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Abstract

In real-world concept learning problems, the
representation of data often uses many features,
only a few of which may be related to the target
concept. In this situation, feature selection is
important both to speed up learning and to
improve concept quality. A new feature
selection algorithm Relief uses a statistical
method and avoids heuristic search. Relief
requires linear time in the number of given
features and the number of training instances
regardless of the target concept to be learned,
Although the algorithm does not necessarily
find the smallest subset of features, the size
tends to be small because only statistically
relevant features are selected. This paper
focuses on empirical test results in two
artificial domains; the LED Display domain and
the Parity domain with and without noise.
Comparison with other feature selection
algorithms shows Relief's advantages in terms
of leaming time and the accuracy of the learned
concept, suggesting Relief's practicality.

1 INTRODUCTION

Since relevant features for many real-world concept
learning problems are often unknown, we must
introduce many candidate features. Unfortunately
irrelevant features degrade the performance of concept
leamners both in speed (due to high dimensionality) and
predictive accuracy (due to irrelevant information). The
situation is particularly serious in constructive
induction, as many candidate features are generated in
order to enhance the power of the representation
language. Feature selection is the problem of choosing
a small subset of features that ideally is necessary and
sufficient to describe the target concept.
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Concept learners, such as ID3 [Quinlan 1983] or PLS1
[Rendell, Cho & Seshu 1989], select relevant features
by themselves, using measures such as information
gain. Hence one might think that feature selection is
not a problem at all. But hard concepts having feature
interactions are problematic for induction algorithms
[Devijver & Kittler 1982, Pagallo 1989, Rendell &
Seshu 1990]. For example, if the target concept is f; @
f2 = 1 and the distribution of the feature values is
uniform over {0, 1}, the probability of an instance's
being positive (negative) is 50% when fi=1(f=1).
There is little information gain in selecting either of f
or fa though they are the relevant features. Since real-
world problems may involve feature interaction, it is
not always enough to apply concept learners only.
Problems such as protein folding and weather prediction
are hard in the sense.

Many feature selection algorithms have been proposed.
One of them is an exhaustive search algorithm over all
subsets of the given feature set. However exhaustive
search is intractable. Devijver and Kittler [ 1982] review
heuristic methods for reducing the search space. But
they are suboptimal - it is always possible for the
methods to miss relevant but undetectable features.

For real-world problems involving much feature
interaction, we need a reliable and practically efficient
method to eliminate irrelevant features. The inefficiency
of past approaches is caused by trying combinations of
features, explicitly searching for the smallest sufficient
subset of the given feature set. A different approach is
to collect all the statistically-relevant features. Our
algorithm is described in Section 2, and its empirical
evaluation is given in Sections 3. Section 4 addresses
limitations and Section 5 compares related work.
Section 6 concludes and suggests future work.
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2 Relief ALGORITHM

We assume two-class classification problems. An
instance is represented by a vector composed of p feature
values. 8 denotes a set of training instances with size n,

F is the given feature set (fy, f3, . . . , fp}. An
instance X is denoted by a p-dimensional vector (x1, x2,
. » Xp), where xj denotes the value of feature fj of

Relief is a feature selection algorithm inspired by
instance-based learning [Aha, Kibler & Albert 1991,
Callan, Fawcett & Rissland 1991). Given training data
8, sample size m, and a threshold of relevancy 1, Relief
detects those features which are statistically relevant to
the target concept. T encodes a relevance threshold (0 <
t< 1). We assume the scale of every feature is either
nominal (including boolean) or numerical (integer or
real). Differences of feature values between two
instances X and Y are defined by the following function
diff.

When xy and yy are nominal,
: 0 <if xi and yy are the same>
diff(xic, YO = 1 1 «if xx and yi are different>
When xy and yy are numerical,
diff(xk, yi)=(xk - yi/nug
where nuy is a normalization unit to normalize
the values of diff into the interval [0, 1]

Relief (Figure 1) picks a sample composed of m triplets
of an instance X, its Near-hit instance! and Near-
miss instance. Relief uses the p-dimensional Euclid
distance for selecting Near-hit and Near-miss.
Relief calls a routine to update the feature weight vector
W for every sample triplet and determines the average
feature weight vector Relevance (of all the features to
the target concept). Finally, Relief selects those
features whose average weight (‘relevance level’) is
above the given threshold 7.

Relief is valid only when (1) the relevance level is large
for relevant features and small for irrelevant features, and
(2) 7 can be chosen to retain relevant features and discard
irrelevant features. Theoretical analysis [Kira & Rendell
1992] shows that (1) the relevance level is positive
when the feature is relevant, and close to zero or
negative when it is irrelevant, and that (2) a statistical
method of interval estimation, can be used to determine
the value of 1.

