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Abstract

This paper is focused on determining the parameters of radial basis function neural

networks (number of neurons, and their respective centers and radii) automatically.

While this task is often done by hand, or based in hillclimbing methods which are highly

dependent on initial values, in this work, evolutionary algorithms are used to auto-

matically build a radial basis function neural networks (RBF NN) that solves a specified

problem, in this case related to currency exchange rates forecasting. The evolutionary

algorithm EvRBF has been implemented using the evolutionary computation frame-

work evolving object, which allows direct evolution of problem solutions. Thus no in-

ternal representation is needed, and specific solution domain knowledge can be used to

construct specific evolutionary operators, as well as cost or fitness functions. Results

obtained are compared with existent bibliography, showing an improvement over the

published methods.
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1. Introduction

A radial basis function (RBF), /, can be characterized by a point of the
input space, c, and a radius or width, r, such that the RBF reaches its optimum
value (maximun/minimun) when applied to c, and decreases/increases to its
opposite optimum value when applied to points far from c. The radius, r,
controls how distance affects that increment or decrement. For this reason,

mathematicians have used groups of RBF to successfully interpolate data.

Typical examples of RBF are the Gaussian function (see Fig. 1a) and the

multiquadric function (see Fig. 1b), although there are many others [1,2].

RBF are used by radial basis function neural networks (RBF NNs), which

were introduced by Broomhead and Lowe in [3], being their main applications
function approximation and time-series forecasting, as well as classification or

clustering tasks. Traditionally, a RBF NN is thought as a two-layer, feed-

forward network in which hidden neuron activation functions are RBF (see

Fig. 2). Very often, the function used is the Gaussian one.

In RBF NNs each hidden neuron computes the distance from its input to

the neuron’s central point, c, and applies the RBF to that distance, as shows
Eq. (1).
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1. Examples of radial basis functions: (a) Gaussian function, (b) multiquadric function.
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Fig. 2. RBF neural network.
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where hiðxÞ is the output yielded by hidden neuron number i when input x is
applied; / is the RBF, ci is the center of the ith hidden neuron, and ri is its
radius.

In the next step, the neurons of the output layer perform a weighted sum

using the outputs of the hidden layer and the weights of the links that connect
both output and hidden layer neurons (Eq. (2)).
ojðxÞ ¼
Xn�1
i¼0

wijhiðxÞ þ w0j ð2Þ
where ojðxÞ is the value yielded by output neuron number j when input x is
applied; wij is the weight of the links that connects hidden neuron number i and
output neuron number j, w0j is a bias for the output neuron, and finally, n is the
number of hidden neurons.

It has been proved [4] that when enough units are provided, a RBF NN can

approximate any multivariate continuous function as much as desired. This is

possible because once the centers and the radii have been fixed, the weights of

the links between the hidden and the outputs layers can be calculated analyt-

ically using singular value decomposition [5] or any algorithm suitable to solve

lineal algebraic equations, making unnecessary the use of training algorithms,
as those used in other kinds of neural networks such as multilayer perceptrons.
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Thus, the main problem in RBF NNs design concerns establishing the number

of hidden neurons to use and their centers and radii.

The need of automatic mechanisms to build RBF NNs is already present in

Broomhead and Lowe’s work [3], where they showed that one of the para-
meters that critically affects the performance of RBF NNs is the number of

hidden neurons. When this number is not sufficient, the approximation offered

by the net is not good enough; in the other hand, nets with many hidden

neurons will approximate very well those points used to calculate the con-

nection weights, while having a very poor predictive power; this is the so-called

overfitting problem [6]. In consequence, establishing the number of neurons

(that is, the number of centers and values related to them) that solves a given

problem is one of the most important tasks researchers have faced in this field.
In this paper an evolutionary algorithm is used to find the best components

of the RBF NNs that approximate a function representing a time-series. Re-

sults are compared with other techniques that also use the evolutionary ap-

proach to tune the RBF NN.

The rest of the paper is organized as follows: Section 2 describes some of the

methods used to solve the cited problems; Section 3 shows our proposed so-

lution, and describes the evolutionary computation framework we use (EO).

Next section (4) shows some functional approximation experiments; and fi-
nally, our conclusions and future working lines are exposed in Section 5.
2. State of the art

There are several papers that address the problem of automatic RBF NN
design. The paper by Leonardis and Bischof [7] offers a good overview.

Methods found in bibliography can be divided in five classes.

(1) Methods in which the number of radial basis functions must be given a

priori; after this, computing the values for the centers and the radii is done

choosing points randomly from the training set or performing any kind of

clustering method with them [8].

