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SUMMARY

In this paper it is shawn how ridge estimators can be used in logistic regression to improve the
parameter estimates and to diminish the error made by further predictions. Different ways to choose
the unknown ridge parameter are discussed, The main attention facuses on ridge parameters
abtained by cross-validation, Three different ways ta define the prediction error are considered:
classification errar, squared error and minus log-likelihaod. The use of ridge regression isillustrated by
developing a pragnostic index for the two-year survival probability of patients with ovarian cancer as
a functian of their deoxyribonucleic acid {DNA] histagram. In this example, the number of covariates
is large compared with the number of observations and modelling without restrictions on the
pararmeters leads to overfitting. Defining a restriction on the parameters, such that neighbouring
intervals in the DNA histogram differ anly slightly in their influence on the survival, yields ridge-type
parameter estimates with reasonable values which can be clinicaily interpreted. Furthermare the
model can predict new observations more accurately.

Keywords: Cross-validation; Deoxyrinonucleic acid histogram; Lagistic regression; Predictive
value; Ridge regressian

1. Introduction

In biostatistics, logistic regression is a popular method to model binary data.
However, unstable parameter estimates occur when the number of covariates is
relatively large or when the covariates are highly correlated. In this paper it is shown
how ridge estimators can be combined with logistic regression to improve the model in
such situations.

As an example we consider the following clinical problem. For 81 patients with
ovarian cancer the deoxyribonucleic acid (DNA) content of about 300 cancer cells was
determined by DNA image cytometry. For each patient a histogram of the
distribution of the DNA content of the cancer cells was made. The question was how
the relation between survival and DNA content of cancer cells could be modelled by
using the information on the whole DNA histogram.

The DNA value expresses the amount of DNA in a cell, where 1C corresponds to
the amount. of DNA in a haploid cell, a cell with one set of 23 chromosomes. To
construct a DNA histogram, the range of DNA values is split into 37 classes, with class
interval 0.2C, except that the first class contains the fraction of cells with DNA values
less than 0.9C and the last class the fraction of cells with DNA values greater than
7.9C. An example of a DNA histogram is given in Fig. I.
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Fig. I. Example of a DNA histogram for a patient with advanced avarian cancer, based on about 300
cancer cells: the fractions of cells in the various categories of the histogram are used as covariates in the
logistic regression model

In all histograms the DNA value 2C corresponds to the amount of DNA of a cell
with two pairs of 23 chromosomes. If a person is healthy, their DNA histogram would
have a large peak at 2C and a small peak at 4C. Since empirical fractions are used, the
histograms are mutually comparable. We shall denote the fraction of cellsin class j for
patient { as X;, where L, X, =1,

For 70 of the 81 patients, it was known whether they died within 2 years of diagnosis
(28) or survived longer than 2 years (42) and in this paper we shall restrict our analysis
to these 70 patients. The dichotomous variable Y is defined as ¥,=1 if person { has
died within 24 months and ¥, =0 otherwise.

The probability that Y;=1, given the value of X; = (X, . . ., X;), is denoted
p(X,) and is modelled with the standard logistic regression model

a7 37
p(X) = exp( > 6;Xa) / [chp( > BJ)(:I) }
i=1 J=1

or equivalently
7
logit{ p(X)} = 3. B;Xy,
=1

without a constant since E,.X;= 1.

One problem is that the number of covariates is large compared with the number of
observations and that the covariates are highly correlated. Overfitting and collinearity
yield very unstable estimates and in our example some of the maximum likelihcod
estimates (MLESs) are infinite. A procedure to obtain more stable estimates is to pool
neighbouring categories. However, determining the number of groups and the way of
grouping is often rather subjective. An alternative approach, which does not suffer
from these drawbacks, is to specify a restriction on the parameters 3 ;. In this example
the DNA content is measured on a continuous scale and it is reasonable to assume that
neighbouring categories in the DNA histogram differ only slightly in their influence
on the outcome. This can be achieved by requiring that the difference beiween two
successive parameters is small, i.e. £(8;.,— 8;)* is restricted.
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In ordinary linear regression finding a least square estimate subject to spherical
restrictions on the parameters leads to ridge regression. In Section 2 extensions to
logistic regression are made. It is shown how ridge estimators are used in the logistic
regression model to obtain more realistic estimates for the parameters and to improve
the predictive value of the model. How much the 8s are restricted depends on the
choice of the unknown ridge parameter. Various methods to determine the ridge
parameter are discussed in Section 3. In Section 4, ridge regression is applied to the
ovarian cancer data, to model the two-year survival probability for the ovarian cancer
patients.

