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Abstract: Existing classification and rule learning algorithms in machine learning mainly use heuristic/greedy 
search to find a subset of regularities (e.g., a decision tree or a set of rules) in data for classification. In 
the past few years, extensive research was done in the database community on learning rules using 
exhaustive search under the name of association rule mining. The objective there is to find all rules in 
data that satisfy the user-specified minimum support and minimum confidence. Although the whole 
set of rules may not be used directly for accurate classification, effective and efficient classifiers have 
been built using the rules. This paper aims to improve such an exhaustive search based classification 
system CBA (Classification Based on Associations). The main strength of this system is that it is able 
to use the most accurate rules for classification. However, it also has weaknesses. This paper proposes 
two new techniques to deal with these weaknesses. This results in remarkably accurate classifiers. 
Experiments on a set of 34 benchmark datasets show that on average the new techniques reduce the 
error of CBA by 17% and is superior to CBA on 26 of the 34 datasets. They reduce the error of the 
decision tree classifier C4.5 by 19%, and improve performance on 29 datasets. Similar good results 
are also achieved against the existing classification systems, RIPPER, LB and a Naïve-Bayes 
classifier.  

1. INTRODUCTION 

Building effective classification systems is one of the central tasks of data mining and 
machine learning. Past research has produced many techniques (e.g. decision trees [Q92], rule 
learning [CN89, C95] and Naïve-Bayes classification [DH73]) and systems (e.g., C4.5 [Q92], 
CN2 [CN89], and RIPPER [C95]). The existing techniques are, however, largely based on 
heuristic/greedy search. They aim to find only a subset of the regularities (e.g., a decision tree or 
a set of rules) that exist in data to form a classifier.  
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In the past few years, the database community studied the problem of rule learning 
extensively under the name of association rule mining [AS94]. The study there is focused on 
using exhaustive search to find all rules in data that satisfy the user-specified minimum support 
(minsup) and minimum confidence (minconf). Many efficient algorithms are reported. The most 
important one is the Apriori algorithm in [AS94].  

Clearly, both the computational complexity and the number of rules produced grow 
exponentially for association rule mining. minsup holds the key for the success of the model. In 
the next section, we will give an overview of association rule mining. 

Although the complete set of rules may not be directly used for accurate classification, 
effective and efficient classifiers have been built using the rules, e.g., CBA [LHM98], LB 
[MW99] and CAEP [DZWL99], GAC [LL00], and ADT [WZH00]. The major strength of such 
systems is that they are able to use the most accurate rules for classification because their rule 
learners aim to find all rules. This explains their good performance in general. However, they 
also have some weaknesses, which they inherit from association rule mining.  

1. Traditional association rule mining uses only a single minsup in rule generation, which is 
inadequate for unbalanced class distribution (this will be clear later) [LHM99]. 

2. Classification data often contains a huge number of rules, which may cause combinatorial 
explosion. For many datasets, the rule generator is unable to generate rules with many 
conditions, while such rules may be important for accurate classification.  

This paper aims to improve the CBA system (Classification Based on Associations) by 
dealing directly with the above two problems. It tackles the first problem by using multiple class 
minsups in rule generation (i.e., each class is assigned a different minsup), rather than using 
only a single minsup as in CBA. This results in a new version of the system called CBA(2). 
CBA(2) is included as a new function (using multiple minimum class supports) in the CBA data 
mining system, which can be downloaded from http://www.comp.nnus.edu.sg/~dm2.  

Experiments on a set of 34 benchmark problems from UCI machine learning repository 
[MM96] show that on average CBA(2) achieves lower error rate than CBA, C4.5 (tree and 
rules), the Naïve-Bayes classifier (NB), LB and RIPPER (CAEP, GAC and ADT are not 
available for comparison). CBA(2) is also efficient and scales well on large datasets, which is a 
key feature of association rule mining [AS94]. 

