
To appear in AAAI-96Lazy Decision TreesJerome H. FriedmanStatistics Department andStanford Linear Accelerator CenterStanford UniversityStanford, CA 94305jhf@playfair.stanford.edu Ron KohaviData Mining and VisualizationSilicon Graphics, Inc.2011 N. Shoreline BlvdMountain View, CA 94043-1389ronnyk@sgi.com Yeogirl YunElectrical Engineering DepartmentStanford UniversityStanford, CA 94305yygirl@cs.stanford.eduAbstractLazy learning algorithms, exempli�ed by nearest-neighbor algorithms, do not induce a concise hypoth-esis from a given training set; the inductive processis delayed until a test instance is given. Algorithmsfor constructing decision trees, such as C4.5, ID3, andCART create a single \best" decision tree during thetraining phase, and this tree is then used to classifytest instances. The tests at the nodes of the con-structed tree are good on average, but there may bebetter tests for classifying a speci�c instance. We pro-pose a lazy decision tree algorithm|LazyDT|thatconceptually constructs the \best" decision tree foreach test instance. In practice, only a path needs tobe constructed, and a caching scheme makes the al-gorithm fast. The algorithm is robust with respect tomissing values without resorting to the complicatedmethods usually seen in induction of decision trees.Experiments on real and arti�cial problems are pre-sented. IntroductionDelay is preferable to error.|Thomas Je�erson (1743-1826)The task of a supervised learning algorithm is to builda classi�er that can be used to classify unlabelled in-stances accurately. Eager (non-lazy) algorithms con-struct classi�ers that contain an explicit hypothesismapping unlabelled instances to their predicted labels.A decision tree classi�er, for example, uses a stored de-cision tree to classify instances by tracing the instancethrough the tests at the interior nodes until a leaf con-taining the label is reached. In eager algorithms, theinductive process is attributed to the phase that buildsthe classi�er. Lazy algorithms (Aha to appear), how-ever, do not construct an explicit hypothesis, and theinductive process can be attributed to the classi�er,which is given access to the training set, possibly pre-processed (e.g., data may be normalized). No explicitA longer version of this paper is available athttp://robotics.stanford.edu/~ronnyk

mapping is generated and the classi�er must use thetraining set to map each given instance to its label.Building a single classi�er that is good for all pre-dictions may not take advantage of special character-istics of the given test instance that may give rise toan extremely short explanation tailored to the speci�cinstance at hand (see Example 1).In this paper, we introduce a new lazy algorithm|LazyDT|that conceptually constructs the \best" de-cision tree for each test instance. In practice, only apath needs to be constructed, and a caching schememakes the algorithm fast. Practical algorithms need todeal with missing values, and LazyDT naturally han-dles them without resorting to the complicated meth-ods usually seen in induction of decision trees (e.g.,sending portions of instances down di�erent branchesor using surrogate features).Decision Trees and Their LimitationsTop down algorithms for inducing decision trees usu-ally follow the divide and conquer strategy (Quinlan1993; Breiman et al. 1984). The heart of these algo-rithms is the test selection, i.e., which test to conductat a given node. Numerous selection measures existin the literature, with entropy measures and the Giniindex being the most common.We now detail the entropy-based selection measurecommonly used in ID3 and its descendants (e.g., C4.5)because the LazyDT algorithm uses a related mea-sure. We will then discuss some of the limitations ofeager decision tree algorithms and motivate our lazyapproach.Test Selection in Decision TreesTo describe the entropy-based selection measure, wefollow the notation of Cover & Thomas (1991). LetY be a discrete random variable with range Y; theentropy of Y , sometimes called the information of Y ,

