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exponential family. The term estimator-correlate; .originated as 
an interpretation of the detector for the problem of discrim- 
inating a Gaussian signal in Gaussian -noise. Since then it 
has been extended to a variety of situations both in discrete- 
and continuous-time problems. (See [6] for the genesis of the 
term and further discussion.) Equation (17) demonstrates 
that this interpretation is valid for any discrete signal (prior pdf) 
in Gaussian noise, and, in fact, for any detection problem where 
the noise has exponential statistics. 

A similar test results when H, is a noise alone hypothesis with 
known statistics. The likelihood ratio is the average of the 
parameter-known likelihsod and is sometimes &lled the average 
likelihood ratio [3, p. 1511 

Equations (16) and (18) are also related to a result of Esposito 
[4], [5] who showed that, under mild regularity conditions, the 
average likelihood ratio could be written in terms of the‘ con- 
ditional likelihood ratio and a psiudoestimate &‘ct), i.e., l(t) = 
l(t 1 8’(t)). The quantity 80) is called a pseudoestimate *use it 
may not be a good estimate for estimation purposes; it is the 
estimate required for optimum detection. Esposito then showed 
that, for f(t 1 0) Gaussian, this pseudoestimate is equal to the 
CME, &‘<t) = d(t). Equation (16) shows that this equality of 
estimates holds true for all membei-s of the exponential family. 

Detection criteria are sometimes used which lead to an “ideai 
observer” detector, i.e., the ratio of the posterior pdf’s [3, p. 841. 
For purposes of notational simplicity, assume the conditional 
pdf’s are the same under either hypothesis and that under Ho, 
0, is known. From (9) and (15), we have 

loi5 (fi(e 1 wfo(t 1 eo)) 

= 

s 

t (0, - d,(z)) dz - B,t 

+ i0g nl(e,) - k(b(e,) - b(e,)) - log cl. (19) 

As is easily seen, the detector factors into two terms. The first 
is the integral of the error in the CME and obviously depends on 
the data while the second term is solely deterniined by prior 
information. In practice, prior information is usually incom- 
plete. Pioperties of the CME could then bi: uSed to evaluate the 
relative contributions of the two terms. For example, the CME 
is an efficient estimate, independent of the prior. With partial 
knowledge of the prior, one could determine bounds on the two 
terms and on how many samples would be required before 
decisions can be made (utilizing an approximation to the CME) 
with a high degree of confidence. An investigation of this type 
could justify approximate decision procedures such as the often 
used maximum likelihood test even for a moderate number of 
samples. 

[II 
[21 
t31 

[41 

[51 

[61 

171 

REFERENCES 

T. S. Ferguson, Mathematical Statistics, A Decision Theoreiic Approach. 
New York: Academic, 1967. 
F;;;,f;. Lehmann, Testing Statistical Hypotheses. New York: Wiley, 

361, May 1969. 
S. Schwartz, “Simultaneous detection and estimation for the ex- 
pdnential family,” Information Sciences ,and Systems Lab., Dep. Elec. 
Eng., Princeton Univ., Princeton, NJ., Tech. Rep. 36, Nov. 1974. 

An Algorithm for a Selective Nearest Neighbor Decision Rule 

G. L. RITTER, H. B. WOODRUFF, S. R. LOWRY, 
AND T. L. ISENHOUR 

Abstract-A procedure is introduced to approximate nearest neighbor 
(NN) decision boundaries. The algorithm produces a selective subset 
of the original data so that 1) the subset is consistent, 2) the distance 
betwekn any sample and its nearest selective neighbor is less than the 
distance from the sample to any sample of the other class, and 3) the 
subset is the smallest possible. 

The nearest neighbor (NN) decision rule [l ]-[3] is a con- 
ceptually simple, yet powerful, decision method. An unclassified 
sample is assigned to the same class as the nearest or most 
similar of n known samples. Cover and Hart [4], [5] have shown 
that under many reasonable (mild) conditions, for a many 
sample problem the risk in making an NN decision is less than 
twice the minimum or Bayes risk. Since, however, an NN rule 
is a search procedure on the known data file, all samples must be 
exainined to classify each unknown. Thus when the data file 
becomes large, storage and computational requirements may 
make application prohibitively expensive. 

