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Existing clasdficaion and rule leaning agorithms in madine learning mainly use heuristic/greedy
seach to find a subset of regularities (e.g., adedsiontreeor aset of rules) in datafor classfication. In
the past few years, extensive reseach was dore in the database community on leaning rules using
exhaustive search under the name of association rule mining. The objedive thereisto find al rulesin
data that satisfy the user-spedfied minimum suppat and minimum confidence Although the whale
set of rules may not be used diredly for accurate dassficaion, effedive and efficient classifiers have
been bult using the rules. This paper aims to improve such an exhaustive search based clasdficaion
system CBA (Classification Based on Associations). The main strength of this g/stem isthat it is able
to use the most acaurate rules for classficaion. However, it also has weaknesses. This paper propases
two new techniques to ded with these weaknesses. This results in remarkably accurate dasdfiers.
Experiments on a set of 34 kenchmark datasets show that on average the new techniques reduce the
error of CBA by 17% and is superior to CBA on 26 d the 34 dhtasets. They reduce the aror of the
dedsion tree dasdgfier C4.5 by 19%, and improve performance on 29datasets. Similar good results
are dso adiieved against the existing clasdfication systems, RIPFER, LB and a Naive-Bayes
clasdfier.

INTRODUCTION

Building effective dassificaion systems is one of the ceitral tasks of data mining and
machine learning. Past research has produced many tedhniques (e.g. dedsion trees [Q92], rule
learning [CN89, C95] and Naive-Bayes classification [DH73]) and systems (e.g., C4.5[Q92],
CN2 [CN89], and RIPFER [C99]). The existing techniques are, however, largely based on
heuristic/greedy search. They aim to find anly a subset of the regularities (e.g., adedsiontreeor
aset of rules) that exist in datato form a dassifier.
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In the past few yeas, the database community studied the problem of rule learning
extensively under the name of association rule mining [AS94]. The study there is focused on
using exhaustive search to find all rulesin data that satisfy the user-spedfied minimum suppat
(minsup) and minimum confidence (minconf). Many efficient algorithms are reported. The most
important oneisthe Apriori algorithm in [AS94].

Clealy, bah the computational complexity and the number of rules produced grow
exporentialy for association rule mining. minsup hdds the key for the success of the model. In
the next section, we will give an overview of association rule mining.

Although the complete set of rules may not be directly used for accurate dasgfication,
effedive and efficient classfiers have been bult using the rules, eg., CBA [LHM98], LB
[MW99] and CAEP [DZWL99], GAC [LLO0Q], and ADT [WZHO0Q]. The mgjor strength of such
systems is that they are &le to use the most acarrate rules for classification because their rule
learners aim to find all rules. This explains their good performance in general. However, they
aso have some wedknesses, which they inherit from association rule mining.

1. Traditiona asoociation rule mining uses only a single minsup in rule generation, which is
inadequate for unbalanced class distribution (thiswill be dea later) [LHM99].

2. Classification data often contains a huge number of rules, which may cause mbinatorial
explosion. For many datasets, the rule generator is unable to generate rules with many
condtions, while such rules may be important for accurate classification.

This paper aims to improve the CBA system (Classification Based on Associations) by
deding diredly with the @ove two problems. It tacles the first problem by using multiple class
minsups in rule generation (i.e., each classis assigned a different minsup), rather than using
only a single minsup as in CBA. This results in a new version of the system cdled CBA(2).
CBA(2) isincluded as a new function (using multi ple minimum class sipports) in the CBA data
mining system, which can be downloaded from http://www.comp.nnis.edu sg/~dm2.

Experiments on a set of 34 benchmark problems from UCI madine learning repodtory
[MM96] show that on average CBA(2) adiieves lower error rate than CBA, C4.5 (tree ad
rules), the Naive-Bayes clasdfier (NB), LB and RIPFER (CAEP, GAC and ADT are not
avail able for comparison). CBA(2) is also efficient and scales well on large datasets, which is a
key feaure of association rule mining [AS94].

The seaond problem is more difficult to deal with drectly as it is caused by exporential
growth of the number of rules. We deal with it indirectly. We try to find another classification
technique that is able to help when some rules from CBA(2) are nat acaurate. The decision tree
method [Q92] is a clear choice because decision trees often go very deep, i.e., using many
condtions. We then propose atechnique to combine CBA(2) with the decision tree method as
in C4.5, and the Naive-Bayes method (NB). NB is included because it comes free (the
probability estimates required by NB can be obtained from the rules of CBA(2) with no extra
computation) andit also performs very well on many datasets [DP97].

