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Abstract

Learning from imbalanced data occurs very fre-
quently in functional genomic applications. One posi-
tive example to thousands of negative instances is com-
mon in scientific applications. Unfortunately, tradi-
tional machine learning treats the extremely small in-
stances as noise. The standard approach for this dif-
ficulty is balancing training data by resampling them.
However, this results in high false positive predictions.
Hence, we propose preprocessing majority instances
by partitioning them into clusters. This greatly re-
duces the ambiguity between minority instances and
instances in each cluster. For moderately high imbal-
ance ratio and low in-class complexity, our technique
gives better prediction accuracy than undersampling
method. For extreme imbalance ratio like splice site
prediction problem, we demonstrate that this tech-
nique serves as a good filter with almost perfect re-
call that reduces the amount of imbalance so that tra-
ditional classification techniques can be deployed and
yield significant improvements over previous predictor.
We also show that the technique works for subcellu-
lar localization and post-translational modification site
prediction problems.

1 Introduction

Recent technological advances enable biologists to
collect huge amount of genomic data by using au-
tomated DNA sequencers, microarrays that generate
gene expressions information of an entire organism, and
other advanced techniques. These data contain valu-
able information that may lead to treatments of deadly
disease and improve our quality of life. Although,
in principle, machine learning techniques can serve as
valuable tools for analyzing genomic data, some sur-
veys indicated that the results are far from idea [2].
In many genomic applications, we are faced with the

challenging issue of extremely high imbalanced data
where we may see one positive instance (e.g. splice
site) only after having seen thousands of negative in-
stances. Henceforth, we assume the minority class is
the positive class. Similarly, in the area of computer se-
curity, most traces in computer system logs are normal
non-malicious usage and hence training data for build-
ing an automatic intrusion detection system is highly
imbalanced. Standard treatment of such imbalance is
to undersample the majority class to obtain the more
balanced training and test instances. Such undersam-
pling method makes the problems more tractable and
yields good accuracy on the test instances. Unfortu-
nately, the classifiers constructed often make too many
false-positive predictions when deployed since the data
they are trained on are far from the actual real-world
imbalance distribution. Here, we propose a better tech-
nique for imbalance reduction by considering the entire
data sets so that there is information loss is minimized.

In this paper, we proposed a technique for dealing
with the imbalance data problem when the majority
class exhibits moderately low in-class complexity. Al-
though the imbalance ratios in many functional ge-
nomic applications are extremely high, fortunately the
in-class complexity of the majority class tends to be
moderately low. This allows us to partition the ma-
jority instances into dense clusters. We construct a
base classifier for each cluster to distinguish the ma-
jority instances in it from all the minority instances.
The data set for constructing the base classifier be-
sides being more balanced, has a lower boundary com-
plexity (since the majority class instances form a tight
cluster). More importantly, unlike traditional under-
sampling method, we use all the majority instances so
there is no information loss.

We tested our proposed technique on a sample
of three representative functional genomic problems:



splice site, protein subcellular localization and phos-
phorylation site prediction problems. Briefly, in the
splice splice site prediction problem, a gene can be
viewed as a sequence of 4 letters (nucleotides) A, G,
T and C. Each gene in eukaryotes consists of alter-
nating segments of intron and exon regions. After the
transcription process, the introns are spliced out and
discarded while the exons are concatenated to form
the messenger RNA (mRNA). As the name suggest,
splice site prediction problem problem is to determine
where splicing occurs. For human genome, the imbal-
ance ratio of splice sites to non-splice sites is extremely
high, possibly one to many thousands. Splice site pre-
diction is a very important problem as it is the first
step toward a cDNA library construction which is a
working set of genes. The mRNA then goes through
a translation process to produce protein which con-
sists of a sequence of (20 possible) amino acids. The
protein is then transported to its designated subcellu-
lar location to perform its function or interact with
other proteins. The subcellular localization problem
is to determine final destination of protein within the
cell. This information will provide valuable clues to
the functions of the proteins and how they interact.
Thus, it also provides some clue to the function of
a particular gene. As there are possibly more than
hundred possible locations, it is a multi-class problem.
The class imbalance problem occurs because of the
different number of available instances for each class.
Most proteins also undergo some post-translational
modifications (PTMs) (phosphorylation, glycosylation,
sulfation, and ubiquitination) which are functionally
relevant. Among the possible PTMs, phosphoryla-
tion is the most studied and perhaps the most im-
portant. In phosphorylation a phosphate group is
transferred from Adenosine Tri-Phosphate (ATP) to
the hydroxyl side chains of serine, threonine, or tyro-
sine amino acid residues in the protein sequence. The
phosphorylation site prediction problem is to predict
where phosphorylations occur in a given protein se-
quence. Due to page limitation, we shall restrict focus
our discussion the result obtained on splice site pre-
diction problem. A more detailed discussion on results
on all the three problems will be presented in a longer
version of this extended abstract.

