. (14) 

Experiments have shown that the proposed algorithm 
behaves as expected and satisfies the double objectives 
of computational efficiency (by drastically reducing the 
number of reference vectors to store) and generalisation 
ability (by providing performances comparable to those 
of the best classifier chosen from among a large set of 
candidates). 

Some extensions can be made to the algorithm 
presented. Hence, in a recent work, (17) a reject option 
has been proposed to exclude the (test) cases for which 
the classification between two classes is too ambiguous. 
The reject rule is based on an entropy criterion and can 
easily be adapted to other prototype-based classifiers. 
Some experiments have shown the efficiency of this 
approach in relation to near boundary unsafe areas 
generated by non-linear class boundaries, class over- 
lapping and noise. In these cases, the error rate can be 
reduced to half with a reasonable number of omissions. 

While distance-based classifiers (including nearest 
neighbour ones and RBF networks) have significant 
advantages over others (such as MLR see the study by 
Kramer and Leonard (is) for example), there is still a 
critical problem encountered with distance-based clas- 
sifiers. This problem is related to the presence of 
irrelevant (or unimportant) variables in the cases where 
it is impossible to distinguish relevant from irrelevant 
variables a pr ior i .  In these cases MLP is efficient 
because the backpropagation algorithm is able to ignore 
irrelevant variables. In contrast, when distance-based 
classifiers have to cover a region artificially inflated by 
an irrelevant variable (with substantial variance), their 
required number of prototypes (or reference training 
patterns or RBF units) may dramatically increase, as 
may the complexity of the classification task, and 
consequently the classification error rate produced by 
the classifiers. To solve this critical problem, different 
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approaches focussing the selection of  useful features are 
invest igated in the literature (19'2°) and could be adapted 

for the algori thm proposed.  They consis t  principally of  
determining appropriate feature weight ing during the 
optimisat ion process.  
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