If, in a preprocessing step, a subset of the n samples can be 
found such that ail decision boundaries are unchanged, then the 
risk remains the same. Any sample not among the boundary- 
maintaining subset may then be neglected in an NN classification. 
This implies that, given any unknown sample X, the class of its 
NN in the n sample set will be the same as the class of its fiN 
in the subset. To be practical, fewer calculations must be involved 
in obtaining this subset than in determining all of the NN 
decision surfaces. One alternative is to edit the data before 
applying an NN procedure. The edited k-NN rule eliminates 
samples that are incorrectiy classified by the k-NN rule and the 
remainder of the data [6], [7]. Another alternate preprocessing 
step selects samples near the decision boundaries such that the 
class of the NN in the n sample set is the same as the class of the 
NN in the subset with a probability nearly equal to one. 

Since the difficulty in finding a boundary-maintaining subset 
has been appreciated, techniques have been developed to choose 
points near the decision boundaries. The condensed NN decision 
rule [8] iteratively produces a consistent subset-a refererice set 
that correctly classifies all sample’s in the known set. When the 
deletion of a sample in the condensed subset produces no change 
in ihe classification of any member of the complete set, the deleted 
sample may be excluded from the condensed subset. This is the 
basis of the reduced NN modification [9] of the condensed NN 
algorithm. Both authors indicate that the optimization of the 
consistent subset (finding the smallest or minimal consistent 
subset) is a problem without an obvious solution. 

This correspondence presents an alternate method for approx- 
imating NN decision surfaces. Three criteria serve as the basis 
for the set of selective NN’s: 

1) the subset must be a consistent subset; 
2) all samples must be nearer (more similar) to a selective 

neighbor of the same class than to any sample in the other 
class; 

3) there must be no subset that satisfies criteria 1) and i) and 
contains fewer members than the selective subset. 
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Fig. 1. (a) Illustrates two three-Sam le classes separated by NN decision 

boundary shown,. (b) Gives posslb e condensed subset of (a). (c) Shows 2 
altered picture of (a) such that only two center points must be included 
in selective subset. 

The second criterion is the principal difference between the 
condensed and the newly calculated selective subset. Criterion 2) 
for the condensed NN technique would read as follows: 

all samples must be nearer to a condensed neighbor of the 
same class. than to any condensed neighbor of the other class. 

This is simply a restatement of criterion 1). Furthermore, the 
second criterion for the selective NN subset allows a smallest 
subset to be calculated without requiring that every possible 
permutation of the samples be tested. However, it will be seen 
that the subset need not be unique (for an example, see the 
Appendix). 

Since the criteria for the selective subset are more specific than 
those for the condensed subset,, the selective set will not neces- 
sarily be minimally consistent. Likewise, in general, it will not be 
a reduced subset of the condensed NN set. 

The difference between the selective and condensed sets may be 
illustrated by a simple figure. In Fig. l(a), the decision boundary 
is the vertical line shown in the figure. The condensed NN 
algorithm may give the consistent subset shown in Fig. l(b). 
This subset does not satisfy the selective NN second criterion- 
the deleted “X” is classified correctly by the condensed subset, 
but it is closer to the deleted “0” than to any point in the con- 
densed set. For this example, the selective set will contain all the 
points in the set. If the points are altered as shown in Fig. l(c), 
the selective set consists of only the two center points. Thus 
when the samples are closer together, the selective NN criteria 
appear to favor the samples near the decision surface. 

Finding the Sel&tive NN Subset 
Let the set of n samples be represented by {(x,,B,)}, where @ 

denotes the class of the sample represented by x1. Define xj 
as a related neighbor to xI if 1) x, is in the same class as xi 
(i.e., 0, = 0,) and 2) x1 is nearer to x, than to any sample in the 
other class. Then if Yi is the set of all related neighbors to sample 
x1, 

U, = {xJ 10, = 0, and d(xi,xj) < min d(xl,xk) where 6, # 0,). 
all k 

The selective subset will be the smallest subset of {(x&)} which 
contains at least one member of Yi for each sample x1. 