1We call an instance a near-hit of X if it belongs to the
close neighborhood of X and also to the same category as
X. We call an instance a near-miss when it belongs to the
properly close neighborhood of X but not to the same
category as X.

The complexity of Relief is ©(pmn) because the
distance between X and each of the n instances is
calculated, taking ©(p) time, to determine its Near-
miss and Near-hit inside a loop iterating m times. m
is a constant affecting the accuracy of relevance levels,
Since m is chosen independently of p and n, the
complexity is @(pn). Thus the algorithm can select
statistically relevant features in linear time in terms of
the number of features and the number of training
instances. ,

Relief(8, m, 1)
Separate 8 into 8% = {positive instances} and
8°= (negative instances}
W=(0,0...,0
Fori=1ltom
Pick at random an instance X € §
Pick at random one of the positive instances
closestto X, Zt e 8%
Pick at random one of the negative instances
closestto X,Z € 8-
if (X is a positive instance)
then Near-hit=Z"%; Near-miss =Z"
else  Near-hit=Z"; Near-miss=2Z%
update-weight(W, X, Near-hit, Near-miss)
Relevance = (1/m)W
Fori=1top
if (relevance; 2 1)
then fj is a relevant feature
else  fj is an irrelevant feature

update-weight(W, X, Near-hit, Near-miss)
Fori=1top
Wj = W; - diff(x;, near-hit;)2 + diff(x;, nea.r—missi)z

Figure 1 Relief Algorithm

3 EMPIRICAL EVALUATION

Two artificial domains, LED (Section 3.1) and Parity
(Section 3.2) were used for evaluating Relief. We also
compare Relief and other feature selection algorithms
both in learning time and predictive accuracy of the
learned concepts (Section 3.3).

3.1 LED DISPLAY DOMAIN

Our data in the LED Display Domain [Breiman et al.
1984, Aha, Kibler & Albert 1991], which were
generated by the program provided in UC Irvine
repository, consist of seven meaningful features,
corresponding to the seven segments, and seventeen
irrelevant features. Each feature has the value of 0 or 1.
We also introduced noise. For the noisy case, 10% of
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fhe feature \;zlg?)%were negated. The number of training The target concepts of this domain are the description of
instances w: ' digits (0, 1, ... , 9). Table 1 shows which feature
values are 1 for each concept.

Table 1 LED Display Domain : Target Concepts

digit fl 2 f3 f4 f5 f6 7
1 0 0 1 ] 0 1 0
2 1 0 1 1 1 0 1
3 1 0 1 1 0 1 1
4 0 1 1 1 0 1 0
5 1 1 0 1 0 1 1
6 1 1 0 1 1 1 1
7 1 0 1 0 0 1 0
8 1 1 1 1 1 1 1
9 1 1 1 1 0 1 0
0 1 1 1 0% ¢ 1 1
Relevance level
1.0
0.8 === Noise Free
mm——10% Noise
0.6
0.4
0.2
0.0

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24
eature number

Figure 2 Relevance levels of the concept '6’

Relevance level
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Figure 3 Relevance levels of the concept "2'
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Figure 2 and 3 show the relevance levels of all the
features for the concept '6' and the concept '2'
respectively. In learning the concept for a digit (e.g.
'6"), all the instances corresponding to the other nine
digits are considered to be negative examples of the
target concept. Each relevance level shown by a bar in
the graphs is an average over 50 runs (5 runs for 10
different data sets),

Figure 2 shows that features f3 and f5 are highly
relevant to the target concept '6'. All of the noise-free
runs, and 45 out of the 50 noisy runs, picked f3 and f5
as the best two features. Table 1 shows that (f3, f5) is
the minimal feature set to describe the concept '6'.

Figure 3 shows that features f3, f5 and fg are highly
relevant for the target concept '2'. In this case, {fg) is
the minimal feature set, although Relief did not find the
minimal set. Most runs (all the noise-free runs and 48
out of the 50 noisy runs) picked fg as the best feature,
The size of the feature set selected by Relief is small in
the sense that no irrelevant features were selected,

Both Figure 2 and 3 show that the same set of features
have high relevance levels no matter whether the data is
noise-free or noisy. In both cases (and others not
reported here), given a threshold determined by
inspection or theoretical considerations [Kira & Rendell

1992], Relief selects feature sets that are small and
sufficient to describe the target concepts.