is de�ned as H(Y) = �Xy2Y p(y) log p(y) ; (1)where 0 log 0 = 0 and the base of the log is usuallytwo so that entropy is expressed in bits. The entropyis always non-negative and measures the amount ofuncertainty of the random variable Y . It is bounded bylog jYj with equality only if Y is uniformly distributedover Y.The conditional entropy of a variable Y given an-other variable X is the expected value of the entropiesof the conditional distributions averaged over the con-ditioning random variable:H(Y j X) = �Xx2X p(x)H(Y j X = x) (2)= �Xx2X p(x)Xy2Y p(y j x) log p(y j x) (3)= �Xx2XXy2Y p(x; y) log p(y j x) : (4)Note that H(Y j X) 6= H(X j Y).The mutual information of two random variables Yand X, sometimes called the information gain of Ygiven X, measures the relative entropy between thejoint distribution and the product distribution:I(Y ;X) = Xy2YXx2X p(x; y) log p(x; y)p(x)p(y) (5)= H(Y)�H(Y j X) : (6)The mutual information is symmetric, i.e., I(Y ;X) =I(X;Y), and non-negative (Cover & Thomas 1991).As can be seen from Equation 6, the mutual informa-tion measures the reduction in uncertainty in Y afterobserving X. Given a set of instances, the above quan-tities can be computed by using the empirical probabil-ities, with the variable Y representing the class labelsand X a given feature variable.The test selection step of common decision tree al-gorithms is implemented by testing the mutual infor-mation (or a similar measure) for each feature X withthe class label Y and picking the one with the highestvalue (highest information gain).Many eager decision tree algorithms, such as C4.5and CART, have a post-processing step that prunesthe tree to avoid over�tting. The reader is referred toQuinlan (1993) and Breiman et al. (1984) for the twomost common pruning mechanisms. The current im-plementation of our LazyDT algorithm does no prun-ing because there is no simple analog between pruningin lazy decision trees and pruning in ordinary decisiontrees.

Problems with Decision TreesThe problems with decision trees can be divided intotwo categories: algorithmic problems that complicatethe algorithm's goal of �nding a small tree and inherentproblems with the representation.Top-down decision-tree induction algorithms imple-ment a greedy approach that attempts to �nd a smalltree. All the common selection measures are based onone level of lookahead.Two related problems inherent to the representationstructure are replication and fragmentation (Pagallo& Haussler 1990). The replication problem forces du-plication of subtrees in disjunctive concepts, such as(A ^ B) _ (C ^ D) (one subtree, either A ^ B orC ^ D must be duplicated in the smallest possibledecision tree); the fragmentation problem causes par-titioning of the data into smaller fragments. Replica-tion always implies fragmentation, but fragmentationmay happen without any replication if many featuresneed to be tested. For example, if the data splits ap-proximately equally on every split, then a univariatedecision tree cannot test more than O(logn) features.This puts decision trees at a disadvantage for taskswith many relevant features.A third problem inherent to the representation is theability to deal with missing values (unknown values).The correct branch to take is unknown if a featuretested is missing, and algorithms must employ specialmechanisms to handle missing values. In order to re-duce the occurrences of tests on missing values, C4.5penalizes the information gain by the proportion of un-known instances and then splits these instances to bothsubtrees. CART uses a much more complex schemeof surrogate features. Friedman estimated that abouthalf the code in CART and about 80% of the program-ming e�ort went into missing values!Lazy Decision TreesWe now introduce LazyDT, a lazy algorithm for in-ducing decision trees. We begin with general motiva-tion and compare the advantages and disadvantages ofthe lazy construction of decision trees to that of theeager approach. We then describe the speci�c algo-rithmic details and the caching scheme that is used tospeed up classi�cation.MotivationA single decision tree built from the training set is mak-ing a compromise: the test at the root of each subtreeis chosen to be the best split on average. Commonfeature selection criteria, such as mutual informationand the Gini index, average the purity of the children