(2) Methods that automatically search for the number of RBF and their

centers and radii. Most of these methods grow the final net from an initially
empty one to which hidden neurons are added until a given condition is

reached. One of such methods is orthogonal least squares [9], based on a

mechanism called forward selection, that allows the addition of hidden neurons

to an initially empty net until the approximation error is under a prespecified

tolerance value or threshold. An improvement over this algorithm is regular-

ised OLS [10], based in regularised forward selection, in which high hidden-to-

output weight values are penalized using a penalty term, a process termed

regularization [6]. Later, in [11], Orr newly used forward selection as the
growing mechanism, and delete-1 (or leave-one-out) and generalized cross-
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validation as the methods to stop adding neurons; in any of its forms, cross-

validation is used to compute the generalization error of many different nets in

competition one with each other, halting the algorithm when that error reaches

a minimum. Other methods of the same characteristics are resource allocation
networks [12], and growing cell structures [13], which try to estimate the centers

using hillclimbing techniques, making them liable to fall in local optima.

(3) There are also pruning methods that start with an overspecified RBF NN

and, iteratively, remove hidden neurons and/or weights. Leonardis and Bisc-

hof’s algorithm [7] can be classified as a pruning method, in which the mini-

mum description length measure (MDL) is used to achieve a reduction in the

complexity of the RBF NN. According to the MDL principle, a set of RBFs

describing the training data with the shortest possible encoding are selected
among a larger set. The main drawback of pruning methods is that they tend to

be very restrictive, and, thus, find suboptimal networks.

(4) The values for the radii are also important parameters. Very narrow radii

will lead to overfitting, and radii wider than necessary can give even worst

results. Thus, in order to obtain a good performance, and taking into account

that each component of the points in the input space can have ranges with very

different limits, many radii with many different values must be fixed. There are

some algorithms intended to estimate the radii; Orr in [14] chooses a finite set
of radii, and after this, the best of those radii is found (as efficiently as possible)

by means of (1) constructing the RBFs, (2) using them, and (3) regarding the

performance of the nets. It is obviously necessary to start with a good set of

radii in order to succeed. Furthermore, it could happen that a good value for

the radii were not considered because a value close to it, and present in the

initial set, had produced bad results.

(5) The use of evolutionary algorithms to construct neural nets is also well

known in the literature. Some reviews can be found in [15,16]. They usually try
to optimize only one of the parameters of the net (number of neurons, topology,

learning rate, and so on), leaving the other parameters fixed. A different case can

be found in the work by Castillo et al. [17,18], in which evolutionary algorithms

are used to create good multilayer perceptrons (MLPs), optimizing all the pa-

rameters at the same time, and obtaining very good results. A similar and

previous example can be found in Merelo and Prieto [19], where a neural net-

work called learning vector quantization (LVQ) is genetically optimized. Nev-

ertheless, both Castillo and Merelo’s methods can not be applied directly to the
construction of RBF NNs since their genetic operators are geared toward their

specific network architecture. An application of evolutionary algorithms to

RBFNN evolution can be found in the work by Gonzlez et al. [20], where expert

mutation operators are created to evolve RBF NNs.

At this point, we would like to highlight the work by Sheta and de Jong [21]

given that we are going to compare our results with theirs. They proposed an

autoregressive model for RBF (AR-RBF) that was tuned using GA, that is,
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using cross-over and mutation operators to set the weights, instead of least

square error (LSE), the most commonly used method.

The AR-RBF model is described by Eq. (3):
oðkÞ ¼ k
Xn
i¼1

wihðoðk � tiÞÞ ð3Þ
where oðkÞ is the exit of the NN, k is a selected constant gain, hð Þ is the RBF, wi

the weights linking hidden neurons to the output one, and n is the order of the
autoregressive model as well as the number of hidden neurons.
The GA used by Sheta and de Jong coded the centers, radii and weights of

the RBF NN as genes, using a string representation; thus, every individual was

a vector of the form:
c1r1w1c2r2w2 . . . cnrnwn ð4Þ
The string representation used for the genes leads to the conclusion that generic

cross-over and mutation operators were used. It seems that more sophisticated

operators (like those intended to estimate the number of hidden neurons) are

not used by the authors. Despite this fact, the authors got very good results,

and, they did it using only a few individuals, a few generations, and, conse-

quently, only a few evaluations.
3. EvRBF

The method introduced in this paper uses an evolutionary algorithm, Ev-

RBF, to build RBF NNs, optimizing their generalization error by finding the

number of neurons in the hidden layer, and their centers and radii.