2. Ridge Estimators in Logistic Regression

In this section the approach of Duffy and Santner (1989) is followed to extend ridge
regression theory in standard linear regression to logistic regression. The ridge
estimator is derived as a restricted maximum likelihood estimator. A slightly different
approach to define a ridge-type estimator is given by Schaefer et al. (1984). We shall
demonstrate that both approaches are asymptotically equivalent.

Suppose that we have »n observations (X;, Y;), where the ¥, are mutually
independent binary (1-0) response variables, with p(X;) the probability of ¥,=1 and
X;are d-dimensional row vectors of covariates. The probability function p follows the
logistic regression model,

P(X;) = exp(X;8)/{1 +exp(X;8)},

with 8 a d-dimensional parameter vector. For the moment we assume that there is no
constant term involved in this regression problem. Often the constant plays the role of
a base-line and is treated differently from the other parameters. The treatment of the
constant will be discussed in Section 4, where the ridge regression method is applied to
the ovarian cancer data set,

The log-likelihood / of the data (X, ¥) under this model is

1B) = 25 1Y, log p(X)}+(1-Y) log{1 - p(X)}].

Maximization of /(8) yields the ordinary MLE & for 3.
Duffy and Santner (1989) consider the maximization of the log-likelihood function
with a penalty on the norm of :

INB) = 1) — N8I, @.1)

where /(8) is the unrestricted log-likelihood function and |8 = (Z87)!/2, the norm of
the parameter vector 3. The maximizer of equation (2.1} is denoted 3*. The ridge
parameter A controls the amount of shrinkage of the norm of 8. When A=0 the
solution will be the ordinary MLE, whereas if A — o the §; all tend to 0.

A large number of explanatory variables and/or much correlation between the
various explanatory variables give rise to unstable parameter estimates. Shrinking the
s towards 0 and allowing a little bias will stabilize the system and provide estimates
with smaller variance. Therefore, fora good choice of A, the estimate 3 is expected to
be on average closer to the real value of 8 than the unrestricted MLE, i.e. MSE(3%) <
MSE(R). For the standard linear regression model there always exists a ridge
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parameter A > O for which the estimates have smaller mean-squared error than the
minimum least square estimate. See Hoerl and Kennard (1971) or Draper and Smith
(1983) for more detail on ridge regression for the ordinary least square situation.

Analogous to the unrestricted MLEs, 3* may be obtained by the Newton-Raphson
maximization procedure, The first derivative of INB) is

UNB) = 2, Xi{Yi—p(X))} —2\8

U(B)—2n8, {2.2)

with U{(B) the derivative of the unrestricted log-likelihood. The negative of the matrix
of second derivatives is

ONB) = QB + 2N, 2.3)

where @=X'V(8)X is the negative of the matrix of second derivatives of the
unrestricted likelihood and V(8) is an n x #n diagonal matrix with v, =
PO -p(X)}-

Large sample properties of the restricted MLEs can be obtained by carrying out a
Taylor series expansion of the first derivative of the penalized likelihood about the
real parameter value 3,. This yields

UMNBY = UNBo) — (B*—Bo)’ 2Bo) + o(||B* - Bal)).

Usi%g equations (2.2) and (2.3) and UNB*) =0 yields as a first-order approximation
for #*

B = Bo+ {UBo) + 2N}~ {U(Bo) ~ 27B,)}
= {Q@Bo) + 2N} " {U(Bo) + 2(Bo)Bo} -

Analogously it can be shown that a first-order estimate for the unrestricted MLE is 3
= B + Q@ (8y) U(Bo). Hence a first-order estimate of 8* is

B = {Q(B) + 2N}~ 0(By) B.

Here we see that 8* shrinks towards 0 if the value of the ridge parameter increases.
Replacing Q(8,) by its estimate Q(B) vields exactly the ridge-type estimate defined by
Schaefer ef al. (1984). Note that the estimate of Schaefer et al. is not defined if some
of the unrestricted MLEs are infinite, which is so in the ovarian cancer example.
Under certain regularity conditions (Cox and Hinkley, 1974) 3 is asymptotically
unbiased with covariance matrix (8,) ~'. Then the asymptotic bias of 3* becomes

EB*—85) = —2MQ(By)+ 2N} '8,
and the asymptotic variance of 3* is
{Q(Bo) + 2N} ™1 Q(Bo){Bo) + 2N} 1.