by the proportions of instances in those children. En-tropy measures used in C4.5 and ID3 are guaranteed todecrease on average (i.e., the information gain is non-negative) but the entropy of a speci�c child may notchange or may increase. A single tree built in advancecan lead to many irrelevant splits for a given test in-stance, thus fragmenting the data unnecessarily. Suchfragmentation reduces the signi�cance of tests at lowerlevels since they are based on fewer instances. A de-cision tree built for the given instance can avoid splitson features that are irrelevant for the speci�c instance.Example 1 Suppose a domain requires one to classifypatients as sick or healthy. A Boolean feature denotingwhether a person is HIV positive is extremely relevant.(For this example we will assume that such personsshould be classi�ed as sick.)Even though all instances having HIV positive setto true have the same class, a decision tree is unlikelyto make the root test based on this feature becausethe proportion of these instances is so small; the condi-tional (or average) entropy of the two children of a teston the HIV-positive feature will not be much di�erentfrom the parent and hence the information gain willbe small. It is therefore likely that the HIV-positiveinstances will be fragmented throughout the nodes inthe tree. Moreover, many branches that contain suchinstances will need to branch on the HIV-positive fea-ture lower down the tree, resulting in the replicationof tests.The example leads to an interesting observation:trees, or rather classi�cation paths, built for a spe-ci�c test instance may be much shorter and hence mayprovide a short explanation for the classi�cation. Aperson that is healthy might be explained by a pathtesting fever, blood-cell counts, and a few other fea-tures that fall within the normal ranges. A personmight be classi�ed as sick with the simple explanationthat he or she is HIV positive.Another advantage to lazy decision trees is the nat-ural way in which missing values are handled. Missingfeature values require special handling by decision treeclassi�ers, but a decision tree built for the given in-stance simply need never branch on a value missingin that instance, thus avoiding unnecessary fragmen-tation of the data.The Framework for Lazy Decision TreesWe now describe the general framework for a lazy de-cision tree classi�er and some pitfalls associated withusing common selection measures, such as mutual in-formation or the Gini index. We assume the data hasbeen discretized and that all features are nominal.

Input: A training set T of labelled instances and anunlabelled instance I to classify.Output: A label for instance I.1. If T is pure, i.e., all instances in T have label `,return `.2. Otherwise, if all instances in T have the same featurevalues, return the majority class in T .3. Otherwise, select a test X and let x be the value ofthe test on the instance I. Assign the set of instanceswith X = x to T and apply the algorithm to T .Figure 1: The generic lazy decision trees algorithm.As with many lazy algorithms, the �rst part of theinduction process (i.e., building a classi�er) is non-existent; all the work is done during the classi�cationof a given instance.The lazy decision tree algorithm, which gets the testinstance as part of the input, follows a separate andclassify methodology: a test is selected and the sub-problem containing the instances with the same testoutcome as the given instance is then solved recur-sively. The overall e�ect is that of tracing a path in animaginary tree made speci�cally for the test instance.Figure 1 shows a generic lazy decision tree algorithm.The heart of the algorithm is the selection of a testto conduct at each recursive call. Common measuresused in decision tree algorithms usually indicate theaverage gain in information after the outcome of thechosen test is taken into account. Because the lazydecision tree algorithm is given extra information,namely the (unlabelled) test instance, one would liketo use that information to choose the appropriate test.The simplest approach that comes to mind is to �ndthe test that maximally decreases the entropy for thenode our test instance would branch to and de�ne theinformation gain to be the di�erence between the twoentropies. There are two problems with this approach:the �rst is that the information gain can be negative,in which case it is not clear what to do with negativegains. If class A is dominant but class B is the correctclass, then it may be necessary for the created pathto go through a node with equal frequencies beforeclass B becomes the majority class. This means thatavoiding splits on features that have negative gain isa mistake. A second, related problem, is that onlythe frequencies are taken into account, not the actualclasses. If the parent node has 80% class A and 20%class B and the child node has 80% class B and 20%

class A, then there will be no information gain (theentropy will be the same), but the feature tested atthe parent is clearly relevant.In light of these problems, we normalize the classprobabilities at every node by re-weighting the in-stances such that each class has equal weight. The nor-malization scheme solves both problems. The entropyof the re-weighted parent node will be log k, where kis the number of classes (see Equation 1 and the textfollowing it). The normalization implies that the in-formation gain will always be positive and that the80%/20% split described above will have large infor-mation gain.The LazyDT AlgorithmWe now describe the exact details of the LazyDT algo-rithm including the way it handles continuous featuresand the caching scheme used to speed the classi�cation.Since the LazyDT algorithm described is only ca-pable of processing nominal features, the training set is�rst discretized (Dougherty, Kohavi, & Sahami 1995).We chose to discretize the instances using recursiveminimization of entropy as proposed by Fayyad & Irani(1993) and as implemented in MLC++ (Kohavi et al.1994), which is publicly available and thus allows repli-cation of this discretization step. The exact details areunimportant for this paper.We considered two univariate test criteria. The �rstis similar to that of C4.5 (i.e., a multi-way split). Thesecond is a binary split on a single value. To avoidfragmentation as much as possible, we chose the secondmethod and have allowed splitting on any feature valuethat is not equal to the instance's value. For example,if the instance has feature A with value a and the do-main of A is fa; b; cg, then we allow a split on A = b(two branches, one for equality, one for non-equality)and a split on A = c. For non-binary features, thissplitting method makes more splits, but the number ofinstances that are split o� each time is smaller.Missing feature values are naturally handled by con-sidering only splits on feature values that are known inthe test instance. Training instances with unknowns�lter down and are excluded only when their value isunknown for a given test in a path. Avoiding any testson unknown values is the correct thing to do proba-bilistically, assuming the values are truly unknown (asopposed to unknown because there was a reason fornot measuring them).The LazyDT algorithm proceeds by splitting theinstances on tests at nodes as described in the previoussection. Because we found that there are many tiesbetween features with very similar information gains,we call the algorithm recursively for all features with