The second problem is more difficult to deal with directly as it is caused by exponential 
growth of the number of rules. We deal with it indirectly. We try to find another classification 
technique that is able to help when some rules from CBA(2) are not accurate. The decision tree 
method [Q92] is a clear choice because decision trees often go very deep, i.e., using many 
conditions. We then propose a technique to combine CBA(2) with the decision tree method as 
in C4.5, and the Naïve-Bayes method (NB). NB is included because it comes free (the 
probabili ty estimates required by NB can be obtained from the rules of CBA(2) with no extra 
computation) and it also performs very well on many datasets [DP97].  

The basic idea of our combination technique is to use the rules of CBA(2) to segment the 
training data and then select the classifier that has the lowest error rate on each segment to 
classify the future cases falling into the segment. This approach is proposed because we believe 
that different segments of the data may have different characteristics, and are thus more suitable 
for different classifiers. It is also well known that different classifiers have different strengths.  

The resulting composite method performs remarkably well . It reduces the error of CBA(2) 
by 14% and is superior to CBA(2) on 28 of the 34 datasets. It reduces the error of C4.5 tree (or 
rules) by 18% (or 19%), and improves performance on 27 (or 29) datasets. Similar good results 
are also achieved against CBA, RIPPER, NB, and LB. The composite method’s results are 
comparable with those of C4.5 with boosting [FS96]. The method is also fast because the 
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decision tree and the NB methods are very efficient. They do not add much to the running time 
of CBA(2). 

2. RELATED WORK 

Our CBA(2) system is different from existing learning or classification systems, such as 
C4.5 [Q92], CN2 [CN89], and RIPPER [C95]. These systems all use heuristic search to learn a 
subset of the regularities in data to build a classifier. CBA(2) (or CBA)'s rule learner is based on 
exhaustive search and aims to find all rules. Its rule selection technique in classifier building is 
related to the traditional covering method [M80], which is used in, e.g., IREP [FW94] and 
RIPPER [C95]. The covering method works as follows: A rule set is built in a greedy fashion, 
one rule at a time. After a rule is found, all examples covered by the rule are removed. This 
process repeats until there are no training examples left. The key difference between the method 
in CBA(2) and the covering method is in the rules that they use. CBA(2) learns all rules from 
the entire training data using exhaustive search, while each rule in the covering method is learnt 
using a heuristic method from the remaining data after the examples covered by previous rules 
are deleted. Although in SLIPPER [CS99], the covered examples are not deleted, they are 
assigned lower weights in the subsequent rule learning using boosting. Rules learnt from these 
existing methods may not reflect the true regularities of the original data. Further, since they all 
use heuristic methods to find rules, many high quality rules may not be found. 

Several researchers, e.g., Rymon [R96], Webb [W93], and Murphy and Pazzani [MP94] 
have tried to build classifiers by performing extensive search. None of them uses the association 
mining technique to find all rules with minsup and minconf constraints. 

In data mining, Bayardo [B97] uses an association rule miner to generate high confident 
rules (greater than 90%). Ali , Manganaris & Srikant [AMS97] uses an association rule miner to 
find rules that can describe individual classes. Both works are not concerned with building 
classifiers.  

LB [MW99], CAEP [DZWL99], GAC [LL00] and ADT [WZH00] are some other existing 
classification systems using association rules apart from CBA. LB and CAEP are based on rule 
aggregation rather than rule selection as in CBA and CBA(2). They also do not combine with 
other methods. GAC uses a RDBMS system to help build classifiers efficiently. ADT studies 
using association rules to build decision trees.   

Regarding combining multiple learning methods, Quinlan [Q94] reports a composite method 
for predict continuous values (rather than discrete classes, which is our task) using instance-
based and model-based methods.  

Kohavi [K96] reports a hybrid system of NB and decision tree. The algorithm is similar to 
the decision tree-building algorithm, except that the leaf nodes created are NB classifiers instead 
of nodes predicting a single class. It uses a validation set to determine when NB will form a 
leaf. Our method is different. We do not integrate different techniques at the algorithm level, but 
only compare the error rates of individual classifiers on the training data to decide when each 
classifier should be used.  