Unfortunately, this approximation to the variance of 3* cannot be used directly to
construct approximate confidence intervals around 3*, since we have to take into
account the bias of the estimate, Jackknife and bootstrapping might be possible
methods to obtain more insight into the variability of A*.

By similar reasoning, an asymptotic expression for the mean-squared error of 8*
can be obtained and for this expression it can be proved, analogous to the ordinary
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least square situation (Hoerl and Kennard, 1971), that it attains its minimum at a
value A\* > 0,

3. Choice of Ridge Parameter

The ridge parameter can be chosen with or without (empirical) Bayesian
arguments. We prefer to use a purely frequentist argument, based on minimizing an
estimate of the prediction error of the model. Suppose that we have parameter
estimates based on the data (X, Y;), i=1. .. n, and an estimate f{x) of the real
probability function, based on the parameter estimates. We predict for a new
observation, with covariate vector X,.,, the probability that Y,.,=1 by p=5(X,..)
and denote the real probability that ¥,.,=1 by p. Various ways to define the error
made by this prediction are discussed by Efron (1986) and by van Houwelingen and le
Cessie (1990). We concentrate on three different measures to quantify the error of the
prediction:

(a) classification or counting error

CE=1 if Yo, =landp < 1
or Yy=0and p > 3,
-3 ip=t,
=0 otherwise;

{b) squared error
SE = (Ypew — BV
{¢) minus log-likelihood error
ML = — { Y, l0g 5+ (1 = Yy) log(1 - 5)}.

The mean of all three measures is maximal if p is around % and tends to 0 if p tends
to 1 or to 0. This corresponds to the intuitive feeling that Y is more difficult to predict
if the probability that ¥Y=1 is around % The choice of the error measure depends
mainly on the way that the model is used to predict future observations. The classi-
fication error corresponds to the prediction rule ¥, =1ifp > 1, ¥,.,,=0if p < ; and
arandom assignment of ¥, =1 and ¥,.,=0if p=1. It indicates how well the model
discriminates and is sensitive to the model predictions in the neighbourhood of p= %

The other two measures consider the model predictions in the whole range of p-
values. The squared error is intuitively appealing. It measures the Euclidean distance
between Y., and 4 and is a direct analogy of the squared error in the ordinary linear
regression model.

The third measure ML, equal to —log p if ¥, =1 and equal to —log(l — ) if
Yoew =0, is commonly used as an error measure for binary data. Summing the ML
over all observations yields minus the log-likelihood of the data (Y, X), given the
parameter vector 8. Therefore in this paper this error measure is called the minus log-
likelihood error. Names for twice the ML are the deviance and the entropy (Efron,
1978, 1986). Advantages of the ML are its relation to the log-likelihood function and
the fact that it is not restricted to binary regression but can also be used in a more
general setting. In van Houwelingen and le Cessie (1990), more properties of the ML
are discussed and extensions are made to survival analysis.
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Fig. 2. Behaviour of the various prediction errors as functions of the predicted probability if ¥=0:
— . CE; - , ML; ———-- , SE

In Fig. 2 the various measures of the prediction error are compared. The error for
one single new observation with Y, =0 is given as a function of the predicted
probability /. The errors are scaled such that integrating the optimum error (the mean
error when the real probability p is known) over p yields the same for all three errors.
This means that the squared error is multiplied by % and the minus log-likelihood is
divided by 2. It is clearly seen that the SE and the ML differ little if 5 is not too far
from 0 and that the classification error is a totally different criterion. In the
neighbourhood of p=1, SE tends to 1, while ML tends to infinity. The fact that
impossible predictions, like Y., =0 and p=1, yield an infinitely large ML error is
certainly another argument in favour of ML,

Ideally, we would have a validation set on which the predictive value of the logistic
model ¢could be compared for various values of A and an optimal A could be chosen
such that the mean error rate is minimal. If a validation set is not available, a way to
mimic the predlctmn is by cross-validation. In cross-validation the predictor for each
observation is based on the other observations. Let B 1, be the estimate based on all
observations except (X}, Y;) and let ﬁ( n{x) be the estimate of p(x) based on B( o In
this way it is possible to obtain an estimate for the mean prediction error, which can be
minimized to obtain the ridge parameter. The cross-validated estimates of the mean of
the three prediction errors defined ahove are