information gains higher than 90% of the highest gainachievable. The recursive call that returns with thehighest number of instances in the majority class of aleaf node that was reached makes the �nal prediction(ties from the recursive calls are broken arbitrarily).As de�ned, the algorithm is rather slow. For each in-stance, all splits must be considered (a reasonably fastprocess if the appropriate counters are kept), but eachsplit then takes time proportional to the number oftraining instances that �ltered to the given node. Thisimplies that the time complexity of classifying a giveninstance is O(m �n �d) for m instances, n features, anda path of depth d. If we make the reasonable assump-tion that at least some �xed fraction of the instancesare removed at each split (say 10%), then the timecomplexity is O(m � n). In order to speed up the pro-cess in practice, we cache the information gains andcreate lists of pointers to instances, representing thesets of instances that �lter to each node. After a fewinstances have been classi�ed, commonlyused paths al-ready exist, and the calculations need not be repeated,especially at higher levels. The caching scheme wasfound to be very e�cient time-wise, but it consumes alot of memory. ExperimentsWe now describe experiments that compare LazyDTwith other algorithms for inducing decision trees.The Algorithms and DatasetsWe compare LazyDT to three algorithms: simple ID3,C4.5, and C4.5-NP. Simple ID3 is a basic basic top-down induction of decision trees algorithm. It selectsthe features based on information gain and considersunknowns to be a separate value. C4.5 (Quinlan 1993)is a state-of-the-art algorithm that penalizes multi-waysplits using the gain-ratio, prunes the tree, and splitsevery instance into multiple branches when hitting un-known values. We used the default parameter settings.C4.5-NP is C4.5 without pruning and it is comparedin order to estimate the e�ect of pruning. BecauseLazyDT does not prune, the di�erence between C4.5and C4.5-NP might indicate that there is similar roomfor improvement to LazyDT if a pruning algorithmwere added.The datasets we use are common ones used in the lit-erature and stored in the U.C. Irvine repository (Mur-phy & Aha 1996). The estimated prediction accuracywas computed by doing �ve-fold cross-validation for alldomains except the arti�cial domains where a standardtraining set was used and the test set was the completeinstance space.