Littlestone & Warmuth [LW89] proposed several weighted majority algorithms for 
combining different classifiers. [CS93] adapts their methods and learns the weights using a 
validation set. It also has a technique that learns an arbiter to arbitrate among predictions 
generated by different classifiers. However, the evaluation was only done on a few datasets. 
Similar work in this direction includes stacked generation [W92], and combining multiple rule 
sets using Bayesian utility theory [AP96]. Our method is simpler. When to use which classifier 
is determined using the training data. No combination or arbitration is done at testing time. 
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3. ASSOCIATION RULE MINING FOR CLASSIFICATION 

Association rule mining was first proposed to find all rules in a basket data (also called 
transaction data) to analyze how items purchased by customers in a shop are related (one data 
record per customer transaction). The model is as follows [AS94]: 

Let I = { i1, i2, …, im} be a set of items. Let D be a set of transactions (the dataset), where 
each transaction d (a data record) is a set of items such that d ⊆ I. An association rule is an 
implication of the form, X → Y, where X ⊂ I, Y ⊂ I, and X ∩ Y = ∅. The rule X → Y holds in the 
transaction set D with confidence c if c% of transactions in D that support X also support Y. The 
rule has support s in D if s% of transactions in D contains X ∪ Y.  

Given a set of transactions D (the dataset), the problem of mining association rules is to 
discover all rules that have support and confidence greater than the user-specified minimum 
support (called minsup) and minimum confidence (called minconf). Association rule mining 
does not have a fixed target. That is, any item can appear on the right-hand-side or the left-hand-
side of a rule. 

One of the efficient algorithms for mining association rules is the Apriori algorithm given in 
[AS94]. It generates all rules in two steps: 

1. Find all the frequent itemsets that satisfy minsup. 
2. Generate all the association rules that satisfy minconf using the frequent itemsets.  

An itemset is a set of items. A frequent itemset is an itemset that has support above minsup. 
Mining of frequent itemsets is done in a level-wise fashion. Let k-itemset denote an itemset of k 
items. At level 1, all frequent 1-itemsets are found. At level 2, all frequent 2-itemsets are found 
and so on. If an itemset is not frequent at level k-1, it is discarded as any addition of items to the 
set cannot be frequent (this is called the downward closure property). At level k, all potentiall y 
frequent itemsets (candidate itemsets) are generated from frequent itemsets at level k-1. To 
determine which of the candidate itemsets are actually frequent, the algorithm makes one pass 
over the data to count their supports. After all frequent itemsets are found, it generates rules, 
which is relatively simple.  

Clearly, both the computational complexity and the number of rules produced grow 
exponentially for association rule mining. In the worst case, the number of itemsets is 2

n
, where 

n is the total number of items in the data. For example, in a supermarket situation, n is the 
number of items sold in the supermarket, which can be thousands or more. minsup makes 
association rule mining practical. However, for classification, we often need to set minsup very 
low. This can cause combinatorial explosion.  
 
Mining association rules for classification: The Apriori algorithm finds association rules in a 

transaction data of items. A classification dataset, however, is normally in the form of a 
relational table, which is described by a set of distinct attributes (discrete and continuous). 
Each data record (or example) is also labeled with a class. The table form data can be 
converted to transaction data as follows: As association rule mining does not handle 
continuous values but only individual items, we first discretize each continuous attribute into 
intervals. After discretization, we can transform each data record to a set of (attribute, value) 
pairs and a class label, which is in the transaction form. A (attribute, value) pair is an item. 
Discretization of continuous attributes will not be discussed in this paper, as there are many 
existing algorithms for the purpose (e.g., [FI93]; [DKS95]).  

To generate all rules for classification, we also need to make some modifications to the 
Apriori algorithm because a dataset for classification has a fixed target, the class attribute. 
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Thus, we only need to generate those rules of the form X → ci, where ci is a possible class. 
We call such association rules the class association rules (CARs).  