3.2 PARITY DOMAIN

Parity(h, k, r) denotes a parity domain consisting of h
relevant features and k irrelevant features. For each
relevant feature, r% of the instances have a negated
(noisy) feature value. The target concept is 1@ fo @ .
.. ©fy=1. A parity concept is a hard concept having
many peaks or disjuncts [Rendell & Seshu 1990] in the
instance space. In other words, the relevant features
interact with one another,

Table 2 shows the result of applying Relief to Parity(3,
7, 0) and Parity(3, 7, 5). For both of them, fi, f; and
f3 are the only relevant features. Each row of the table
shows the average and the standard deviation of the
relevance level for each feature over 20 different data sets
(each set consisting of 200 training instances) for each
domain,

The last row shows the number of times (out of 20
runs) when Relief was fooled — an irrelevant feature
has a higher relevance level than at least one of the
relevant features,

Table 2 Parity(3, 7, 0) and Parity(3, 7, 5)
Rel. = Relevance level, Dev. = Standard deviation

200 inst, No noise | 200 inst, 5% noise

Rel. Dev. Rel. Dev.

f1 0.2970 | 0.0589 0.1605 | 0.0471
12 0.3075 | 0.0542 0.1815 | 0.0519
f3 0.3165 | 0.0511 0.1540 | 0.0589
f4 - 0.0740 | 0.0465 | - 0.0335 | 0.0540
f5 1-0.0755 | 0.0663 |- 0.0425 | 0.0559
f6 |- 0.0860 | 0.0407 | - 0.0335 | 0.0673
£7 - 0.0870 | 0.0500 | - 0.0290 | 0.0607
f8 - 0.0935 | 0.0587 | - 0.0395 | 0.0548
f9 |- 0.0880 | 0.0671 |- 0.0400 | 0.0616
f10 |- 0.1085 | 0.0515 | - 0.0810 | 0.0454

fooled] 0/20 2/20

i




Table 2 shows a clear contrast between the relevance
levels of fj, f; and f3 and those of the irrelevant
features. The same set of features is highlighted both
for noise-free and for noisy data, though less clearly for
the latter.

When the data are noisy, Relief may be fooled. Note
that 5% feature noise for the three relevant features
corresponds to 4.75% classification noise (one-bit errors
and three-bit errors lead to classification error). Near-
miss instances picked by Relief may in fact be near-hit
instances and vice versa.

3.3 COMPARISON WITH OTHER
ALGORITHMS

In the introduction, we discussed three types of feature
selection algorithms. One is exhaustive search, another
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is heuristic search, and the third is Relief - a new
statistical method. In this section, we compare these
three types of algorithms. Exhaustive search is
represented by FOCUS [Almuallim & Dietterich 1991],
which is a recent algorithm that stops as soon as the
smallest sufficient feature set is found. ID3 represents
heuristic search - a kind of sequential forward search
[Devijver & Kittler 1982], since it incrementally selects
the best feature with the most information gain while
building a decision tree. Figure 4 shows the results of
comparing (1) ID3 alone, (2) FOCUS combined with
ID3, and (3) Relief (m = 40, T = 0.1) combined with
ID3, each in terms of predictive accuracy and learning
time in a parity domain,

The noise-free test was done in Parity(2, o, 0) and the
noisy test in Parity(2, c, 10), where o varied from 2 to
12. The horizontal axis shows the size of the given

feature set ¥. The results are the averages of 10 runs.
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Figure 4 Test Results in Parity Domain
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The predictive accuracy of ID3 alone was inferior to
FOCUS + ID3 and Relief + ID3 in both noise-free and
noisy situations. This shows the importance of feature
selection algorithms.

With noisy data, the predictive accuracy of Relief + ID3
is higher than FOCUS + ID3 because FOCUS selected
more irrelevant features than Relief. The predictive
accuracy of Relief + ID3 looks unstable. This is
because Relief failed to select one of the relevant feature
once in a while, which greatly affects the average
accuracy. - As Figure 4 shows, however, Relief + ID3
typically learns the correct concept. The learning time
of FOCUS + ID3 increases exponentially as the size of
F increases, while that of Relief + ID3 increases only
linearly. Relief can select relevant features in linear
time regardless of the complexity of the target concept,
The algorithm also works for noisy data,

These results show that Relief is superior to exhaustive
search in terms of learnin g time and superior to heuristic
search in terms of predictive accuracy,

4 CURRENT LIMITATION AND
FUTURE WORK

Relief requires retention of data in incremental uges,
However it can be modified for incremental update of
relevance levels,

Relief is applicable only to the two-class classification
problem. However Relief can easily be extended for
solving multiple-clags classification problems by
considering them as a set of two-class classification
problems,
continuous value prediction problems,