Results and DiscussionCharacteristics of the datasets and accuracy results areshown in Table 1, and a graph presenting the di�erencein accuracies and standard deviations is shown in Fig-ure 2.The LazyDT algorithm is a reasonably fast al-gorithm. The largest running time by far was formushroom with 8.4 Sparc-10 cpu minutes per cross-validation fold (equivalent to a run), followed by chesswith 1.59 cpu minutes. These datasets have 8124 in-stances and 3196 instances, respectively.From the table we can see that simple ID3 is gener-ally inferior, as is C4.5 without pruning. Pruning im-proves C4.5-NP's performance, except for a few cases.The LazyDT algorithm and C4.5 (with pruning) be-have somewhat similarly but there are some datasetsthat have large di�erences. The LazyDT's average er-ror rate is 1.9% lower, which is a relative improvementin error of 10.6% over C4.5's 17.9% average error rate.Three datasets deserve special discussion: anneal, au-diology, and the monk2 problem.Anneal is interesting because ID3 manages so well.An investigation of the problem shows that the maindi�erence stems from the dissimilar ways in which un-known values are handled. Simple ID3 considers un-knowns as a separate value whereas C4.5 has a specialmechanism for handling unknowns. In this dataset,changing the unknown values into a separate featurevalue improves the performance of C4.5 to 98.7%.Scha�er (1993) showed that neural nets considerablyoutperformed C4.5 on the anneal dataset, but we cannow attribute this di�erence to the fact that for back-propagation Scha�er has converted the unknown val-ues to an additional discrete value.The second �le we discuss is audiology. The per-formance of LazyDT on this dataset is signi�cantlylower than that of C4.5. This dataset has 69 features,24 classes, and only 226 instances. LazyDT is likelyto �nd a pure class on one of the features because ofthe small number of instances. Thus the extra exi-bility to branch di�erently depending on the test in-stance hurts LazyDT in cases such as audiology. Thisis a bias-variance tradeo� (Kohavi & Wolpert 1996;Geman, Bienenstock, & Doursat 1992) and to over-come such cases we would have to bias the algorithmto avoid early splits that leave only a few instances toclassify the test instance.The �nal �le to discuss is monk2, where the per-formance of LazyDT is superior to that of C4.5. Themonk2 problem is arti�cial and the concept is that anytwo features (and only two) have to have their �rstvalue. Quinlan (1993) writes that \[The monk2 prob-lem] is just plain di�cult to express either as trees or

as rules. . . all classi�ers generated by the programs arevery poor." While the problem is hard to represent ina univariate decision tree, the exibility of LazyDT(which is still restricted to univariate splits), is helpfulhere. The root test in the examined runs indeed tendsto pick a feature whose value is not equal to the �rstvalue and thus separate those instances from the rest.Missing ValuesTo test the robustness of LazyDT to missing val-ues, we added noise to the datasets. The \noise pro-cess" changes each feature value to unknown with the20% probability. The average accuracy over all thedatasets changed as follows: ID3's accuracy decreasedto 68.22%; C4.5's accuracy decreased to 77.10%, andLazyDT's accuracy decreased to 77.81%.Some of the biggest di�erences between the accuracyon the original datasets and the corrupted datasetsoccur on the arti�cial datasets: monk1, monk2, andmonk3; and pseudo-arti�cial datasets: tic-tac-toe, andchess. Hayes-roth and glass2 also have large di�er-ences probably because they have many strongly rele-vant features and few weakly relevant features (John,Kohavi, & Peger 1994). If we ignore the arti�cialproblems, the average accuracy for LazyDT on thedatasets without missing values is 82.15% and the ac-curacy on the datasets with 20% missing values is78.40%. Thus there is less than 4% reduction in per-formance when 20% of the feature values are missing.With many missing values pruning may be impor-tant, but our current implementation of LazyDT doesno pruning. For example, the worse di�erence in ac-curacy on the corrupted datasets is on the breast (L)dataset. LazyDT over�ts the data and has accuracyof 61.54% while majority is 70.28%.Related WorkMost work on lazy learning was motivated by nearest-neighbor algorithms (Dasarathy 1990; Wettschereck1994; Aha to appear). LazyDT was motivated byFriedman (1994), who de�ned a (separate) distancemetric for a nearest-neighbor classi�er based on therespective relevance of each feature for classifying eachparticular test instance. Subsequently, Hastie & Tib-shirani (1995) proposed using local linear discrimi-nant methods to de�ne nearest-neighbor metrics. Boththese methods are intended for continuous features andthus they can control the number of instances removedat each step. In contrast, the caching scheme used byLazyDT cannot be applied with these methods, andhence they are much slower.Smyth & Goodman (1992) described the use of theJ-measure, which is the inner sum of Equation 4. The