It is easy to modify the Apriori algorithm to generate CARs. We will not discuss it here 
(see [LHM98] for details). For the purpose of classification, rule pruning may be performed 
to remove those overfitting rules, which are rules with many conditions and covering only a 
few data records. 

 
Pruning the rules: In CBA, pruning is done using the pessimistic error based method in C4.5. 

It prunes a rule r as follows: If rule r’s pessimistic error rate is higher than the pessimistic 
error rate of rule r− (obtained by deleting one condition from the conditions of r), then rule r 
is pruned. See [Q92] for the computation of the method. 

4. CLASSIFIER BUILDING IN CBA 

After all rules (CARs) are found, a classifier is built using the rules. Clearly, there are many 
possible methods to build a classifier from the rules. In CBA, a set of high confidence rules is 
selected from CARs to form a classifier (this method is also used in CBA(2)). The selection of 
rules is based on a total order defined on the rules. 

 
Definition: Given two rules, ri and rj, ri φ rj (also called ri precedes rj or ri has a higher 

precedence than rj) if  
1. the confidence of ri is greater than that of rj, or 
2. their confidences are the same, but the support of ri is greater than that of rj, or  
3. both the confidences and supports of ri and rj are the same, but ri is generated earlier than 

rj. 
 

Let R be the set of CARs, and D the training data. The basic idea of the classifier-building 
algorithm in CBA is to choose a set of high precedence rules in R to cover D. This method is 
related to the traditional covering method. However, there is a major difference, as we will see 
later in the related work. A CBA classifier is of the form:  

 
 <r1, r2, …, rn, default_class>  
 

where ri ∈ R, ra φ rb if b > a. In classifying an unseen case, the first rule that satisfies the case 
classifies it. If no rule applies to the case, it takes the default class (default_class). A simple 
version of the algorithm for building such a classifier is given in Figure 1.  

 
R = sort(R);  /* according the precedence φ */ 
for each rule r ∈ R in sequence do  

if there are still training examples in D AND r classifies  
 at least one example correctly then  

 delete all training examples covered by r from D; 
 add r to the classifier 

end 
end 
add the majority class as the default class to the classifier. 

Figure 1. A simple classifier-building algorithm 
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This algorithm can be easily implemented by making one pass through the training data for 
each selected rule. However, this is extremely inefficient for large datasets. [LHM98] presents 
an efficient algorithm. It makes at most two passes through the data. 

5. IMPROVING CBA 

5.1 Using Multiple Minimum Class Supports 

The most important parameter in association rule mining is the minsup. It controls how 
many rules and what kinds of rules are generated. The CBA system follows the original 
association rule model and uses a single minsup in its rule generation. We argue that this is 
inadequate for mining of CARs because many practical classification datasets have uneven class 
frequency distributions. Using a single minsup will result in one of the following two problems:  
1. If we set the minsup value too high, we may not find sufficient rules of infrequent classes.  
2. If we set the minsup value too low, we will find many useless and overfitting rules for 

frequent classes.  
More details about the problems can be found in [LHM99]. Let us use an example to 

illustrate. Suppose a dataset has 2 classes, Y and N, with freqDistr(Y) = 98% and freqDistr(N) = 
2%. If we set minsup = 3%, we will not find any rule of class N. To solve the problem, we need 
to lower down the minsup. Suppose we set minsup = 0.2%. Then, we may find many overfitting 
rules for class Y because minsup = 0.2% is too low for class Y. To solve the two problems, 
CBA(2) adopts the following (multiple minimum class supports):  
 
minsupi: For each class ci, a different minimum class support is assigned. The user only gives a 

total minsup, denoted by t_minsup, which is distributed to each class according to their class 
distributions as follows: 

 
  minsupi = t_minsup × freqDistr(ci) 

 
The formula gives frequent classes higher minsups and infrequent classes lower minsups. 