The basic ideaof our combination technique is to use the rules of CBA(2) to segment the
training data and then select the classifier that has the lowest error rate on each segment to
classify the future cases falling into the segment. This approad is proposed because we believe
that different segments of the data may have diff erent charaderistics, and are thus more suitable
for different classifiers. It isalso well known that different classfiers have different strengths.

The resulting compasite method performs remarkably well. 1t reduces the eror of CBA(2)
by 14% andis superior to CBA(2) on 280of the 34 datasets. It reduces the error of C4.5tree(or
rules) by 18% (or 19%), and improves performance on 27 (or 29) datasets. Similar good results
are dso achieved against CBA, RIPFER, NB, and LB. The composite method's results are
comparable with those of C4.5 with boosting [FS96]. The method is dso fast because the
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dedsiontree and the NB methods are very efficient. They do nd add much to the running time
of CBA(2).

2. RELATED WORK

Our CBA(2) system is different from existing leaning or classification systems, such as
C4.5[Q92], CN2 [CN89], and RIPFER [C95]. These systems all use heuristic search to lean a
subset of the regularities in datato build aclassifier. CBA(2) (or CBA)'sruleleaner isbased on
exhaustive search and aims to find all rules. Its rule selection tedhnique in classifier building is
related to the traditional covering method [M80], which is used in, e.g., IREP [FW94] and
RIPFER [C95]. The covering method works as follows: A rule set is built in a greedy fashion,
one rule & atime. After arule is found al examples covered by the rule are removed. This
processrepeats until there are no training examples left. The key diff erence between the method
in CBA(2) and the covering method is in the rules that they use. CBA(2) leans all rules from
the entire training data using exhaustive search, while eat rule in the covering method is learnt
using a heuristic method from the remaining data dter the examples covered by previous rules
are deleted. Although in SLIPFER [CS99], the covered examples are not deleted, they are
assgned lower weights in the subsequent rule leaning using boacsting. Rules learnt from these
existing methods may nat refled the true regularities of the original data. Further, sincethey all
use heuristic methods to find rules, many high guality rules may naot be found.

Severa researchers, e.g., Rymon [R96], Webb [W93], and Murphy and Pazzani [MP94]
have tried to build classifiers by performing extensive seach. None of them uses the association
mining techniqueto find all rules with minsup and minconf constraints.

In data mining, Bayardo [B97] uses an association rule miner to generate high confident
rules (greaer than 90%). Ali, Manganaris & Srikant [AMS97] uses an association rule miner to
find rules that can describe individual classes. Both works are not concerned with building
classifiers.

LB [MW99], CAEP [DZWL99], GAC [LLOO] and ADT [WZHO0Q] are some other existing
classification systems using association rules apart from CBA. LB and CAEP are based onrule
aggregation rather than rule selection as in CBA and CBA(2). They also do not combine with
other methods. GAC uses a RDBMS system to help buld classifiers efficiently. ADT studies
using associationrulesto build decisiontrees.

Regarding combining multiple learning methods, Quinlan [Q94] reports a ampasite method
for predict continuous values (rather than discrete classes, which is our task) using instance
based and model-based methods.

Kohavi [K96] reports a hybrid system of NB and cecision tree The algorithm is smilar to
the decision treebuil ding algorithm, except that the leaf nodes created are NB classfiersinstead
of nodes predicting a single class. It uses a validation set to determine when NB will form a
leaf. Our methodis different. We do na integrate diff erent techniques at the agorithm level, but
only compare the eror rates of individual classifiers on the training data to decide when each
classifier should be used.

Littlestone & Warmuth [LW89] proposed severa weighted majority algorithms for
combining different classifiers. [CS93] adapts their methods and learns the weights using a
validation set. It aso has a tedhnique that leans an arbiter to arbitrate among predictions
generated by different classifiers. However, the evaluation was only dore on a few datasets.
Similar work in this direction includes gacked generation [W92], and combining multiple rule
sets using Bayesian utility theory [AP96]. Our method is simpler. When to use which classifier
is determined using the training data. No combination a arbitrationis done at testing time.
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3. ASSOCIATION RULE MINING FOR CLASSIFICATION

Asciation rule mining was first proposed to find all rules in a basket data (also cdled
transaction data) to analyze how items purchased by customers in a shop are related (one data
record per customer transaction). The model isasfollows[AS94]:

Let | ={iy, is ..., im} beaset of items. Let D be aset of transactions (the dataset), where
ead transaction d (a data record) is a set of items such that d I 1. An association rule is an
implication d theform, X - Y, whereX O I, YOI, andX n Y=0. Therule X - Y hddsinthe
transaction set D with confidence c if ¢c% of transactionsin D that support X also suppat Y. The
rule has support sin D if s% of transadionsin D contains X O Y.