(a) the mean classification error
MCE¢y=n"" E Yi[B - y(X)< %] + (1= Y)[B_p(X)> %] + ‘;'[PA(—;)(X:‘) = ';].

where [ ] denotes the indicator function, i.e. [ ]=1 if the proposition inside
the brackets is true and [ } =0 if it is false,
(b) the mean-squared error

MSEcy = 17" 25 {Yi= B o( XD}
]

(¢) and the mean minus log-likelihood
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MMLcy = —n~! E [Y; log B_ (X)) +(1-Y;) log{l =B (XD}

Cross-validation is a time-consuming procedure. For each observation left out, the
parameters are estimated again. Approximations for B("_ i can be made by following
Cook and Weisberg (1982), who considered unrestricted MLEs. This vields as a one-
step approximation for A2 ,,

A =1y ' .
B = 9 - BV KTy o

where i; = v X {QBY+2M} X and v; = A(X){1-B(X,)}. Hence we have an
estimate for B, without a need to re-estimate the parameters for each observation
left out. Using arguments similar to those leading to equation (3.1) it can also be
shown that MSEcy can be approximated by

— A(X 2

MSE cy = n-! Z{Y_‘%& (3.2)

r (1-hy

Replacing A; by its average value n~! Eh; yields a criterion, equivalent to the

generalized cross-validation criterion of Golub ef al. (1979) in the ordinary least
square situation:

L EdYi-AX))
(1-n""Chy)? -

Golub ef al. (1979) argue that this criterion is invariant under rotation in the model
space. Itis disputable whether rotation invariance is a necessary condition. MSE gy is
less sensitive to the influential observations, the observations with a large value of ;.
Both the MSE, .y and the MSEqy are easy-to-compute estimates of the mean-
squared error. In the application to the ovarian cancer data set, the two criteria
differed only slightly.

MSEGCV =n

4. Example

We return to the ovarian cancer data set. To write the restriction on the 8s,
Z(8;+1— B,)% in the form of the restricted maximum likelihood problem we transform
the covariates by defining

Then the model becomes

logit{ p(X))} = 40 + 2, Yiijs

i=1

with vo=#,andy; = 8;,, — 8;,/=1. . . 36. Since the constant y, plays the role of a
base-line value, it is not allowed to shrink with the other parameters. Therefore we

maximize the restricted likelihood with penalty £3%, 42
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k[:3
MNyy=1I(y) =N 2 yh (4.1)
i=1

It is straightforward to modify the formulae derived in Sections 2 and 3 for the
alternative treatment of the constant and to obtain the estimates for v by the
Newton-Raphson maximization procedure.

The various estimates of the mean prediction error, discussed in Section 3, are
optimized to obtain an estimate of the optimal ridge parameter. In Fig. 3 the cross-
validated estimates of the various prediction errors are given as a function of the ridge
parameter.

The cross-validated estimate of the classification error is small for the smallest
values of A. The classification error takes the same value for a whole range of A and
does not have one well-defined minimum. This is an argument against the use of this
criterion in this situation. The question arises about whether there are enough
observations to make MCEy a usable criterion. However, to compare this criterion
with the other cross-validation criteria, we choose as optimal ridge parameter for this
criterion, A =0.003,

Three different estimates for the mean-squared error were considered: the cross-
validation criterion with parameters estimated again for each observation left out
(MSE(y), the approximation (3.2) of this criterion (MSE,v) and the generalized
cross-validation criterion (MSEqcy). The optimal choice of A differed slightly,
yielding as values for A 0.065 (MSE scvy), 0.05 (MSE ) and 0.035 (MSE;cy). Finally,
the MML .y, criterion yielded the largest value of the ridge parameter, 0.095.