This ensures that we will generate sufficient rules for infrequent classes and will not produce 
too many overfitting rules for frequent classes.  

Regarding minconf, it has less impact on the classifier quality as long as it is not set too high 
since we always choose the most confident rules. Experiments on the 34 datasets show that on 
average CBA(2)'s error rate is lower than that of CBA, C4.5 (tree & rules), RIPPER, NB, and 
LB. 

5.2 Seeking Help From Other Techniques 

As we mentioned earlier, for many highly correlated datasets the rule generator is unable to 
generate rules with many conditions (i.e., long rules) due to combinatorial explosion. When 
such long rules are important for classification, our classifiers suffer. Here, we propose a 
combination technique to reduce the effect of the problem. The aim is to combine CBA(2) with 
a method that is able to find long rules. Clearly, the decision tree method [Q92] is a natural 
choice because decision trees often go very deep, i.e., using many conditions. Experiment 
results show that this strategy is extremely effective. In our implementation, we also include the 
Naïve-Bayes method (NB) as NB comes free from CBA(2) (the probabilities needed by NB are 
all contained in the 1-condition rules of CBA(2)).  
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The decision tree and NB methods will not be discussed here, as they are well known [Q92] 
[DH73, DP97]. Both methods are also very efficient.  

The proposed combination method is based on the competition of different classifiers on 
different segments of the training data. For easy understanding, the algorithm below is 
presented as a combination of three classifiers. In fact, the framework can be used to combine 
any number of classifiers (see the experiments section). The key idea is to use one classifier to 
segment the training data, and then choose the best classifier to classify each segment.  

Let A be the classifier built by CBA(2), T be the decision tree built by C4.5, and N be the 
Naïve-Bayes classifier. We use the rules in A from CBA(2) to segment the data 1. For the set of 
training examples covered by a rule ri in A (default_class is treated as a rule with no condition), 
we choose the classifier that has the lowest error on the set of examples to replace ri. That is, if 
ri has the lowest error, we keep ri. If T has the lowest error, we use T to replace ri. If ri is 
replaced by T, then in testing when a test case satisfies the conditions of ri, it is classified by T 
instead of ri. The same applies to N. The algorithm is given in Figure 2. 

 
1  construct the three classifiers, A, T, N; 
2 for each training example e do 
3 find the first rule ri in A that covers e 
4 if ri classifies e wrongly then Errori = Errori + 1 end 
5 if T classifies e wrongly then Errori,T = Errori,T + 1 end 
6 if  N classifies e wrongly then Errori,N = Errori,N + 1 end 
7 endfor  
8 for each rule ri (X → cj) in R do  /*X is the set of conditions * / 
9 if Errori ≤ Errori,T and Errori ≤ Errori,N then  
10 keep ri 
11 elseif Errori,T ≤ Errori,N then use X → (use T) to replace ri 
12 else use X → (use N) to replace ri 
13 end 
14 endfor 

Figure 2. The combination algorithm 
 
From line 3-6, we compute the number of errors made by ri, T, and N on the training 

examples covered by each ri. Errori, Errori,T and Errori,N are initialized to 0. From line 8-14, we 
use T (or N) to replace ri if T (or N) results in fewer errors on the training examples covered by 
ri. X → (use T) means that in testing if a test case satisfies X (the conditions of ri), T will be used 
to classify the case.  

The algorithm is O(|A|M), where |A| is the number of rules in A, and M is the number of 
training examples. M dominates the computation as it is normally much larger than |A|. 

6. EXPERIMENTS 

We now compare the classifiers built by CBA(2), CBA, C4.5 (tree and rules) (Release 8), 
RIPPER, NB, LB, and various combinations of CBA(2), C4.5 and NB. RIPPER is a rule based 
classifier, while LB is a Bayesian classifier using association rules. The evaluations are done on 
34 datasets from UCI ML Repository [MM96]. We also used Boosted C4.5 (the code is 

 
1  We also tried to use other classifiers, e.g., C4.5, NB and RIPPER to segment the data, but the results are not 

satisfactory. We believe the reason is that these systems do not have the obvious problem of short-rules of CBA(2).  
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obtained from Zijian Zheng [ZW99]) in our comparison. C4.5, RIPPER and LB are obtained 
from their authors. We ran the systems using their default settings. We could not compare our 
system with existing classifier combination methods (see the Related Work section) as we were 
unable to obtain the systems.  