Given a set of transactions D (the dataset), the problem of mining association rules is to
discover al rules that have support and confidence greaer than the user-spedfied minimum
suppat (caled minsup) and minimum confidence (cdled minconf). Association rule mining
does not have afixed target. That is, any item can appear on the right-hand-side or the left-hand-
sideof arule.

One of the efficient algorithms for mining association rules is the Apriori algorithm given in
[AS94]. It generatesall rulesin two steps:

1. Findall the frequent itemsets that satisfy minsup.
2. Generate dl the association rules that satisfy minconf using the frequent itemsets.

Anitemset is a set of items. A frequent itemset is an itemset that has support above minsup.
Mining of frequent itemsetsis dorein alevel-wise fashion. Let k-itemset denote an itemset of k
items. At level 1, dl frequent 1-itemsets are found. At level 2, all frequent 2-itemsets are found
and so on.If an itemset is not frequent at level k-1, it is discarded as any addition d itemsto the
set cannot be frequent (thisis called the downward closure property). At level k, al potentially
frequent itemsets (candidate itemsets) are generated from frequent itemsets at level k-1. To
determine which o the candidate itemsets are atually frequent, the dgorithm makes one pass
over the data to count their supports. After all frequent itemsets are found, it generates rules,
whichisrelatively simple.

Clealy, bah the computationd complexity and the number of rules produced grow
exporentially for association rule mining. In the worst case, the number of itemsetsis 2" where
n is the total number of items in the data. For example, in a supermarket situation, n is the
number of items ld in the supermarket, which can be thousands or more. minsup makes
asciation rule mining practical. However, for classification, we often need to set minsup very
low. This can cause combinatorial explosion.

Mining association rules for classification: The Apriori agorithm finds association rulesin a
transaction data of items. A classification dataset, however, is normaly in the form of a
relational table, which is described by a set of distinct attributes (discrete and continuots).
Each data record (or example) is also labeled with a class. The table form data can be
converted to transadion dita & follows: As assciation rule mining does not hande
continuaus values but only individual items, we first discretize each continuaus attribute into
intervals. After discretization, we can transform ead data record to a set of (attribute, value)
pairs and a classlabel, which is in the transadion form. A (attribute, value) pair is an item.
Discretization d continuous attributes will not be discussed in this paper, as there ae many
exigting algorithms for the purpose (e.g., [FI93]; [DKS95]).

To generate dl rules for clasdfication, we dso need to make some modifications to the
Apriori algorithm because a dataset for classification hes a fixed target, the dass attribute.
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Thus, we only need to generate thase rules of the form X - ¢, where ¢ is a possble dass
We all such association rules the class association rules (CARS).

It is essy to modify the Apriori algorithm to generate CARs. We will not discuss it here
(see [LHM98] for details). For the purpose of classification, rule pruning may be performed
to remove those overfitting rules, which are rules with many condtions and covering only a
few datareoords.

Pruning therules: In CBA, pruning is dore using the pessimistic error based methodin C4.5.
It prunes arule r as follows: If rule r's pessimistic eror rate is higher than the pessimistic
error rate of ruler™ (obtained by deleting one ndition from the condtions of r), then rule r
ispruned. See[Q92] for the computation of the method.

4, CLASSIFIER BUILDING IN CBA

After all rules (CARs) are found,a dassifier is built using the rules. Clealy, there are many
possible methods to build a dassfier from the rules. In CBA, a set of high confidence rulesis
selected from CARs to form a dassifier (this method is dso used in CBA(2)). The sdlection of
rulesisbased on atotal order defined ontherules.

Definition: Given two rules, r; and rj, ri @ r; (also cdled r; precedes r; or r; has a higher
precedencethan ;) if
1. theconfidenceof r;is greater than that of r;, or
2. their corfidences are the same, but the support of r; is greder than that of r;, or
3. bath the confidences and supparts of ri andr; are the same, but r; is generated earlier than
.

Let R be the set of CARs, and D the training data. The basic ideaof the dassifier-building
algorithm in CBA is to chocse aset of high precadencerulesin R to cover D. This methodis
related to the traditional covering method. However, there is a magjor difference, as we will see
later in therelated work. A CBA classifier is of the form:

<ry, ry ..., Iy, default_class>

wherer; O R ra @ryif b > a. In clasgfying an urseen case, the first rule that satisfies the cae
classifies it. If no rule gplies to the cae, it takes the default class (default_class). A simple
version of the algorithm for building such a classifier isgivenin Figure 1.