The evolutionary algorithm itself has been programmed using the new

evolutionary computation framework, evolving objects (EO), current version is

0.9.2 [22,23]. It can be found at http://eodev.sourceforge.net and is

available under open source license.
This new framework is the result of the cooperative work carried out by

several research teams in Europe. EOs main advantage is that what can be

evolved is not necessarily a sequence of genes (bitstring or floating point

values), but anything to which a fitness or cost function can be assigned. In

this sense, every data structure one can imagine can be converted into

something evolvable, and consequently, something that EO can evolve, op-

timizing it.

EO allows to define operators that increase or decrease the diversity in the
population, that is, cross-over-like operators and mutation-like operators.

Some of these operators are generic and can be applied to many classes of

http://eodev.sourceforge.net
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evolvable objects, but new operators can also be specifically defined for each

object; taking into account that, using EO, evolutionary algorithms are able to

deal with the solution of the problem being optimized itself, instead of a rep-

resentation of that solution, problem domain knowledge can be inserted in the
operators, obtaining a better behaviour. This is also in accordance with

Michalewicz’s ideas published in [24].

In the present research, a standard genetic algorithm has been used with

specific operators. Fixed size population, tournament selection, and elitist re-

placement policy have been used, and two kind of operators, mutation-like and

cross-over-like, have been created. The algorithm finishes when a previously

specified number of generations has been reached.

3.1. Binary cross-over operator

The binary-operator needs two RBF NNs to be applied, although it only

changes one of them. This operator takes an uniformly random chosen number

of consecutive hidden neurons from the first network, and another random

sequence from the second; then it replaces the first of these sequences by the

second one, so that the second individual remains unchanged.

3.2. Unary operators

Given that in a RBF NN the optimum weights from hidden-to-output

neurons can be easily computed, the unary or mutation-like operators affect the

hidden neuron components, centers and radii, in their quantities and values,

but not the hidden-to-output weights.

Centers mutator. This operator changes a given percentage of the compo-
nents of the center of every hidden neuron. Each component of the center

is modified by adding or subtracting a random value, which is chosen fol-

lowing a Gaussian probability function with mean 0 and standard deviation

0.1.

Radii mutator. This operator is applied to one of the existing nets, but affects

to the radii of the RBF. Radii are modified using a Gaussian function as de-

fined previously. Radii are different for each center, and for each component

of the center.
Hidden neuron deleter. This operator erases a given percentage of hidden

neurons in the net it is being applied. Neurons to remove are randomly

chosen.

Hidden neuron adder. As its name indicates, this operator adds random neu-

rons to the net. Althought it has been designed is currently not used given

that the binary-operator is good enough to increase the number of neurons

in an efficient way.
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The breeder

Every new generation is created in the following way:

(1) Select a few individuals (the elite) using tournament selection of fixed size.

(2) Delete the rest of the population.

(3) Generate new individuals by copying individuals from the elite.

(4) Apply operators to the new individuals.
(5) Set the weights of the new individuals using SVD.

(6) Remove the non-sense neurons, i.e., those whose weights to output neurons

are very close to 0.

(7) Evaluate the net, and set its fitness.

Once tournament selection, performed with a parametric number of indi-

viduals, has finished and the elite has been formed, individuals are copied as

many times as needed until the population reaches its fixed size. Later, cross-
over-like and mutation-like operators are applied only to new individuals.

Operators are applied with a given fixed probability (not necessarily the same

for all of them) to each neuron of each RBF NN, so that if one operator is used

with a probability of 0.01, it will modify 1% of the RBF on average.

A RBFF NN fitness is calculated using leave-one-out cross-validation

method. The training data set composed of k pairs input–output, is split k times
in 2 disjoint subsets: the first one is composed of k � 1 data points, and the
second one is composed of the remaining point. The net is trained and vali-
dated k times using the subset having k � 1 data to train, and the other point to
validate. The fitness is calculated as the average of the inverse of the root mean

square error (Eq. (5)) over the k different subsets having only 1 point.
fitness ¼

Pk
j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

j¼1ðyik�oðxikÞÞ2

n

r !�1

k
ð5Þ
where yik is the expected output, oðxikÞ is the output calculated by the net when
input xik is applied, and n is the number of input–output pairs in the validation
set.
4. Experiments and results

Previous experiments in function approximation using this new approach

can be found in [25].

For this new work, the time-series being forecasted is the one used by Sheta

and de Jong in [21]. This time-series is composed of real data representing the
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exchange rates between British pound and US dollar during the period going

from 31 December 1979 to 26 December 1983, available from http://

pacific.commerce.ubc.ca/xr/data.html, thanks to the work done by Prof.