In all the experiments with CBA(2), minconf is set to 50%. For t_minsup, it is more 
complex. t_minsup has a strong effect on the quality of the classifier produced. In general, lower 
t_minsup gives more accurate classifiers. However, for certain datasets, higher t_minsups are 
better. From our experience, once t_minsup is lowered to 1-2%, the classifier built is already 
very accurate. In the experiment results reported below, we set t_minsup to 1%.  

Since classification data often contains a huge number of rules, which may cause 
combinatorial explosion, we set a limit of 80,000 on the total number of rules. 24 of the 34 
datasets used cannot be completed within this limit. However, the classifiers constructed are 
already quite accurate. In fact, when the limit reaches 60,000 (we tried different limits), the 
accuracy of the resulting classifiers starts to stabilize. 

Discretization of continuous attributes is done using the entropy method in [FI93]. The code 
is taken from MLC++ [KJLMP94]. No discretization is applied to the data when running C4.5, 
boosted C4.5 and RIPPER. In all experiments, CBA, C4.5, RIPPER, LB, and Boosted C4.5 
parameters have their default values. Experiment results are shown in Table 1. The error rates 
on the first 26 datasets are obtained from 10-fold cross-validation, while on the last 8 datasets 
they are obtained from the test sets provided in UCI Repository (which are commonly used in 
evaluation). All the composite methods involving C4.5 uses C4.5 tree due to its efficiency.   

1 2 3 4 5 6 7 8 9 10 11 12 13

err (%) err (%) err (%) err (%) err (%) err (%) err (%) err (%) err (%) err (%) err (%) err (%) err (%)
1 anneal CV-10 2.1 3.6 7.5 5.2 4.6 2.7 3.6 7.6 2.1 2.2 2.8 4.3 1.4
2 australian CV-10 14.6 13.4 14.8 15.3 15.2 14.0 13.5 14.6 14.2 14.2 14.2 15.9 13.5
3 auto CV-10 19.9 27.2 17.6 19.9 23.8 32.1 28.1 19.0 18.5 20.9 18.5 15.1 18.5
4 breast-w CV-10 3.7 4.2 5.6 5.0 4.0 2.4 2.7 5.6 3.2 3.0 2.4 3.1 2.2
5 cleve CV-10 17.1 16.7 21.5 21.8 21.1 17.1 17.1 21.8 16.8 17.5 17.5 20.5 18.2
6 crx CV-10 14.6 14.1 15.0 15.1 14.6 14.6 12.9 15.1 14.5 14.2 14.3 15.7 13.6
7 diabetes CV-10 25.5 25.3 26.1 25.8 25.3 24.4 24.4 25.7 24.9 24.8 22.0 29.4 25.2
8 german CV-10 26.5 26.5 28.4 27.7 27.8 24.6 24.7 28.6 25.5 25.2 24.9 28.5 24.8
9 glass CV-10 26.1 27.4 30.4 31.3 35.0 29.4 30.8 28.5 26.5 29.5 29.5 24.7 28.0