R = sort(R); /* according the precedence ¢ */
for eachruler O Rin sequencedo
if there are ill training examplesin D AND r classifies
at least one example crrectly then
delete dl training examples covered by r from D;
addr to the classifier
end
end
add the mgjority classas the default class to the classifier.

Figure 1. A smple dassifier-buil ding algorithm
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This agorithm can be easily implemented by making one pass through the training data for
ead sdlected rule. However, thisis extremely inefficient for large datasets. [LHM98] presents
an efficient algorithm. It makes at most two passes through the data.

5. IMPROVING CBA
51 Using Multiple Minimum Class Supports

The most important parameter in association rule mining is the minsup. It controls how
many rules and what kinds of rules are generated. The CBA system follows the original
asciation rule model and uses a single minsup in its rule generation. We ague that this is
inadequate for mining of CARs because many pradicd classification datasets have uneven class
frequency distributions. Using a single minsup will result in one of the following two problems:
1. If we set the minsup value too high, we may nat find sufficient rules of infrequent classes.

2. If we set the minsup value too low, we will find many useless and overfitting rules for
frequent classes.

More details about the problems can be found in [LHM99]. Let us use an example to
illustrate. Suppose adataset has 2 classes, Y and N, with freqDistr(Y) = 98% and freqDistr(N) =
2%. If we set minsup = 3%, we will not find any rule of classN. To solve the problem, we need
to lower down the minsup. Suppacse we set minsup = 0.2%. Then, we may find many overfitting
rules for class Y because minsup = 0.2% is too low for class Y. To solve the two problems,
CBA(2) adopts the foll owing (multiple minimum class supports):

minsup;: For each classc;, a diff erent minimum class support is assigned. The user only gives a
total minsup, denoted by t_minsup, which is distributed to each classaacording to their class
distributions as foll ows:

minsup =t_minsup x fregDistr(c)

The formula gives frequent classes higher minsups and infrequent classes lower minsups.
This ensures that we will generate sufficient rules for infrequent classes and will not produce
too many overfitting rules for frequent classes.

Regarding mincontf, it has lessimpad onthe dassifier quality aslong asit is not set too high
since we dways choose the most confident rules. Experiments on the 34 datasets show that on
average CBA(2)'s error rate is lower than that of CBA, C4.5 (tree & rules), RIPFER, NB, and
LB.

52 Seeking Help From Other Techniques

As we mentioned earlier, for many highly correlated datasets the rule generator is unable to
generate rules with many condtions (i.e., long rules) due to combinatoria explosion. When
such long rules are important for classification, air classifiers suffer. Here, we propose a
combination technique to reducethe effect of the problem. The @m isto combine CBA(2) with
a method that is able to find long rules. Clearly, the dedsion tree method [Q92] is a natura
choice because decision trees often go very deep, i.e.,, using many condtions. Experiment
results show that this strategy is extremely effedive. In ou implementation, we dso include the
Naive-Bayes method (NB) as NB comes free from CBA(2) (the probabilities needed by NB are
al contained in the 1-condtionrules of CBA(2)).
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The decision tree and NB methods will not be discussed here, as they are well known [Q92]
[DH73,DP97]. Both methods are also very efficient.

The proposed combination method is based on the competition of different clasdfiers on
different segments of the training data. For easy understandng, the dgorithm below is
presented as a combination of three dassifiers. In fact, the framework can be used to combine
any number of classifiers (seethe experiments sedion). The key ideais to use one dassifier to
segment the training data, and then choose the best classifier to classify each segment.

Let A be the dassifier built by CBA(2), T be the decision tree built by C4.5,and N be the
Naive-Bayes classifier. We use the rules in A from CBA(2) to segment the data*. For the set of
training examples covered by aruler; in A (default_classis treated as a rule with no condtion),
we dhocse the dassifier that has the lowest error onthe set of examples to replacer;. That is, if
ri has the lowest error, we keep r;. If T has the lowest error, we use T to replacer;. If r; is
replaced by T, then in testing when atest case satisfies the cnditions of r;, it is classified by T
instead of r;. The same gpliesto N. The dgorithmisgivenin Figure 2.