The minimum values of the various cross-validation criteria can be interpreted
as follows. If the real probability p is known, MSE=p(1-p), and MML
=—{plog p + (1-p) log(l —p)}. Comparing this with the minimum values of the
MML and MSE obtained by cross-validation, we see that they both correspond to
p-values of about 0.35 and 0.65. This gives an indication of how well the groups with
Y=1 and Y=0 are separated. Without any parameters the cross-validated MSE

Scaled Error
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Fig. 3. Cross-validated estimates of the mean of the various error measures as functions of the ridge
parameter A: , MSE; ——— s MCE; ---eeeee ) MML
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DA VALUE

Fig. 4. Plot of the original parameters 8 (on the horizontal axis are the midpoints of the classes of the
DNA histogram, corresponding to 8;}: --------, MML ¢y (A = 0.095); ————, MSE,, oy (A= 0.065); ———,
MSEcy (A =0.05); -—-—, MSE ey (A =0.035); , MCE_y (A =0.005)

would be 0.247 and MML would be 0.688, both corresponding to p-values of 0.45 and
0.55.

For the various ridge parameters, obtained by minimizing the various cross-
validation criteria, the corresponding parameter estimates v; are calculated and
transformed back to the original parameters 8;. In Fig. 4, 8, is plotted against the
class midpoint of the DNA histogram, corresponding to category j. Clearly the
curves become smoother if the ridge parameter increases, because the parameters ¥ =
B;+1 — B;shrink towards 0.

The estimates seem reasonable from a practical point of view. E,8,X, can be seen as
a prognostic index for person / and higher values of it correspond to lower survival
probabilities. We see that the Bs are negative for DNA values around 2C and 4C.
Hence, patients with a relatively high number of cells with DNA contents of 2C or 4C
have beiter survival probabilities. This corresponds to the fact that for a healthy
person most of the cells have a DNA value of 2C or 4C. If there are relatively more
cells with an abnormal cell content, the risk of dying will increase.

To see the influence of the various estimates of the ridge parameter on the model
predictions, the predicted probability of dying within 2 years is calculated for all
patients by using the various estimated values of the ridge parameter. The mean
absolute differences between the predicted probabilities are given in Table 1.

From the ridge parameters obtained by MMLy and the three mean-squared error
estimates, wé see that the mean predicted probabilities differ little. The predictions
obtained by using the classification ridge parameter can differ considerably.

5. Discussion

As in ordinary linear regression, ridge regression is a good method for obtaining
more stable parameter estimates for the logistic regression model. The type of
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TABLE 1
Mean absolute differences between the predicted probabilities

MSE ey MSEy MSE,cv MMLcy

(A=0.033) (A =0.05) (A =0.065) (\=0.005)
MCEcy (A =0,005) 0.056 0.066 0.073 0.083
MSEgey (A= 0.035) 0.011 0.018 0.030
MSEcy (A=0.05) 0.008 0.018
MSE .y (A=0.065) 0.012

restriction on the 8s depends on the kind of covariates. In histogram data it is often
reasonable to assume an underlying smooth structure and to require that differ-
ences between successive parameters be small. The same type of restriction can bhe
used when covariates correspond to repeated measurements at consecutive time
points.

Insight into the biological background of the histogram could be used to define
relevant statistics directly from the DNA histogram. For example, in a previous
analysis of these data by Rodenburg er ¢/, (1987), two explanatory variables were
derived from the DNA data: ploidy, a variable indicating whether a DNA histogram
looks normal or abnormal, and the percentage of cells with a DNA value more than
5C. The variabie ploidy is obtained by visual inspection, which can lead to observer
bias. Furthermore in this approach the histogram of 37 classes is reduced to a
histogram of two classes and one could wonder whether the data are not too reduced
and whether the cut-off point at 5C is the optimal choice. The advantage of analysing
DNA histograms by ridge regression is that the information from the entire histogram
is used and that the only assumption made beforehand is the type of restriction on the
parameters.

The choice of the ridge parameter depends on the cross-validation criterion which is
used. In the ovarian cancer example we saw that the shrinkage of the parameters did
not improve the classification error. There is no obvious relationship between the
classification error and MSE(8%) and it looks as though the fact that the mean-
squared error of 3* is smaller for a good choice of A > 0 does not influence the
behaviour of this criterion much. Apparently, a model with unrealistically large
parameters can still be a good model for discriminating.

The use of ane of the approximations instead of the exact cross-validated mean-
squared error did not much change the outcomes in our small data set, These
approximations become very useful with large data sets.

The minus log-likelihood and the squared error are reasonably equivalent.
Although the squared error is intuitively more appealing, the minus log-likelihood has
advantages, in that it is easy to extend to other situations and prevents impossible
predictions, which makes it in our opinion the most suitable criterion.
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