10 heart CV-10 18.1 18.5 21.8 19.2 19.6 18.1 18.2 21.1 18.1 17.4 17.0 20.7 20.0
11 hepatitis CV-10 18.9 15.1 18.2 19.4 17.5 15.0 15.6 18.2 17.5 16.2 16.2 17.5 18.2
12 horse CV-10 17.6 18.7 14.7 17.4 14.7 20.6 20.7 13.1 17.4 17.1 17.1 18.7 16.0
13 hypo CV-10 1.0 1.7 0.7 0.8 0.8 1.5 1.6 1.0 1.1 0.9 0.9 1.1 0.9
14 ionosphere CV-10 7.7 8.2 10.5 10.0 11.4 12.0 8.8 10.8 8.3 8.3 8.3 6.8 8.3
15 iris CV-10 5.3 7.1 4.7 4.7 5.3 6.0 5.3 4.7 5.3 2.7 2.7 5.3 2.7
16 labor CV-10 13.7 17.0 22.3 20.7 16.5 14.0 12.3 19.0 13.7 12.0 12.0 8.3 8.3
17 led7 CV-10 28.1 27.8 30.5 26.5 30.8 26.7 26.6 25.7 26.7 27.0 26.1 26.2 25.1
18 lymph CV-10 22.1 19.6 23.8 26.5 20.8 24.4 19.7 23.2 22.1 17.6 17.6 18.3 16.9
19 pima CV-10 27.1 27.6 25.8 24.5 26.3 24.5 24.7 25.4 26.1 22.7 22.0 27.3 24.1
20 sick CV-10 2.8 2.7 1.1 1.5 1.9 3.9 3.0 1.1 3.0 1.9 1.9 1.3 1.7
21 sonar CV-10 22.5 21.7 28.4 29.8 27.9 23.0 24.0 27.9 22.5 23.0 21.6 20.2 23.0
22 tic-tac-toe CV-10 0.4 0.1 13.8 0.6 2.4 30.1 32.1 14.5 0.2 0.2 0.2 3.3 0.2
23 vehicle CV-10 31.0 31.3 28.5 27.4 31.4 40.1 30.5 28.4 31.0 29.8 34.3 24.3 29.0
24 waveform21 CV-10 20.3 20.6 22.8 21.9 20.5 19.3 17.5 23.0 20.0 17.7 17.7 18.2 16.0
25 wine CV-10 5.0 8.4 7.3 7.3 8.5 9.5 1.7 7.8 5.0 5.0 5.0 4.0 4.5
26 zoo CV-10 3.2 5.4 7.8 7.8 11.0 13.7 5.8 2.0 2.9 2.9 2.9 0.0 2.9
27 Adult test 16.7 14.4 14.6 14.1 15.6 15.8 14.2 14.0 14.0 14.9 13.9 16.2 16.2
28 Chess test 2.0 1.9 0.5 1.1 1.9 12.9 7.2 0.5 2.2 0.3 0.3 0.3 0.2
29 DNA test 10.3 15.4 7.3 6.9 8.3 6.6 7.3 6.7 7.5 8.3 7.9 5.3 6.2
30 Letter test 30.0 29.5 12.3 13.7 15.2 25.0 16.1 12.3 24.5 14.0 13.8 5.2 8.9
31 Satimage test 14.6 15.9 14.6 14.8 15.1 18.0 13.5 14.4 14.5 14.0 14.1 10.3 12.3
32 Segment test 6.0 6.8 6.0 6.6 7.8 6.2 5.6 5.7 4.6 3.8 3.8 3.1 4.2
33 Soybean Big test 7.5 7.5 10.5 9.6 9.2 6.1 8.8 10.5 6.6 7.0 7.0 6.1 7.0
34 Waveform40 test 24.3 24.4 29.6 30.5 26.8 21.7 21.4 29.2 23.1 23.2 23.2 20.9 23.1