1 construct thethreeclassifiers, A, T, N;
2 for eachtraining example e do

3 findthefirst ruler;in A that coverse

4 if r; classifies ewrongly then Error; = Error; + 1 end

5 if T classifiesewrongly then Error;t = Error;t+ 1 end

6 if N clasdgfiesewrongly then Error;y = Error;y+ 1 end

7 endfor

8 for eachruler; (X - ¢)inRdo /*Xisthe set of conditions*/
9 if Error; < Error;tand Error; < Error; y then

10 keepr;

11 elsaf Errorit < Error;ythen use X - (useT) toreplacer;
12 elseuse X — (use N) toreplacer;

13 end

14 endfor

Figure 2. The mmbination algorithm

From line 3-6, we compute the number of errors made by r;, T, and N on the training
examples covered by eadr;. Error;, Error;r and Error; y areinitialized to 0. From line 8-14, we
use T (or N) to replacer; if T (or N) resultsin fewer errors on the training examples covered by
ri. X » (useT) meansthat in tegting if atest case satisfies X (the wnditions of r;), T will be used
to classify the case.

The dgorithm is O(JA|M), where [A] is the number of rules in A, and M is the number of
training examples. M dominates the computation asit is normally much larger than |A|.

6. EXPERIMENTS

We now compare the dassifiers built by CBA(2), CBA, C4.5 (tree ad rules) (Release 8),
RIPFER, NB, LB, and various combinations of CBA(2), C4.5and NB. RIPFER is arule based
classifier, while LB is a Bayesian classifier using association rules. The evaluations are done on
34 datasets from UCI ML Repository [MM96]. We dso used Boosted C4.5 (the ode is

1 We dso tried to use other classfiers, e.g., C4.5, NB and RIPPER to segment the data, but the results are not
satisfadory. We believe the reason is that these systems do not have the obvious problem of short-rules of CBA(2).
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obtained from Zijian Zheng [ZW99]) in our comparison. C4.5 RIPFER and LB are obtained
from their authors. We ran the systems using their default settings. We could nat compare our
system with existing classfier combination methods (seethe Related Work section) as we were
unable to dbtain the systems.

In al the experiments with CBA(2), minconf is st to 50%. For t_minsup, it is more
complex. t_minsup has a strong eff ect on the quality of the classifier produced. In general, lower
t_minsup gives more acurate dassifiers. However, for certain datasets, higher t_minsups are
better. From our experience, orcet_minsup is lowered to 1-2%, the dassifier built is aready
very acarrate. In the experiment results reported below, we sett_minsup to 1%.

Since dassification data often contains a huge number of rules, which may cause
combinatorial explosion, we set a limit of 80,000 on the total number of rules. 24 of the 34
datasets used cannot be cmpleted within this limit. However, the dassifiers constructed are
arealy quite accurate. In fact, when the limit reaches 60,000 (we tried different limits), the
acaracy of the resulting classfiers startsto stahilize.

Discretization of continuous attributes is done using the entropy methodin [FI93]. The code
is taken from MLC++ [KIJLMP94]. No discretization is applied to the data when running C4.5,
bocsted C4.5 and RIPFER. In all experiments, CBA, C4.5, RIPFER, LB, and Boosted C4.5
parameters have their default values. Experiment results are shown in Table 1. The error rates
on the first 26 datasets are obtained from 10-fold crossvalidation, while on the last 8 datasets
they are obtained from the test sets provided in UCI Repasitory (which are commonly used in
evaluation). All the compasite methods involving C4.5 wses C4.5 treedue to its efficiency.