2  Related Work in Imbalanced Data

Most supervised learning algorithms tend to focus
on obtaining high accuracy on the observed labeled
training data. To further aggravate this difficulty, al-
most all algorithms tend to follow the Occam’s razor
principle (or related minimum description length MDL
principle) where there is a preference toward simple

hypothesis [13]. Short decision trees and neural net-
works with small weights are preferred. The underlying
assumption here is that events (instances) that occur
infrequently are considered as noise. This further dis-
criminates against the minority class so as to achieve
high overall prediction accuracy. For highly imbalance
data, the classifiers constructed using these algorithms
would simply predict negative all the time and achieve
almost 100% accuracy! This is nonsensical for appli-
cations in functional genomic (and computer security)
where the aims are to detect minority instances within
a certain reasonable tolerance of false positive mistakes.

Various approaches [8, 14] have been proposed to
tackle the challenge posed by the imbalance ratio prob-
lem. These approaches fall into two different cate-
gories, namely weighting or resampling based methods.
Weighting methods either assign heavier weights to the
minority training instances or penalties for misclassifi-
cations of minority instances [1, 7, 19, 21]. The other
way is to preprocess training data to minimize discrep-
ancy between the classes. Oversampling [5] the mi-
nority class and undersampling [11] the majority class
are the data level approaches. Ling and Li [12] com-
bining oversampling and undersampling methods but
did not achieve significant improvement in the "lift in-
dex" metric that they used. Both methods effectively
change the training distribution to one that no longer
resemble the original (highly imbalance) distribution,
resulting in overfitting. Other important related works
similar to resampling approaches are to focus on solv-
ing small disjuncts problem within each class. Japkow-
icz [9, 10] discussed about the cause for lower perfor-
mance in standard classifiers is actually small disjuncts
of within-class. These works agree with what we ob-
served from our experiments.

3 Proposed Approach

The intuition behind our approach is to build a filter
to identify large number of majority instances without
losing too many minority instances. This allows us
to reduce the imbalance ratio which makes the learn-
ing task more tractable. Since minority instances are
scarce, it is very crucial that any imbalance reduction
procedure should try not to eliminate any minority in-
stances from the original data. The idea for achiev-
ing this goal is to find as many clusters of majority
instances as possible that do not contain any minority
instance or at most very few minority instances. In par-
ticularly, we will like to be able to determine majority
instances that are far away from the target boundary
(and hence reduce the amount of imbalance) so that
we can concentrate on distinguishing the more difficult
boundary instances. Thus, the key is to find clusters



that consists purely (or almost purely) of majority in-
stances. Therefore, we developed a supervised cluster-
ing algorithm with class purity maximization function.
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Figure 1. Overall procedure for imbalance re-
duction and final prediction scheme

Figure 2. lllustration of imbalanced data and
undersampling: (a)lmbalanced data set - de-
cision boundary is shifted toward to minor-
ity class. (b)After undersampling - decision
boundary move to majority class.

The Main Idea. Our CPM algorithm selects a pair of
minority and majority instances as centers. The other
instances are then partition into two subsets according
to their nearest centers, with at least one subset having
high class purity. This process is repeated recursively
for each of the two subsets until we can no longer form
two clusters, with at least one yielding higher class pu-
rity than its parent cluster. A collection of samples is
then constructed by adding all minority instances to
each non-pure cluster, and a decision tree is built for
each sample. Figure 1 illustrates the overall imbalance
reduction and classification step. Given an unlabeled
test instance, we first run through the imbalance reduc-
tion process (i.e. CPM) to estimate the best possible
cluster that it might be belong. If the instance belongs
to a pure majority instance cluster, it is simply dis-
carded (as a majority instance). Only those instances
belonging to a non-pure cluster is passed onto the de-
cision tree committee. If the majority voted it as a

minority instance, then it is filtered out to the final
classifier, which is constructed using a neural network.