Insufficient training instances fools Relief, Sparse
distribution of training instances increases the
probability of picking instances in different peaks or
lisjuncts as Near-hit (Figure 1). For example, if the
‘ame number of instances are given, Relief gets less
iccurate for a parity conceptf1® L, @ ..., @ fh=1as
| increases. This is because the density of peaks
creases as h increases,

- is crucial for Relief to pick real near-hit instances,
here are two ways. One is to give enough near-hit
Istances for all instances (especially for those instances
n the boundary of the target concept). Another is to

Relief can also be extended for solving

apply feature construction [Matheus & Rendell 1989,
Rendell & Seshu 1990, Yang, Blix & Rendell 1991),
By generating good new features, the number of peaks
of the target concept is reduced, Accordingly the same
training instances may then provide enough near-hit
instances to detect relevance of those new features to the
concept.

5 RELATED WORK

Traditional heuristic search algorithms given in
[Devijver & Kittler 1982] heuristically select a subset of
features of a given size d. But since we don't know the

The FOCUS algorithm [Almuallim & Dietterich 1991]
is able to detect the necessary and sufficient features in
quasi-polynomial time, provided (1) the complexity of
the target concept is limited and (2) there is no noise,
But since the complexity of the target concept is
unknown and data are often noisy in real-world
problems, FOCUS can be impractical,

Table 3 summarizes the comparison of Relief and other
feature selection algorithms,

Aha [1989] and Aha & McNulty [1989] propose a
method to learn relative attribute weights, corresponding
to relevance levels, Their method suggests an IBL.
approach to feature selection. Their analysis of the
weight vector implicitly assumed a uniform distribution
for irrelevant feature values, which makes weights of
irrelevant features Statistically zero, 1In general,
however, we do not know the distribution of irrelevant
feature values, Reljef does not assume anything for the
distribution of irrelevant feature values,

Callan, Fawcett and Rissland [1991] also introduce an
interesting feature weight update algorithm in their case-
based system CABOT, which showed significant

require the domain éxpert to choose the best instance, it
is more autonomous. Relief's feature relevance is
supported by theoretical analysis [Kira & Rendell 1992].
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Table 3 Comparison of Feature Selection Algorithms

o7 Learning Speed Quality of Selection
D3 alone ' fast » fooled by feature interaction
euristic Search |relatively fast « fooled by feature interaction

cur
fooled when no. of relevant

features exceeds the limit

e s

[ rOCUS fast, when the target |¢ selects the optimal set when
i concept is simple the data are noise-free

and the data are e tends to select many
noise-free irrelevant features when the
can be very slow, data are noisy
when complex or

1 b noisy

[Relief relatively fast « selects only statistically

relevant features
not fooled by feature
interaction

» noise-tolerant

s is irly noise- is un featurs
mmer [1987] explores an extended m'ethod t0 intzlrsa(::fi?m.y Tgis ig:priog;az}?: imm?tf:ncfﬁ lI}lyard 1'(:31'tE
ict new features for STAGGER [Schlimmer & 014 domains such as protein folding and weather
1986] and [Aha 1991] applies the method for ' o0 p g
e method selects seeds (source features) for : '
ating a new feature judging from weights assigned ~ Though our approach is suboptimal in the sense that the

source feature based on its relevance to the subset acquired is not always the smallest, this
goncept. However, since the relevance is determined one  limitation may not be critical for two reasons. One is
ture at a time, the method does not work for domains  that the smallest set can be achieved by subsequent
s features interact with one another (e.g. parity  exhaustive search over the subsets of all the features
ns, protein folding). Relief assesses feature sets  sclected by Relief. The other mitigating factor is that
can handle complex domains. the concept learners such as ID3 [Quinlan 1983] and
PLS1 [Rendell, Cho & Seshu 1989] themselves can

rier, Bareiss and Holte [1990] introduce feature : :
bl y ssary
rtance, which corresponds to relative attribute ﬁée;;v';ic?wlmgc:::{:; :glgszggbe i ek

ts in [Aha & McNulty 1989]. In the Protos
tem of Porter, Bareiss and Holte, feature importance ~ More experiments and thorough theoretical analysis are
termined from the explanation of classification ~ warranted. The experiments should include combining

i b_y experts. Relief does not require any  our algorithm and various kinds of concept learners such
xplanation of classification, and is more autonomous. as similarity-based learners, and connectionist learners.
5 Relief can also be applied to IBL to learn relative

A weights of features for the similarity metrics and
-CONCLUSION integrated with constructive induction.