Table 1: Experiment Results

1 2 3 4 5 6 7 8 9 10 11 12 13
CBA(2) CBA(2)+

ca5 | cas5 c4.5+ [CBA(2)|cBA(2)| + C4.5 | |Boosted| Boosted

CBA(2)] CBA | tree | rules |RIPPER| NB LB NB +NB [+C45]| +NB C4.5 C4.5

err (%) | err (%) | err (%) ] err (%) ]|err (%)|err (%)]err (%)[err (%)]err (%)]|err (%)]err (%)] | err (%) | err (%)
1 anneal CV-10 2.1 3.6 7.5 5.2 4.6 2.7 3.6 7.6 2.1 2.2 2.8 4.3 1.4
2 australian CV-10 14.6 13.4 14.8 15.3 15.2 14.0 13.5 14.6 14.2 14.2 14.2 15.9 13.5
3 auto CV-10 19.9 27.2 17.6 19.9 23.8 32.1 28.1 19.0 18.5 20.9 18.5 15.1 18.5
4 breast-w CV-10 3.7 4.2 5.6 5.0 4.0 2.4 2.7 5.6 3.2 3.0 2.4 3.1 2.2
5 cleve CV-10 17.1 16.7 21.5 21.8 21.1 17.1 17.1 21.8 16.8 17.5 17.5 20.5 18.2
6 crx CV-10 14.6 14.1 15.0 15.1 14.6 14.6 12.9 15.1 14.5 14.2 14.3 15.7 13.6
7 diabetes CV-10 25.5 253 26.1 25.8 253 24.4 24.4 25.7 24.9 24.8 22.0 29.4 25.2
8 german CV-10 26.5 26.5 28.4 27.7 27.8 24.6 24.7 28.6 25.5 25.2 24.9 28.5 24.8
9 glass CV-10 26.1 27.4 30.4 31.3 35.0 29.4 30.8 28.5 26.5 29.5 29.5 24.7 28.0
10 heart CV-10 18.1 18.5 21.8 19.2 19.6 18.1 18.2 21.1 18.1 17.4 17.0 20.7 20.0
11 hepatitis CV-10 18.9 15.1 18.2 19.4 175 15.0 15.6 18.2 175 16.2 16.2 175 18.2
12 horse CV-10 17.6 18.7 14.7 17.4 14.7 20.6 20.7 13.1 17.4 17.1 17.1 18.7 16.0
13 hypo CV-10 1.0 1.7 0.7 0.8 0.8 1.5 1.6 1.0 1.1 0.9 0.9 1.1 0.9
14 ionosphere cv-10 7.7 8.2 10.5 10.0 11.4 12.0 8.8 10.8 8.3 8.3 8.3 6.8 8.3
15 iris CV-10 5.3 7.1 4.7 4.7 5.3 6.0 5.3 4.7 5.3 2.7 2.7 5.3 2.7
16 labor CV-10 13.7 17.0 22.3 20.7 16.5 14.0 12.3 19.0 13.7 12.0 12.0 8.3 8.3
17 led7 CV-10 28.1 27.8 30.5 26.5 30.8 26.7 26.6 25.7 26.7 27.0 26.1 26.2 25.1
18 lymph CV-10 22.1 19.6 23.8 26.5 20.8 24.4 19.7 23.2 22.1 17.6 17.6 18.3 16.9
19 pima CV-10 27.1 27.6 25.8 24.5 26.3 24.5 24.7 25.4 26.1 22.7 22.0 27.3 24.1
20 sick CV-10 2.8 2.7 1.1 1.5 1.9 3.9 3.0 1.1 3.0 1.9 1.9 13 1.7
21 sonar CV-10 22.5 21.7 28.4 29.8 27.9 23.0 24.0 27.9 22.5 23.0 21.6 20.2 23.0
22 tic-tac-toe CV-10 0.4 0.1 13.8 0.6 2.4 30.1 32.1 14.5 0.2 0.2 0.2 3.3 0.2
23 vehicle CV-10 31.0 31.3 28.5 27.4 314 40.1 30.5 28.4 31.0 29.8 34.3 24.3 29.0
24 waveform21 cv-10 20.3 20.6 22.8 21.9 20.5 19.3 175 23.0 20.0 17.7 17.7 18.2 16.0
25 wine CV-10 5.0 8.4 7.3 7.3 8.5 9.5 1.7 7.8 5.0 5.0 5.0 4.0 4.5
26 zoo CV-10 3.2 5.4 7.8 7.8 11.0 13.7 5.8 2.0 2.9 2.9 2.9 0.0 2.9
27 Adult test 16.7 14.4 14.6 14.1 15.6 15.8 14.2 14.0 14.0 14.9 13.9 16.2 16.2
28 Chess test 2.0 1.9 0.5 1.1 1.9 12.9 7.2 0.5 2.2 0.3 0.3 0.3 0.2
29 DNA test 10.3 15.4 7.3 6.9 8.3 6.6 7.3 6.7 7.5 8.3 7.9 5.3 6.2
30 Letter test 30.0 29.5 12.3 13.7 15.2 25.0 16.1 12.3 24.5 14.0 13.8 5.2 8.9
31 Satimage test 14.6 15.9 14.6 14.8 15.1 18.0 13.5 14.4 14.5 14.0 14.1 10.3 12.3
32 Segment test 6.0 6.8 6.0 6.6 7.8 6.2 5.6 5.7 4.6 3.8 3.8 3.1 4.2
33 Soybean Big test 7.5 7.5 10.5 9.6 9.2 6.1 8.8 10.5 6.6 7.0 7.0 6.1 7.0
34 Waveform40 test 24.3 24.4 29.6 30.5 26.8 21.7 21.4 29.2 23.1 23.2 23.2 20.9 23.1
Average 14.9] 155| 16.0] 15.6] 15.8| 16.9] 15.3] 155 14.2| 135| 13.3]] 13.3] 13.0

won-lost-tied: CBA(2)+C4.5+NB vs the other methods
28-5-1 | 26-8-0 | 27-7-0 | 29-5-0 | 31-3-0 |24-10-0 |23-11-0 | 26-8-0 | 21-7-6 |14-4-16
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Error rate comparison: For each dataset, columns 1-11 in Table 1 show the error rates of
CBA(2), CBA, C4.5tree C4.5rules, RIPFER, NB, LB, C4.5+NB (C4.5 tree combined with
NB), CBA(2)+NB, CBA(2)+C4.5 and CBA(2)+C4.5+NB respectively. From the table we see
that on average (last row) the aror rate of CBA(2) is lower than every other individual method.
Its won-lost-tied record against CBA is 19-13-2, and against C4.5 tree (or rules) is 20-12-2 (or
22-11-1). It also performs better than RIPFER and NB, and has a simil ar performanceas LB.