The algorithm needed to calculate the selective subset requires 
a mathematical representation of the related neighbors to each 
x1. These related neighbors may be concisely described by an 
n x n binary matrix A, where 

4 = 
1, if x, o Y, 
o 

9 ifx,$ Yt. 
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That is, a one appears in the matrix element (j,i), if x, is a related 
neighbor to xi. Ones along a vertical (column i) indicate the 
presence of related neighbors to x1, and ones along the horizontal 
(row j) indicate that x, is a related neighbor to other samples. 
The selective NN problem may now be restated in terms of the 
binary representation. A solution implies finding the fewest 
number of samples so that each has a related neighbor in the set, 
or finding the minimum number of rows such that at least one 
one appears in each column. 

Given the matrix A, the following algorithm may be used to 
calculate the selective subset. 

0) Set up an array to store members of the selective subset. 
1) Sample x, is placed into the selective subset if it is the only 

(remaining) related neighbor to some sample xi. In the matrix 
notation, this implies saving x, if the only (remaining) one in 
column i appears in row j. Delete all columns k such that x, 
is a related neighbor to x,, i.e., Ajk = 1. 

In the first pass through l), any sample point that has no related 
neighbor other than itself is included in the selective set. In 
subsequent passes through this step, sample xj is placed in the 
selective set if it is the only remaining related neighbor to some 
sample x,,,. Since the ultimate goal is to include in the selective 
set a related neighbor for each sample, all samples for which x, 
is a related neighbor need no longer be considered. Therefore, 
all columns k that represent samples that have x, as a related 
neighbor may be deleted. (The deleting process may be thought 
of as physically crossing out or removing the columns in the 
matrix representation.) 

2) Row j is deleted if for all (remaining) columns i and for 
some (remaining) row k, 

Row j is deleted if, whenever row j contains a one, row k also 
contains a one, or if, whenever xj is a related neighbor to some 
sample, xk is also a related neighbor to that sample. Thus there 
is no need to consider x, for the selective set, since all the same 
related neighbor information is included with sample x,. 

3) Delete column i if for all (remaining) rows j and some 
(remaining) column k 

A.ii 2 A.ik- 
At least one sample that is a related neighbor to x, must be chosen 
for the selective NN subset. However, whenever a sample is a 
related neighbor to x,, it is also a related neighbor to xr. Thus 
when a sample that is a related neighbor to x,, is placed into the 
selective subset, by necessity it will also be a related neighbor to 
x1. Then there is no need to consider the related neighbors of x1 
or in the matrix delete column i. The columns that remain in the 
matrix then represent the samples that do not have a related 
neighbor in the subset. The remaining rows represent samples 
that may still be included in the selective set. 

4) If no changes have been made in the matrix in l)-3) and 
undeleted columns remain, go to 5). If no undeleted columns 
remain, the selective subset is complete. Otherwise, return to 1). 

If it is necessary to go to 5), the matrix can be reduced no 
further by the simple deletion of rows and columns. Then it is 
necessary to search for the next sample that should be placed 
into the selective subset. Rather than requiring an exhaustive 
trial of each combination of remaining rows, a particular order- 
ing scheme is implemented. Fortunately, in our experience this 
step is often unnecessary, and rarely necessary when many 
undeleted columns remain. 

5) Employ a branching procedure on the remaining rows and 
columns. 
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Fig. 2. Random points generated according to decision boundaries shown. 

a) In order, assume that each remaining row will be in the 
selective subset. Subject to that assumption, calculate the mini- 
mum number of rows that may be needed to complete the subset. 
Or, given that a row is in the subset, determine the fewest number 
of rows such that the sum of the entries in the binary matrix 
for the rows and the remaining columns is at least equal to the 
number of remaining columns. The absolute minimum is the 
smallest value in the set of calculated minima. 

b) For each of the rows that may complete the subset in the 
minimum number of samples, take that row as being in the subset. 
Thus place that row tentatively into the subset and apply 1)-4) 
to find out how many samples are required to complete the 
selective subset. If at any point this number of samples matches 
the absolute minimum, the selective subset is complete. If not, 
save the smallest number of samples that has been needed to 
complete the subset. 

c) Since the selective subset cannot be described in the 
absolute minimum number of samples, increment the number. 
If the smallest value from b) matches the incremented absolute 
minimum, the selective subset is completed. Otherwise, return 
to b). 