Table 1: Comparison of the accuracy of simple ID3, C4.5 with no pruning, C4.5 with pruning, and LazyDT. Thenumber after the � indicates one standard error of the cross-validation folds. The table is sorted by di�erencebetween LazyDT and C4.5.No. Dataset Feat- Train Test Simple ID3 C4.5-NP C4.5 LazyDTures sizes accuracy accuracy accuracy accuracy1 monk-2 6 169 432 69.91�2.21 65.30�2.29 65.00�2.30 82.18�1.842 monk-1 6 124 432 81.25�1.89 76.60�2.04 75.70�2.07 91.90�1.313 tic-tac-toe 9 958 CV-5 84.38�2.62 85.59�1.35 84.02�1.56 93.63�0.834 cleve 13 303 CV-5 63.93�6.20 72.97�2.50 73.62�2.25 81.21�3.555 glass 9 214 CV-5 62.79�7.46 64.47�2.73 65.89�2.38 72.92�1.816 hayes-roth 4 160 CV-5 68.75�8.33 71.25�3.03 74.38�4.24 78.75�1.537 glass2 9 163 CV-5 81.82�6.82 72.97�4.05 73.60�4.06 77.92�1.118 anneal 24 898 CV-5 100.00�0.00 94.10�0.45 91.65�1.60 95.77�0.879 heart 13 270 CV-5 77.78�5.71 75.93�3.75 77.04�2.84 81.11�2.8910 diabetes 8 768 CV-5 66.23�3.82 67.72�2.76 70.84�1.67 74.48�1.2711 soybean-small 35 47 CV-5 100.00�0.00 95.56�2.72 95.56�2.72 97.78�2.2212 labor-neg 16 57 CV-t 83.33�11.2 79.09�5.25 77.42�6.48 79.09�4.2413 lymphography 18 148 CV-5 73.33�8.21 74.97�2.98 77.01�0.77 78.41�2.1914 hepatitis 19 155 CV-5 67.74�8.54 76.77�4.83 78.06�2.77 79.35�2.4115 german 24 1000 CV-5 63.00�3.43 70.20�1.70 72.30�1.37 73.50�1.5716 pima 8 768 CV-5 67.53�3.79 69.79�1.68 72.65�1.78 73.70�1.5817 mushroom 22 8124 CV-5 100.00�0.00 100.00�0.00 100.00�0.00 100.00�0.0018 iris 4 150 CV-5 96.67�3.33 95.33�0.82 94.67�1.33 94.67�0.8219 vote 16 435 CV-5 93.10�2.73 94.71�0.59 95.63�0.43 95.17�0.7620 monk-3 6 122 432 90.28�1.43 92.60�1.26 97.20�0.80 96.53�0.8821 chess 36 3196 CV-5 99.69�0.22 99.31�0.15 99.34�0.12 98.22�0.2122 breast-(W) 10 699 CV-5 95.71�1.72 93.99�1.05 94.71�0.37 92.99�0.6923 breast-(L) 9 286 CV-5 62.07�6.43 64.34�1.67 71.00�2.25 68.55�2.8624 horse-colic 22 368 CV-5 75.68�5.02 82.88�2.15 84.78�1.31 82.07�1.7925 australian 14 690 CV-5 78.26�3.52 82.90�1.14 85.36�0.74 81.74�1.5626 crx 15 690 CV-5 79.71�3.44 83.62�1.35 85.80�0.99 82.03�0.8727 vote1 15 435 CV-5 85.06�3.84 86.44�2.00 86.67�1.13 81.84�1.5628 audiology 69 226 CV-5 80.43�5.91 76.52�3.30 78.74�3.05 66.36�1.69Average 80.30 80.93 82.09 84.00
1 2 3 4 5 6 7 8 9 10111213141516171819202122232425262728

DataSet

LazyDT - C4.5

-20

-15

-10

-5

5

10

15

20
Acc diff

Figure 2: The di�erence between the accuracy of LazyDT and C4.5. Positive values indicate LazyDT outperformsC4.5. Error bars indicate one standard deviation.