It is clea that over the 34 datasets, the compaosite methods are in general superior to
individual methods. CBA(2)+C4.5+NB gives the lowest error rate on average. It reduces the
error of C4.5 tree (or rules) by 18% (or 19%) on average, and its wortlost-tied record against
C4.5tree (or rules) is 27-7-0 (or 29-5-0). It reduces the error of CBA(2) by 14%, and its won
lost-tied record against CBA(2) is 28-5-1. Similar good results are aso achieved against CBA,
RIPFER, NB and LB (seeTable 1).

When the oomposite methods are compared, we see that the performance of CBA(2)+C4.5is
amost the same a& CBA(2)+C4.5+NB. They are both better than CBA(2)+NB, which is better
than C4.5+NB. These results suggest that CBA(2) plays the most important role in error
reduction.

The fact that CBA(2)+C4.5 and CBA(2)+C4.5+NB perform almost equally well confirm our
intuitionthat CBA(2)'s we&knessis overcome by deep trees of C4.5.The letter dataset is a good
example. CBA(2)'s error rate on the dataset is very high (30%) because it cannot generate rules
with more than 3 conditions. The C4.5 tree however, goes very deg using more than 10
condtions. When CBA(2) is combined with C4.5,C4.5's deep treehelps grealy. The error rate
drops drasticaly to 14%.

Columns 12 and 13give the aror rates of boasted C4.5 and CBA (2)+boostedC4.5. We see
that CBA(2)+C4.5+NB’s results are comparable to boosted C4.5, and its won-lost-tied record
against boosted C4.5is 18-15-1. Since boosted C4.5 is regarded as one of the best clasdfiers,
we can say that CBA(2)+C4.5+NB is also among the best. CBA(2)+boostedC4.5 daes not
makes much improvement.

Table 2 (columns 1-10) shows the ratios of the eror rate of CBA(2)+C4.5+NB vs. the other
methods. We again can see that the combination methodis superior.

Execution times: All the experiments are run onSun Sparc | with 512MB of memory. Columns
11-12 in Table 2 show the execution times with each dataset. The average training time of
CBA(2) in each fold of the 10-fold cross-validation is 13.33 seconds, while the dassifier
combining time for CBA(2)+C4.5+NB is only 2.21 seconds on average over the 34 datasets. In
both cases, the datasets reside on dsk. The exeaution times are reasonable. With a fixed in-
memory rule limit, CBA(2) scales linearly with the size of the dataset, which is a feature of
asciation rule mining.

1. CONCLUSION

This paper aims to improve an exhaustive search based classification system CBA. It first
identified two problems or weaknesses of the system, i.e., single minsup, and not being able to
generate long rules for many datasets. It then proposed two new techniques to ded with the
problems. The first problem is dealt with by using multiple minimum class sipports, while the
second problem is dedt with by combining it with other classification methods, the decision
tree method keing particularly effective. The new combined system produces markedly better
classifiers. On average over a set of 34 datasets, it outperforms CBA, C4.5, RIPPER, NB, and
LB substantialy, and has $milar performances as boosted C4.5.
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Table 2: Ratio of Error Rates, and Execution Times