These steps may be summarized as follows: find the row that 
when assumed in the selective subset requires the fewest other 
rows to complete the subset. 

One possible simple modification to the algorithm may be 
made. 

2a) If Atj = Akf, for all (remaining) columns j, delete row m  
(m = i orj) such that 

C cAmI - Ad = .$z, F  (A,, - A,,) . 

This step is necessary when the remaining elements of two rows 
are identical. Intuitively, it would be better to delete the sample 
that is farther from the decision surface. However, if the samples 
are about the same distance from the boundary, the one that is 
a related neighbor to fewer of the total samples should be deleted. 
These considerations are balanced in 2a) so that the deleted row 
represents a sample that is both far from the decision boundary 
(i.e., has many related neighbors) and that is a related neighbor 
to fewer of the samples. The algorithm is illustrated by the 
example problem shown in the Appendix. 

Testing the Algorithm 
The selective NN algorithm has been applied to real and 

artificial problems. Class boundaries as described by Hart [6] 
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Fig. 3. Samples selected by selective NN decision rule. 
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Fig. 4. Samples selected by condensed NN decision rule. 
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have been reproduced. Two two-dimensional uniform distribu- 
tions are generated according to the decision surface and range 
shown in Fig. 2. 400 points, approximately 200 in each class, 
are chosen from the distributions, and the selective NN algorithm 
is applied. The algorithm terminates without using 5), and the 
subset contains 33 samples. These results are illustrated in Fig. 3. 
Fig. 4  shows the results for the condensed NN algorithm where 
41 samples are necessary. (Interestingly, using the condensed NN 
subset, selective NN criterion 2) ,is disobeyed for nine of the 400 
samples.) 

Similarly, a  collection of 630 low resolution mass spectra has 
been used to test the algorithm [lo]. Each spectrum is coded 
in a 119-dimensional space and 16 chemically significant two- 
state questions are imposed. In each case, the relative prior class 
probability of the larger class to the smaller class is less than 
2.1: 1. For the 16 questions, the mean in the number of samples 
in the selective subset is 149. By comparison, the condensed NN 
algorithm selects an average of 180 samples, and the reduced NN 
algorithm requires 149 samples. Thus it appears that the selective 
NN algorithm gives sample reduction comparable to the reduced 
algorithm. These results are summarized in columns 24 in 
Table I. 

The data set has also been divided into a 430 sample training 
set and 200 sample classification set. Condensed, reduced, and 
selective subsets are computed from the training set. The predic- 
tion of the NN, condensed NN, reduced NN, and selective NN 
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TABLE I 
RWJLTS USING CONDENSED,REDUCED,AND SELEC~NNDECXSION RULES 

Question 

more than 12 
hydrogens 

branching carbon 
more than 13 

hydrogens 
presence of 
ethyl group(s) 
carbon without 
a hydrogen 
more than 6 

carbons 
more than 7 

carbons 
presence of 
double bond(s) 
presence of a 

ring 
more than 11 

hydrogens 
more than 10 

hydrogens 
mire than 2 

methyl groups 
presence of a 
4 or more member 
ring 
more than 1 
methyl group 
more than 14 

hydrogens 
more than 15 

hydrogens 
-----------------_ 

AVERAGE 
STD. DEV. 

CNN _- RNN SNN 

164 132 131 

175 148 139 

163 132 127 

290 227 237 

240 205 210 

160 133 143 

163 144 145 

188 156 157 

162 137 130 

167 138 136 

176 146 145 

195 163 158 

140 116 116 

201 160 165 

148 121 120 

146 120 118 
------------_ ---. 