Average 14.9 15.5 16.0 15.6 15.8 16.9 15.3 15.5 14.2 13.5 13.3 13.3 13.0

28-5-1 26-8-0 27-7-0 29-5-0 31-3-0 24-10-0 23-11-0 26-8-0 21-7-6 14-4-16

Table 1: Experiment Results

Boosted 
C4.5

CBA(2)+
Boosted 

C4.5CBA(2) CBA
C4.5 
tree

C4.5 
rules

CBA(2) 
+ NB

CBA(2) 
+ C4.5LBRIPPER

won-lost-tied:  CBA(2)+C4.5+NB vs the other methods

CBA(2) 
+ C4.5 
+ NBNB

C4.5 + 
NB
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Error rate comparison: For each dataset, columns 1-11 in Table 1 show the error rates of 
CBA(2), CBA, C4.5 tree, C4.5 rules, RIPPER, NB, LB, C4.5+NB (C4.5 tree combined with 
NB), CBA(2)+NB, CBA(2)+C4.5 and CBA(2)+C4.5+NB respectively. From the table we see 
that on average (last row) the error rate of CBA(2) is lower than every other individual method. 
Its won-lost-tied record against CBA is 19-13-2, and against C4.5 tree (or rules) is 20-12-2 (or 
22-11-1). It also performs better than RIPPER and NB, and has a similar performance as LB.  

It is clear that over the 34 datasets, the composite methods are in general superior to 
individual methods. CBA(2)+C4.5+NB gives the lowest error rate on average. It reduces the 
error of C4.5 tree (or rules) by 18% (or 19%) on average, and its won-lost-tied record against 
C4.5 tree (or rules) is 27-7-0 (or 29-5-0). It reduces the error of CBA(2) by 14%, and its won-
lost-tied record against CBA(2) is 28-5-1. Similar good results are also achieved against CBA, 
RIPPER, NB and LB (see Table 1). 

When the composite methods are compared, we see that the performance of CBA(2)+C4.5 is 
almost the same as CBA(2)+C4.5+NB. They are both better than CBA(2)+NB, which is better 
than C4.5+NB. These results suggest that CBA(2) plays the most important role in error 
reduction.  

The fact that CBA(2)+C4.5 and CBA(2)+C4.5+NB perform almost equally well confirm our 
intuition that CBA(2)'s weakness is overcome by deep trees of C4.5. The letter dataset is a good 
example. CBA(2)'s error rate on the dataset is very high (30%) because it cannot generate rules 
with more than 3 conditions. The C4.5 tree, however, goes very deep using more than 10 
conditions. When CBA(2) is combined with C4.5, C4.5's deep tree helps greatly. The error rate 
drops drastically to 14%.  

Columns 12 and 13 give the error rates of boosted C4.5 and CBA(2)+boostedC4.5. We see 
that CBA(2)+C4.5+NB’s results are comparable to boosted C4.5, and its won-lost-tied record 
against boosted C4.5 is 18-15-1. Since boosted C4.5 is regarded as one of the best classifiers, 
we can say that CBA(2)+C4.5+NB is also among the best. CBA(2)+boostedC4.5 does not 
makes much improvement.  

Table 2 (columns 1-10) shows the ratios of the error rate of CBA(2)+C4.5+NB vs. the other 
methods. We again can see that the combination method is superior.   
 
Execution times: All the experiments are run on Sun Sparc I with 512MB of memory. Columns 
11-12 in Table 2 show the execution times with each dataset. The average training time of 
CBA(2) in each fold of the 10-fold cross-validation is 13.33 seconds, while the classifier 
combining time for CBA(2)+C4.5+NB is only 2.21 seconds on average over the 34 datasets. In 
both cases, the datasets reside on disk. The execution times are reasonable. With a fixed in-
memory rule limit, CBA(2) scales linearly with the size of the dataset, which is a feature of 
association rule mining.  

7. CONCLUSION 

This paper aims to improve an exhaustive search based classification system CBA. It first 
identified two problems or weaknesses of the system, i.e., single minsup, and not being able to 
generate long rules for many datasets. It then proposed two new techniques to deal with the 
problems. The first problem is dealt with by using multiple minimum class supports, while the 
second problem is dealt with by combining it with other classification methods, the decision 
tree method being particularly effective. The new combined system produces markedly better 
classifiers. On average over a set of 34 datasets, it outperforms CBA, C4.5, RIPPER, NB, and 
LB substantiall y, and has similar performances as boosted C4.5.  
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