1 | 2 T 31T 41T 5 T 6 | 71 8 T 9 T 10 11 | 12
CBA(2) +C45+NB Vs Time
c4.5 c4.5 C4.5 + | CBA(2) | CBA(2) Classifier
CBA(2)] CBA tree rules | RIPPER NB LB NB + NB + C4.5 | CBA(2) |Combining
ratio ratio ratio ratio ratio ratio ratio ratio ratio ratio (sec) (sec)
1 anneal CV-10 1.319 .769 .369 .533 .606| 1.045 778 .365] 1.319] 1.259 8.52 0.11
2 australian CV-10 .972| 1.059 .959 .927 .932] 1.011f 1.053 .971] 1.000] 1.000 5.98 0.11
3 auto CV-10 .928 .679| 1.049 .928 776 .575 .656 .971] 1.000 .882 4.73 0.05
4  breast-w CV-10 .659 .581 .436 .488 .604| 1.004 .897 437 775 .811 0.66 0.01
5 cleve cv-10 | 1.023| 1.047 .813 .802 .829| 1.021] 1.021 .802| 1.039 .999 3.80 0.01
6 crx CV-10 .981| 1.016 .955 .948 .978 .979| 1.110 951 .989] 1.009 6.36 0.11
7 diabetes CV-10 .864 .871 .844 .854 .871 .904 .904 .858 .885 .889 0.10 0.05
8 german CV-10 .940 .940 877 .899 .896| 1.012| 1.008 .871 .976 .987 6.63 0.22
9 glass CV-10 1.130] 1.076 .970 .942 .842| 1.003 .958|] 1.034] 1.111] 1.000 0.17 0.05
10 heart CV-10 .940 .920 .781 .886 .867 .939 .938 .807 .940 .979 0.88 0.01
11 hepatitis CV-10 .858| 1.074 .891 .836 .926| 1.082] 1.038 .892 .926] 1.000 5.21 0.01
12 horse CV-10 972 .914| 1.163 .983| 1.163 .828 .828| 1.309 .984| 1.000 5.33 0.05
13 hypo CV-10 .870 .512] 1.243]| 1.088] 1.145 .565 .540 .916 .813 .926 27.36 0.33
14 ionosphere cv-10 | 1.073] 1.007 .787 .826 725 .690 .937 .763] 1.000| 1.000 4.11 0.06
15 iris CV-10 .506 377 .570 .570 .503 .446 .503 .575 .506] 1.000 0.02 0.01
16 labor CV-10 .876 .706 .538 .580 727 .857 .973 .632 .878] 1.000 0.11 0.01
17 led7 CV-10 .930 .940 .857 .986 .848 .979 .981| 1.016 .979 .967 2.36 0.77
18 lymph CV-10 795 .896 .738 .663 .843 .720 .893 .759 .795] 1.000 3.84 0.05
19 pima CV-10 .812 797 .853 .898 .837 .898 .890 .866 .845 971 0.16 0.06
20 sick CV-10 .664 .689| 1.691] 1.240 .964 473 .628| 1.632 .626] 1.000 24.46 0.38
21 sonar CV-10 .960 .995 .760 724 775 .937 .900 775 .960 .940 6.05 0.01
22 tic-tac-toe CV-10 .500] 2.000 .014 .333 .083 .007 .006 .014] 1.000/ 1.000 2.13 0.01
23 vehicle CV-10 1.106] 1.095| 1.203] 1.251 1.092 .856] 1.124| 1.209] 1.107] 1.151 8.23 0.22
24 waveform21 cv-10 .871 .858 775 .807 .864 .914] 1.009 .767 .886 .998 12.61 3.08
25 wine CV-10 1.000 .595 .686 .686 .590 .526| 2.994 .639] 1.000 .998 2.58 0.01
26 zoo CV-10 .909 .539 .373 .373 .265 .212 .500] 1.455| 1.000| 1.000 5.64 0.01
27 Adult test .833 .963 .950 .984 .887 .877 .974 .989 .992 .933 94.49 33.34
28 Chess test 142 .149 .560 .248 .149 .022 .039 .596 .130] 1.000 34.46 0.33
29 DNA test 771 .514| 1.086] 1.148 .960| 1.202] 1.094] 1.191] 1.057 .960 89.34 2.30
30 Letter test .459 .467| 1.120f 1.006 .905 .550 .856| 1.122 .563 .987 44.13 29.61
31 Satimage test .966 .890 .966 .953 .937 .786] 1.048 .979 .976] 1.007 18.61 2.74
32 Segment test .631 .559 .628 571 .484 .605 .676 .660 .829]| 1.000 9.38 0.38
33 Soybean Big test .941 .941 .669 .731 .762] 1.143 .800 .667] 1.067] 1.000 11.30 0.44
34 Waveform40 test .954 951 .784 761 .866| 1.068] 1.086 .795] 1.007| 1.000 3.61 0.06
Average 0.86] 0.83| 0.82| 0.81 o0.78] 0.79] 0.90] 0.86] 0.91| 0.99| 13.33 2.21
* average ratios after the largest and smallest ratios are removed
0.86] 0.82] 0.2 0s81] 0.79] 0.80] o0.86] 0.86] 0.92] 0.99

* One problem with average error ratios is that when the actural error rates are very small, ratios tend to have extreme values.

Here, we recompute the average ratios of CBA(2)+C4.5+NB vs the other methods after the largest and smallest values are

removed.
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