Effect of the dense majority instance clusters. A clas-
sifier that trains on the entire data set will encounter a
lot of negative (majority) instances closed to the ideal
boundary, simply because they are the majority class.
This pushes the decision boundary toward the minority
positive instances. When the ratio between majority
and minority becomes larger, a classifier might treat
minority instances as noisy (figure 2(a)). Figure 2(b)
shows the decision boundary shifting after undersam-
pling. Area between ideal and shifted decision bound-
ary is responsible for false positive predictions. Un-
like various undersampling techniques, clustering will
split majority instances based on their distribution into
meaningful clusters (Figure 3). The instances in a good
cluster, by definition, tend to lie in a tight region. In
this case, a classifier can find a decision boundary that
favors more on minority class even though the number
of majority instances is much higher. Another good
characteristic is that the decision boundary of each
classifier is dramatically different from each other. A
negative instance that is wrongly classified as positive
by a classifier may be corrected by the other classifiers
(with different decision boundary).

Class Purity Maximization (CPM) Clustering. The
CPM algorithm is shown in Figure 4. It calls itself
recursively. It attempts to find a pair of centers, one
being a minority instance while the other is the major-
ity instance (Lined 3). Using these centers, it partitions
all the instances into two clusters C; and Cs. If either
of the clusters has class impurity less than its parent’s
impurity (I'mp) then we have found our clusters. Here,
the impurity of a set of instances is simply the propor-
tion of minority instances. It then recursively parti-
tions each of these clusters into subclusters (in Line 8
and 9). Thus, it forms a hierarchical clustering. If the
impurity cannot be improved then we stop the recur-
sion (Line 3). A slight detail that is missing in Figure 4
is that we require that the clusters cannot be too small.
This is to avoid the extreme case of having singleton
clusters which always have a purity of 1. The distance
measure used is simply the Euclidean distance. CPM
is quite different from Expectation Maximization (EM)
Clustering, in the sense that CPM uses the class labels
to decide how to partition the instances. Unlike EM,
CPM does not estimate the parameters of the mixture
of Gaussian distributions. One of the advantages of
CPM is it runs much faster than EM algorithm.

Performance Measure. The general performance mea-
sure, (estimated) test error, is not a good metric for im-
balanced data. For many important bioinformatics or
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Figure 3. Effect of small and dense subsets
- give more space to minority class. Any
instances placed between relaxed decision
boundary and minority instances will be pre-
dicted as a minority class.

computer security applications, the minority instances
may be less than 1% of the entire data. By simply pre-
dicting according to the majority class, we can achieve
more than 99% accuracy. Clearly such predictor is not
useful at all. For applications with high imbalance ra-
tio, we frequently want to recall as many minority in-
stances as possible. Further, we want to be precise
so that when we predict an unlabeled instance to be
minority class instance, there is a good chance that we
are right. These two goals are often contradictory goals
and we need to strike a compromise. We use F-measure
to measure the overall performance (as ¢ compromise
between recall and precision) of the algorithms studied.
The exact definitions of the recall (R) and, precision
(P) were first introduced in the information retrieval
community. Recall (a.k.a. over-prediction) is defined
as R = % x 100 where CP is the number of instances
that are correctly predicted as positive and TP is the
number of actual positive instances. Precision (a.k.a.
under-prediction) is defined as P = % x 100 where
PP is total number instances predicted as positive. As
achieving high recall and high precision are often con-
flicting goal, we use F-measure as a measure of how

good a “compromise” is being achieved. F-measure is

defined as F' = 2 x (gillz) which is a harmonic mean

between recall and precision. F-measure becomes zero
if either R or P is zero. It becomes 1 when both R and
P are 1. Ten-fold cross validation was used to estimate
R and P for this paper.