[ is a simple algorithm which is inspi
) partly inspired by
ning relative feature weighis in IBL. The algorithm b o
puristics :ﬁ(doir; fetit;s[;.cal z}nallﬁlls z}Il:ll? emplo;{g feWw  The authors thank David Aha for discussion on IBL
leient, ' Tts co often fooled. The algorithm is  j154rithms and Bruce Porter for discussion on feature
mputational complexity is polynomial  jmnortance. Thanks also to the members of the

n), or ©(pn) if the sample size m is constant)
e | 1 B . ; I i i
he efficiency of our algorithm is brought about by (1) sﬁcgi;g;l;zn?ammg Siron:CE U O ORI

“%sea;ching the space of subsets explicitly and (2)
A 3. P the minimality of the subset returned. Relief



256 Kira and Rendell

References

[Aha 1989] Aha, D. W. Incremental Instance-Based
Learning of Independent and Graded Concept
Descriptions, Proceedings of the Sixth International
Workshop on Machine Learning,

[Aha 1991] Aha, D. W. Incremental Constructive
Induction: An Instance-Based Approach, Proceedings
of the Eighth International Workshop on Machine
Learning.

[Aha, Kibler & Albert 19911 Aha, D. W., Kibler, D. &
Albert, M, K, Instance-Based Learning Algorithms.
Machine Learning, 6, 37-66.

[Aha & McNulty 1989] Aha, D. W. & McNulty, D.
M. Learning Relative Attribute Weights for
Instance-Based Concept Descriptions, Proceedings of
the Eleventh Annual Conference of the Cognitive
Science Society.

[Almuallim & Dietterich 1991] Almuallim, H. &
Dietterich, T. G., Learning With Many Irrelevant
Features, Proceedings of the Ninth National
Conference on Artificial Intelligence, 1991, 547-
552,

[Bareiss 1989] Bareiss, R., Exemplar-Based Knowledge
Acquisition : A Unified Approach to Concept
Representation, Classification, and Learning,
Academic Press

[Breiman et al. 1984] Breiman, L., Friedman, J, H.,
Olshen, R. A. & Stone, C. J., Classification and
Regression Trees, Wadsworth, 1984.

[Callan, Fawcett & Rissland 1991] Callan, J. P.,
Fawcett, T. E. & Rissland, E. L., CABOT : An
Adaptive Approach to Case-Based Search,
Proceedings of the Twelfth International Joint
Conference on Artificial Intelligence, 1991, 803-808.

[Devijver & Kittler 1982] Devijver, P. A. & Kittler,
J., Pattern Recognition : A Statistical Approach,
Prentice Hall.

[Kira & Rendell 1992] Kira, K. & Rendell, L. A., The
Feature Selection Problem : Traditional Methods and
a New Algorithm, Proceedings of the Tenth National
Conference on Artificial Intelligence, 1992.

[Matheus & Rendell 1989] Matheus, C. & Rendell, L.
A., Constructive Induction on Decision Trees.
Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, 1989, 645-650.

[Pagallo 1989] Pagallo, G., Learning DNF by
Decision Trees, Proceedings of the Eleventh
International Joint Conference on Artificial
Intelligence, 1989, 639-644.

[Porter, Bareiss & Holte 1990] Porter, B, W., Bareiss,
R. & Holte, R. C. Concept Learning and Heuristic
Classification in Weak-Theory Domains, Artificial
Intelligence, 45, 229-263.

[Quinlan 1983] Quinlan, J. R. Learning Efficient
Classification Procedures and Their Application to

Chess End Games. Machine Learning : An Artificial
Intelligence Approach, 1983, 463-482.

[Rendell, Cho & Seshu 1989] Rendell, L. A., Cho, H.
H. & Seshu, R. Improving the Design of
Similarity-Based Rule-Learning Systems.
International Journal of Expert Systems, 2, 97-133.

[Rendell & Seshu 1990] Rendell, L. A. & Seshu, R.
Learning Hard Concepts through Constructive
Induction: Framework and Rationale.
Computational Intelligence, Nov., 1990.

[Schlimmer 1987] Schlimmer, J. C., Learning and
Representation Change, Proceedings of the Fifth
National Conference on Artificial Intelligence

[Schlimmer & Granger 1986] Schlimmer, J. C. &
Granger, R. H. Jr., Incremental Learning from
Noisy Data, Machine Learning 1, 317-354

[Yang, Blix & Rendell 1991] Yang, D-S., Blix, G. &
Rendell, L. A. The Replication Problem: A
Constructive Induction Approach, Proceedings of
European Working Session on Learning, march,
1991.




	Relief1.jpg
	Relief2.jpg
	Relief3.jpg
	Relief4.jpg
	Relief5.jpg
	Relief6.jpg
	Relief7.jpg
	Relief8.jpg