J-measure can be used in LazyDT because it wasshown to be non-negative. However, initial experi-ments showed it was slightly inferior on the testeddatasets. Perhaps our measure would be useful insystems where the J-measure is currently used (e.g.,ITrule).Holte, Acker, & Porter (1989) noted that existinginductive systems create de�nitions that are good forlarge disjuncts but are far from ideal for small dis-juncts, where a disjunct is a conjunction that correctlyclassi�es few training examples. It is hard to assessthe accuracy of small disjuncts because they cover fewexamples, yet removing all of them without signi�-cance tests is unjusti�ed since many of them are sig-ni�cant and the overall accuracy would degrade. Theauthors propose a selective speci�city bias and presentmixed results; Quinlan (1991) suggests an improvedestimate that also takes into account the proportionof the classes in the context of the small disjunct. Webelieve that LazyDT su�ers less from the problem ofsmall disjuncts because the training set is being \�t-ted" to the speci�c instance and hence is likely to beless fragmented. The normalization of class probabil-ities in LazyDT is in line with Quinlan's suggestions(Quinlan 1991) of taking the context (the parent nodein our case) into account.Quinlan (1994) characterizes classi�cation problemsas sequential or parallel. In parallel tasks, all inputfeatures are relevant to the classi�cation; in sequen-tial type tasks, the relevance of features depends onthe values of other features. Quinlan conjectures thatparallel type tasks are unsuitable for current univari-ate decision-tree methods because it is rare that thereare enough instances for doing splits on all the n rele-vant features; similarly, he claims that sequential typetasks require inordinate amounts of learning time forbackpropagation based methods because if a feature iis irrelevant, inopportune adjustment to a weight wijwill tend to obscure the sensible adjustments madewhen the feature is relevant. LazyDT might be infe-rior to backpropagation and nearest-neighbor methodson some parallel tasks with many relevant features,but it should fare better than decision trees. Goodexamples are the monk2 and tic-tac-toe domains: allfeatures are relevant, but if a split is to be made on allfeatures, there will not be enough instances. LazyDTmakes the relevant splits based on the feature valuesin the test-instance and thus fragments the data less.Future WorkLazyDT is a new algorithm in the arena of machinelearning. The weakest point of our algorithm is thefact that it does no regularization (pruning). The aus-

tralian dataset has 14 features, but the backgroundknowledge �le describes �ve features as the importantones. If we allow LazyDT to use only those �ve fea-tures, its accuracy increases from 81.7% to 85.6%. Aneven more extreme case is breast-cancer (L), where re-moval of all features improves performance (i.e., ma-jority is a better classi�er).Data is currently discretized in advance. The dis-cretization algorithm seems to be doing a good job, butsince it is a pre-processing algorithm, it is not takingadvantage of the test instance. It is possible to extendLazyDT to decide on the threshold during classi�ca-tion, as in common decision tree algorithms, but thecaching scheme would need to be modi�ed.The caching algorithm currently remembers all treepaths created, thus consuming a lot of memory for�les with many features and many instances. An en-hancement might be made to allow for some space-timetradeo�. In practice, of course, the caching schememight be avoided altogether; a doctor, for example, canwait a few seconds for classi�cation. Our experimentsrequired hundreds of test instances to be classi�ed fortwenty-eight datasets, so caching was a necessity.The dynamic complexity of an algorithm (Holte1993) is the number of features used on average. An in-teresting experiment would be to compare the dynamiccomplexity of C4.5 with that of LazyDT.SummaryWe introduced a novel lazy algorithm, LazyDT, thatcan be used in supervised classi�cation. This algorithmdi�ers from common lazy algorithms that are usuallybased on a global nearest-neighbor metric. LazyDTcreates a path in a tree that would be \best" for agiven test instance, thus mitigating the fragmentationproblem.Empirical comparisons with C4.5, the state-of-the-art decision tree algorithm, show that the perfor-mance is slightly higher on the tested datasets from theU.C. Irvine repository. However, since no algorithmcan outperform others in all settings (Wolpert 1994;Scha�er 1994), the fact that they exhibit di�erent be-havior on many datasets is even more important. Forsome datasets LazyDT signi�cantly outperforms C4.5and vice-versa.Missing feature values are naturally handled byLazyDT with no special handling mechanisms re-quired. Performance on corrupted data is comparableto that of C4.5, which has an extremely good algorithmfor dealing with unknown values.The algorithm is relatively fast due to the cachingscheme employed, but requires a lot of memory. Webelieve that a space-time tradeo� should be investi-