Input: I'mp: cluster impurity of parent cluster
parent: parent cluster ID

Output: subclusters C; rooted at parent

CPM (I'mp, parent)

1. impurity < oo

2. while I'mp <= impurity

3. if all the instance pairs in parent were tested then return

4. Pick a pair of majority and minority instances as centers

5 Partition all instances into 2 clusters C; and Cs
according to nearest center

6. impurity < min(impurity(Ci), impurity(Cs))

7. end while

\\ Create subclusters
8. CPM(impurity(C1), C1)
9. CPM(impurity(Cs), C2)

Figure 4. The CPM Algorithm

4 Results for Splice Site Prediction

For the splice site predictor to be useful, it is impor-
tant to be able to ‘recall’ as many positive examples as
possible but keep the ‘precision’ high (i.e. the true pos-
itive high). Similarly, in order for a splice site predictor
to be useful for constructing a gene finding system, the
recall has to be high so that it does not miss out too
many undiscovered gene. In splice site prediction, the
precision is slightly less important as we may be able
to eliminate some of the false positive predictions by
some other information (e.g., snRNAs and snRNPs in-
teractions, promoter binding sites, transcription factor
binding sites, etc.). Nevertheless, as far as possible,
we still want the precision to be high so that it does
not generate too many false positive gene predictions,
which may render the eventual gene finding system use-
less. Alas, the two objectives, achieving high recall and
precision, are often contradictory and we need to strike
a compromise.

We compared our approach with three leading splice
site predictors; performance comparisons were done by
running their web-based programs on test sequences
for fair comparisons.

e NNSplice! from Berkeley Drosophila Genome
Project (BDGP) - NNSplice is a sub-process of
the gene finding system, Genie.[17] Two separate
neural networks were used to predict donor and
acceptor sites based on dinucleotide frequencies.

e GeneSplicer? from the Institute for Genomic Re-
search (TIGR) - GeneSplicer is a decision tree
method using Maximal Dependence Decomposi-
tion and enhanced by Markov Models [15, 4].

IThe program is accessible from http://www.fruitfly.org/.
2The program is accessible from
http://www.tigr.org/tdb/GeneSplicer/gene spl.html.



e SpliceView? from the Institute of Advanced
Biomedical Technologies (ITBA) - SpliceView con-
siders the signals from the consensus sequences of
the boundary regions [18].

Although both our method and NNSplice share a com-
monality of using artificial neural networks (ANNs), we
are able to reduce the amount of imbalance dramati-
cally by using Expectation-Maximization (EM) cluster-
ing [6, 7, 16]. Further, we use a different feature con-
struction method than all three programs. The result-
ing features are more indicative. As a result, we have a
more accurate predictor. Two main goals were consid-
ered for designing the ‘filter’. Firstly, in the construc-
tion of the filter, (unlike undersampling) we should con-
sider the entire majority instances while making sure
that the resulting filter has a high recall rate. This
gives us better precision. Secondly, the resulting filter
has to eliminate as many majority instances as possible
without loosing any of the minority instances. The con-
struction of the filter is as follows. The majority of the
instances are clustered using the EM algorithm. After
we find the clusters, we add the minority instances to
each cluster. One ANN is then constructed per cluster
using the sampled training data. For the final predic-
tion of an unknown instance, the decision of the bound-
ary site was made by voting from all ANNs. The de-
tailed of our method will be described in methodology
section. All our experiments were done with human
gene sequences from TIGR web site?, which consists
of 155 human gene seqeunces of which we randomly
select 55 test sequences to be our test cases. The rea-
son for our data choice is that it would be unfair to
train our classifier on the latest gene sequence data
and compare it with the benchmark programs that are
probably trained on smaller older data sets. As all the
three programs are trained on different data sets, the
best we could do in terms of fairness is to select data
for GeneSplicer since it is readily available. Our result
would have been better if we were to use the latest gene
sequence data. Furthermore, all three programs allow
us to specify that human DNA sequences were used for
testing. Thus, their web-based programs are probably
adapted for human gene predictions too. Our method
serves as a good filter to eliminate significant number
of majority instances. 97.5% of the majority instances
were identified. Because preprocessed data for final
classification is less imbalanced, the accuracy of the fi-
nal predictions was improved dramatically. F-measure
was improved by 39.8% on donor site predictions and

3The program is accessible from
http://125.itba.mi.cnr.it/“webgene /wwwspliceview.html.
4The sequences can be obtained from

http://www.tigr.org/software/traindata.shtml.

24.2% on acceptor site predictions relative to the best
case from the three benchmark methods (See Table 1).
We believe that our new technique on splice site predic-
tion will lead to the construction of a better automated
gene finding system.