180 149 149 
39 30 33 

MAX. 
LIKELIHOOD* --- 

50.3 

51.0 

X CORRECT 

NN !??I! EE Y?! 

79.5 

85.0 
78.0 
85.5 

78.0 
85.0 

81.0 

86.0 

51.1 80.5 79.0 79.0 82.0 

54.4 71.0 69.0 65.5 64.0 

54.0 66.5 62.5 62.5 66.0 

55.7 83.0 82.0 80.5 81.5 

56.7 53.5 59.0 58.0 57.5 

61.8 82.5 80.0 81.0 84.0 

62.2 87.0 82.0 80.0 83.0 

62.2 80.0 78.5 77.0 75.5 

64.3 79.5 78.0 78.0 78.0 

65.1 81.5 76.0 74.5 78.0 

65.4 85.0 81.0 82.0 83.5 

66.7 86.5 81.5 82.0 82.5 

67.5 71.5 70.5 70.5 72.0 

67.9 71.0 69.0 69.0 71.5 

59.8 77.7 75.7 75.2 76.6 
6.3 8.9 7.5 7.8 8.3 

* Max. Likelihood indicates relative size of classes. 

algorithm on the classification set is shown in Table I (column 
6-9). Although the results vary for the individual questions, the 
average result for prediction is that the error rate of the selective 
subset falls between the error rates for NN and condensed NN 
sets. Therefore, the NN decision boundaries are more precisely 
reproduced by the selective subset. 

Although the work thus far has been encouraging, theoretical 
and practical problems remain. The increase in the risk caused 
by using a selective NN algorithm is yet to be characterized 
other than empirically. Practically, all training set distances 
must still be calculated as part of the preprocessing step. This 
serves as a practical limit in application when only a small 
number of unknowns are to be classified. 

APPENDIX 

Given that the binary matrix representation of eight data 
points is shown in the following matrix, the selective subset will 
be found (ignoring 2a)) 

(1) (2) (3) (4) (5) (6) (7) (8) 
(1) 
(2) :, 

0 0 0 0 1 0 0 
0 0 0 0 0 

(3) 0 :, 1 0 0 0 :, 0 
(4) 0 0 1 0 0 0 
(5) 0 :, 0 :, 1 0 1 0 
(6) 0 0 0 0 
(7) 0 0 :, 1 0 ; 

0 0 
0 

(8) 0 0 0 1 0 0 : 1. 

Once again, the ones in row 1 imply that sample 1 is a related 
neighbor to both sample 1 and sample 6. Similarly the ones in 
column 4 imply that samples 4, 7, and 8 are related neighbors 
to sample 4. The selective subset is a smallest subset such that 
each sample has a related neighbor in the set, or that at least 
one one appears in each column. 

Continuing with the algorithm we have the following. 
Step I: Columns 1 and 8 have only one entry. The sample 

represented by row 1 must be in the selective subset as the only 
related neighbor to sample 1. (The one in column 1 allows that 
column to be deleted.) Taking row 1 to represent the first 
member of the selective set also forces a one in column 6. Thus 
column 6 is deleted from the matrix since the sample represented 
by that column has a related neighbor in the selective subset. 
Similarly the sample represented by row 8 must be in the selective 
subset, and columns 4 and 8 may be deleted; column 4 since 
that sample is in the subset and column 8 since it now has a 
related neighbor in the subset. Rows 1 and 8 will be deleted as 
representing members of the selective subset. The remaining 
matrix is shown 

(3 (3) (5) (7) 
(2) 1 0 0 1 
(3) 0 0 0 
(4) 1 : 1 0 
(5) 0 0 1 1 
(6) 0 0 0 
(7) 0 :, 0 1. 
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Step 2: All elements of row 7 are less than or equal to the 
corresponding elements in row 2. Thus row 7 may be deleted. 
Furthermore, A,, I A,*, for all remaining i, (since As1 = Asr, 
for all i, this is a case where 2a) could be used) therefore, row 3 
may be deleted. This completes step 2, and leaves the following 
matrix 

(2) (3) (5) (7) 
(2) 1 0 0 
(4) 1 0 1 : 
(5) 0 0 
(6) 0 1 : :. 