Werner Antweiler, from the University of British Columbia, Vancouver,
Canada.

Data are composed of 208 observations. The herein proposed evolutionary

algorithm uses as training data set only half the data (randomly chosen) using

the leave-one-out method described before. Once the evolutionary algorithm

has finished, and before obtaining the generalization error, all individuals in

the last population are newly trained with this training set. This is the final

training error showed in Table 2 on the row belonging to training data set, and

has been included for comparison. Test (or generalization) error is calculated
using the full data set, also to compare with Sheta and de Jong’s results.

The experiment has been repeated 10 times using the parameters showed in

Table 1. Nevertheless, individuals in the initial population were set randomly

to avoid a biased search.

Figs. 3 and 4 graphically show the estimation provided by the best net found

in one of the ten experiments once it had been optimized via the evolutionary

algorithm. Fig. 3 shows the original data set (dashed line) and the forecasting

done by the net (solid line). On the other hand, Fig. 4 shows the differences
between real and forecasted values for the same net, as well as the average

value of these differences.

Table 2 shows the error rates achieved by the EvRBF algorithm and com-

pares with results found in literature. Given that experiments have been run 10

times, averaged values and standard deviations are showed.

There is no information about RBF NN size to compare with. The best net

found by EvRBF during the evolutionary process had only 8 neurons, and its

MSE over the training set was 1.6018 · 10�4. The best result found in the
generalization task was yielded by a net with only 7 neurons; its MSE was

5.3090 · 10�4 over the full data set and 4.0899 · 10�4 over the training set. On
Table 1

Parameters used to run the evolutionary algorithm

Parameter Value

Population 15

Number of generations 50

Tournament size 3

Individuals used to generate offspring 20% of population

Cross-over rate 0.2

Center modifier mutator rate 0.2

Radii modifier mutator rate 0.2

Neuron remover mutator rate 0.4

http://pacific.commerce.ubc.ca/xr/data.html
http://pacific.commerce.ubc.ca/xr/data.html
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Table 2

Comparison between results obtained by Sheta and de Jong (MSE-GAs), a previously published

method (MSE-LSE), and results obtained by EvRBF (both MSE-GAs and MSE-LSE results

borrowed from [21]

Data set MSE-LSE MSE-GA EvRBF

Average Best individual

Training 7.2601· 10�4 5.1407· 10�4 3 · 10�4 ± 1· 10�4 2· 10�4
Full data set 12.001· 10�4 8.7220· 10�4 6 · 10�4 ± 2· 10�4 4· 10�4

Values show the MSE computed over the training and full data sets, thus lower values are better.

As can be seen, on average error over the full data set is half the one obtained by previous works.
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the other hand, RBF NN size changed in a broad range, having as average 22
and standard deviation 10.

In terms of the number of parameters, a net with 7 hidden neurons (as it is

the best net found), using only 1 input and producing 1 output has 7 values for

the centers, 7 for the radii and 7 for the weights. This makes 21 parameters,

what is a relatively small number of parameters to learn 208 data points.

Finally, the ascendant progression of the items being logged (maximum,

minimum and average fitness) shown in Fig. 5 is an indicator of the good

search strategy followed by the operators used in the GA. In this sense, the
evolution of the average fitness shows that new individuals are, in average,
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better than those of the precedent generations, although this does not mean

that finding the best individual of all be an easy task.
5. Conclusions

Creating the best RBF NN that solves a given problem is a difficult task

because many parameters have to be set at the same time: number of hidden

neurons, centers and radii for them. Evolutionary algorithms can help in

finding the optimal values for those parameters, obtaining RBF NNs with low

generalization error.

In order to use specific problem knowledge, the RBF NNs are evolved as

such, without the typical use of a representation (binary or floating point

vector) and a decoder. This is possible thanks to the evolutionary computation
framework, EO, implemented as a C++ class library, since it allows to evolve

any object to which a fitness or cost function can be assigned.

The results obtained by our algorithm, EvRBF, show that good RBF NNs

are found when it is applied to time-series forecasting.

Future work includes the following research lines:

• Creation and testing of new operators, especially binary or cross-over-like op-

erators, performing merges where average values are calculated between the
neurons being affected, and also operators that apply a certain local-tuning

process to improve the evolutionary algorithm search.

• Application of statistical tests to evaluate the impact produced by the param-

eters used to run the evolutionary algorithm.

• Testing EvRBF with other problems to which RBF NN have been applied:

more time-series prediction tasks, classification and function approximation.
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