From the results of the three existing methods,
a clear trade-off trend between recall and precision
could be noticed from the results (Table 1). As recall
increases, precision tends to decrease. The trade-off
seems to be unavoidable among the conventional
methods. Now we would like to address which metric
- recall or precision - is more important in evaluating
performance of splice site predictions. SpliceView
showed the highest recall among the three existing
methods tested. Can we say that SpliceView is a
better classifier? The answer is “not really”. It is not
reasonable to say that SpliceView is a more accurate
method. For example, if a classifier simply predicts
every instance as positives, the result will be ‘1’ of
recall, ‘0’ of precision, ‘0’ of F-measure. In the other
extreme from the example above, the performance
measure will be ‘0’ of recall, ‘1’ of precision, and ‘0’ of
F-measure. We probably do not trust the classifiers’
predictions although we achieved perfect recall or
precision. Precision must be in an acceptable range for
a high recall to be meaningful. Therefore, we consider
F-measure as the overall accuracy of a classifier.
Donor site predictions: The three existing methods
showed clearly the problem of undersampling. Rela-
tively high recall and very low precision are typical
results from imbalanced data. However, the perfor-
mance of our filtering approach has 39.8% higher on
F-measure than the result of NNSplice on donor site
predictions (Table 1). Both recall and precision were
improved significantly with our filtering approach.
Acceptor site predictions: The recall of GeneSplicer
was not degraded as much as the other methods.
Filtering approach showed slightly lower recall rate
than the recall rate of donor site predictions, but it
showed the best result among all the tested methods
here.  With filtering approach, F-measures from
acceptor predictions showed 24.2% improvement
(Table 1). However, all the methods have lower
precision as compared to the precision obtained
for donor site prediction. This might indicate that
acceptor sites do not have strong sequence information.

5 Other Bioinformatics Applications

Protein Subcellular Localization. We extracted from
Swiss-Prot database 1450 human proteins: 644 cyto-
plasmic, 322 extracellular, 50 mitochondrial, and 1034
nucleus proteins (i.e 4 classes). The reason for looking
at human only is to eliminate the possibility of hav-



Site Method Homo sapiens

Recall Precision F-measure
NNSplice 74.3 21.8 33.7
Donor GeneSplicer 75.3 17.8 28.7
SpliceView 94.4 6.9 12.8
Filtering 97.3 59.0 73.5
NNSplice 64.3 14.8 24.1
Acceptor  GeneSplicer 74.3 10.3 18.1
SpliceView 93.8 3.9 7.5
Filtering 92.3 32.7 48.3

Table 1. Performance comparisons among
three existing methods and our approach.

Method Recall  Precision F-measure
Decision Tree 0.020 0.100 0.033
Undersampling 0.36 0.072 0.120
CPM 1.000 0.256 0.408
Filtered 0.635 0.392 0.458

(A) Protein Mitochondrial localization

Method Recall Precision F-measure
Decision Tree 0.020 0.100 0.033
Undersampling 0.36 0.072 0.120
Final 0.635 0.392 0.458

(B) Phosphorylation Site Prediction

Table 2. Other Bioinformatic Applications

ing homologous proteins from other species which will
often reveal the answer. For the classifier constructed
to be useful, it is more relevant to know how well it
does on protein where no close homologs exist. We
constructed twelve numerical features out from these
protein sequences (details omitted). We give special
attention to the N-terminal and C-terminal because of
the possible presence of signal peptides in these two
ends that direct the protein to its destination. The
problem of determining subcellular localization is not
just a multi-class problem but it is also a multi-label
problem. That is, some protein may have multiple lo-
calizations. While the problem of determining whether
a protein is a cytoplasmic protein does not suffer severe
imbalanced data problem, the ratio of mitochondrial
proteins to non-mitochondrial proteins is 1:29. Simply
performing a decision tree induction on the data gives
a poor performance for the mitochondrial localization
problem with recall and precision merely being 2% and
10% respectively. Undersampling to reduce the imbal-
anced ratio to 1:10 improve the performance to 36%
The CPM algorithm is able to reduce the imbalance
ratio by a factor of 4 (i.e precision is about 25%) with-
out throwing away any of the positive examples. The
final classifier using our approach has a higher recall
and precision rates of 63.5% and 39.2% respectively.

Phosphorylation Site Prediction. The data were
obtained from Human Protein Reference Database
(HPRD). First we selected out the phosphorylated
protein sequences which exist in Swiss-Prot database.
Also negative examples were created from subse-
quences containing serine, threonine or tyrosine amino
acid residue. The results are shown in Table 2(B) (more
details will be provided in the full version of this pa-

per.)
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