Step 3: There are no columns for which Al, 2 A,*, for all j, 
and thus no columns may be deleted at this step. Changes have 
been made during this iteration and thus return to step 1. 

Step 4: There is only one entry in column 3, therefore, sample 
6 must be included in the selective set. Deleting column 3 and 
the selective subset row 6 leaves the matrix shown 

The Relationship Between an Adaptive Quantizer and 
a Variance Estimator 

DAVID L. COHN, MEMBER, IEEE, AND 
JAMES L. MELSA, MEMBER, IEEE 

Abstract-In this correspondence, it is shown that an adaptive 
quaatizer with a one word memory can be viewed as one that eatimatea 
the variaace of its input and normalii the input by the square root of 
the estimate. It is shown that, even though the estimate is aa exponeatial 
average, the effect of transmission errors dues not die out. Filly, a 
method of combating the effect of such errors is described. 

I. INTRODUCTION 

(2) (5) (7) 
(2) 1 0 
(4) 1 1 : 
(5) 0 1 1. 

The next iteration through steps 2,3, 1,2, 3 allows no changes 
to be made, and thus step 5 is employed. 

Step 5a): The sum of the entries for the rows is 

row 2 gives sum = 2 

row 4 gives sum = 2 

row 5 gives sum = 2. 

Several authors have proposed schemes for using adaptive 
quantizers when digitizing signals with variable dynamic ranges 
[l ]-[9]. The technique has been applied primarily to digitizers 
for speech, and several interesting systems have resulted [lo]- 
[12]. The basic principle of the adaptation is that in each time 
interval the range scale of the quantizer is multiplied by an expan- 
sion-contraction factor that is determined by the prior quantizer 
output. Thus the quantizer range tends to track the dynamic 
range of the input. In this correspondence, it will be shown that 
this adaptive quantizer can be made equivalent to a quantizer 
that forms a maximum likelihood estimate of the variance of its 
input stream, normalizes the input by the square root of the 
estimate, and quantizes the resulting ratio with a fixed quantizer. 
The equivalence requires a tied relationship between the expan- 
sion-contraction factors and the output levels of the quantizer. 
It has been found [9] that this relationship leads to the minimum- 
mean-square error in one application. 

Since three columns remain, for each of the rows the minimum 
number of rows to complete the set will be two. 

Step 56): Select sample 2 as tentatively in the selective set. 
From step 1, columns 2 and 7 (and row 2) may be deleted. This 
leaves 

(5) 
(4) 1 
(5) 1. 

The estimation procedure in the equivalent variance estimator 
is an exponential average. Thus it would seem that the effect of 
transmission errors would die out over time. It is shown that this 
is not the case, and a new method of limiting the effect of such 
errors is described. 

A45 5 As59 and thus row 4 may be deleted. Thus assuming 
sample 2 is in the subset implies that sample 5 is in the subset 
(by one further application of step 1). The selective subset has 
been completed in two samples. This is the minimum value 
predicted, and thus the algorithm is complete. 

A selective subset consists of samples 1, 2, 5, 6, and 8. This is a 
minimal subset, but it is not unique. For example, in the last 
step, sample 4 may have been selected instead of sample 5, and 
an equally valid subset consists of samples 1, 2,4, 6, 8. 

‘k/ “k Fired ok Inverse 
+ Quantizer -+ Puanttrtr 

. \ 

w % 
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Fig. 1. Adaptive quantizer. 
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variable range or as one that normalizes the input with a variable 
and uses a lixed range. The latter model will be used, and the 
class of adaptive quantizers to be considered is illustrated in 
Fig. 1. The input to the quantizer e, is normalized by the quan- 
tizer state variable a,. The resulting ratio is the input to a fixed 
quantizer. The output of the quantizer qk denotes the level into 
which the ratio fell. The quantization level qk is used to determine 
the quantizer output and also to update the quantizer state 
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