gated and hope to pursue the regularization (pruning)issue in the future.Acknowledgments We thank George John, RobHolte, and Pat Langley for their suggestions. TheLazyDT algorithm was implemented using theMLC++ library, partly funded by ONR grant N00014-95-1-0669. Jerome H. Friedman's work was supportedin part by the Department of Energy under contractnumber DE-AC03-76SF00515 and by the National Sci-ence Foundation under grant number DMS-9403804.ReferencesAha, D. W. to appear. AI review journal: Specialissue on lazy learning.Breiman, L.; Friedman, J. H.; Olshen, R. A.; andStone, C. J. 1984.Classi�cation and Regression Trees.Wadsworth International Group.Cover, T. M., and Thomas, J. A. 1991. Elements ofInformation Theory. John Wiley & Sons, Inc.Dasarathy, B. V. 1990. Nearest Neighbor (NN)Norms: NN Pattern Classi�cation Techniques. IEEEComputer Society Press, Los Alamitos, California.Dougherty, J.; Kohavi, R.; and Sahami, M. 1995.Supervised and unsupervised discretization of contin-uous features. In Prieditis, A., and Russell, S., eds.,Machine Learning: Proceedings of the Twelfth Inter-national Conference, 194{202. Morgan Kaufmann.Fayyad, U. M., and Irani, K. B. 1993. Multi-intervaldiscretization of continuous-valued attributes for clas-si�cation learning. In Proceedings of the 13th Inter-national Joint Conference on Arti�cial Intelligence,1022{1027. Morgan Kaufmann Publishers, Inc.Friedman, J. H. 1994. Flexible metric nearest neigh-bor classi�cation. Technical Report 113, StanfordUniversity Statistics Department.Geman, S.; Bienenstock, E.; and Doursat, R. 1992.Neural networks and the bias/variance dilemma.Neu-ral Computation 4:1{48.Hastie, T., and Tibshirani, R. 1995. Discriminantadaptive nearest neighbor classi�cation. Technical re-port, Stanford University Statistics Department.Holte, R. C.; Acker, L. E.; and Porter, B. W. 1989.Concept learning and the problem of small disjuncts.In Proceedings of the 11th International Joint Con-ference on Arti�cial Intelligence, 813{818.Holte, R. C. 1993. Very simple classi�cation rules per-form well on most commonly used datasets. MachineLearning 11:63{90.

John, G.; Kohavi, R.; and Peger, K. 1994. Irrelevantfeatures and the subset selection problem. InMachineLearning: Proceedings of the Eleventh InternationalConference, 121{129. Morgan Kaufmann.Kohavi, R., and Wolpert, D. H. 1996. Bias plus vari-ance decomposition for zero-one loss functions. InSaitta, L., ed., Machine Learning: Proceedings of theThirteenth International Conference. Morgan Kauf-mann Publishers, Inc. Available athttp://robotics.stanford.edu/users/ronnyk.Kohavi, R.; John, G.; Long, R.; Manley, D.; andPeger, K. 1994. MLC++: A machine learning li-brary in C++. In Tools with Arti�cial Intelligence,740{743. IEEE Computer Society Press.Murphy, P. M., and Aha, D. W. 1996. UCI repositoryof machine learning databases.http://www.ics.uci.edu/~mlearn.Pagallo, G., and Haussler, D. 1990. Boolean fea-ture discovery in empirical learning. Machine Learn-ing 5:71{99.Quinlan, J. R. 1991. Improved estimates for the ac-curacy of small disjuncts. Machine Learning 6:93{98.Quinlan, J. R. 1993. C4.5: Programs for MachineLearning. Los Altos, California: Morgan KaufmannPublishers, Inc.Quinlan, J. R. 1994. Comparing connectionist andsymbolic learning methods. In Hanson, S. J.; Drastal,G. A.; and Rivest, R. L., eds., Computational Learn-ing Theory and Natural Learning Systems, volume I:Constraints and Prospects. MIT Press. chapter 15,445|456.Scha�er, C. 1993. Selecting a classi�cation methodby cross-validation. Machine Learning 13(1):135{143.Scha�er, C. 1994. A conservation law for general-ization performance. In Machine Learning: Proceed-ings of the Eleventh International Conference, 259{265. Morgan Kaufmann Publishers, Inc.Smyth, P., and Goodman, R. 1992. An informationtheoretic approach to rule induction from databases.IEEE Transactions on Knowledge and Data Engi-neering 4(4):301{316.Wettschereck, D. 1994. A Study of Distance-BasedMachine Learning Algorithms. Ph.D. Dissertation,Oregon State University.Wolpert, D. H. 1994. The relationship between PAC,the statistical physics framework, the Bayesian frame-work, and the VC framework. In Wolpert, D. H., ed.,The Mathemtatics of Generalization. Addison Wesley.

