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One of the major challenges in data mining is the extraction of comprehensible knowledge

from recorded data. In this paper, a coevolutionary-based classification technique, namely

COevolutionary Rule Extractor (CORE), is proposed to discover classification rules in data

mining. Unlike existing approaches where candidate rules and rule sets are evolved at different

stages in the classification process, the proposed CORE coevolves rules and rule sets

concurrently in two cooperative populations to confine the search space and to produce good

rule sets that are comprehensive. The proposed coevolutionary classification technique is

extensively validated upon seven datasets obtained from the University of California, Irvine

(UCI) machine learning repository, which are representative artificial and real-world data

from various domains. Comparison results show that the proposed CORE produces

comprehensive and good classification rules for most datasets, which are competitive as

compared with existing classifiers in literature. Simulation results obtained from box plots also

unveil that CORE is relatively robust and invariant to random partition of datasets.

Keywords: Evolutionary algorithms; Data mining; Classification

1. Introduction

With the rapid advancement in storage device technol-
ogy, data accumulate at a speed unmatchable by the
processing capability of humans. In order to make these
raw data useful, improved learning techniques become
indispensable. This has led to the emergence of a field
named data mining. Data mining is an automated
process of extracting structured knowledge from data-
bases, which is often referred to as an essential step in
the overall process of discovering useful knowledge from
data, called knowledge discovery from database (KDD)
(Fayyad 1997, Liu and Motoda 1998). In recent years,
there have been numerous attempts to apply evolu-
tionary computation techniques in data mining to tackle
the problem of knowledge extraction and classification
(Hruschka and Ebecken 2000, Wong and Leung 2000,
Tan et al. 2002a) or to accomplish tasks in different
domains (Banzhaf et al. 1998, Cattral et al. 1999,
Pozo and Hasse 2000, Brameier and Banzhaf 2001).

Unlike traditional gradient-guided data mining techni-

ques, evolutionary computation techniques intelligently

search the solution space by evaluating performances

of multiple candidate solutions simultaneously and

approach the global optimum in a non-deterministic

manner. Although Evolutionary Computation (EC)

techniques play an important role in several areas of

data mining domain, they have achieved more popular-

ity for rule based classification (rule induction), for the

reason that sets of IF-THEN rules can easily be

represented by choosing an encoding of rules that

allocates specific substrings for each rule precondition

and postcondition (Mitchell 1997). Apart from that,

these techniques are also able to handle attributes

interactions much better than most greedy rule

induction algorithms (Freitas 2001, 2002b). Wong and

Leung (2000) proposed a grammar-based Genetic

Programming (GP) for the construction of classification

rules. For each new problem, a domain specific

grammar is defined so that the rules thus generated are

more relevant and crucial to the problem. To address the

issue of comprehensibility of classification rules,*Corresponding author. Email: eletankc@nus.edu.sg
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Bojarczuk et al. (2000) implemented a non-standard tree
structure GP. In this approach, the numeric attributes
are discretized into nominal boundaries a priori in order
to use the Boolean attributes. Carvalho and Freitas
(2002, 2004) use a genetic algorithm specially designed
for discovering small-disjunct rules to cope with the
error prone problem often encountered in small disjunct
rules used for classificiation in data mining tasks. This is
motivated by the findings that interactions are usually
the main reason behind the problems of the small
disjunct rules. Other Evolutionary Algorithm (EA)
approaches for generating classification rules in data
mining include Congdon (2000) and Fidelis et al. (2000).
There are two ways of encoding rules, i.e. Michigan

and Pittsburgh approaches (Michalewicz 1994). The
Michigan approach represents a rule while the Pittsburgh
approach represents a rule set formed from a combina-
tion of rules. Some algorithms that use the Michigan
approach are found in GGP (Wong and Leung 2000,
De Falco et al. 2002), XCS (Wilson, 1995) and XCSR
(Wilson, 2000), while those that use Pittsburgh approach
are Genetic Algorithm Based Concept Learner (GABIL)
(De Jong et al. 1993) and Building block approach
to Genetic Programming (BGP) (Rouwhorst and
Engelbrecht 2000). In XCS, the classifier fitness is
based on the accuracy of its prediction and is incorpo-
rated with niche GA. The application of XCS in the
data mining field can be seen in Saxon and Barry (2000)
and Barry et al. (2004), and its performance in terms
of noise rejection and generalized conditions can be
seen in Lanzi and Colombetti (1999) and Lanzi and
Perrucci (1999). In a modified version of XCS, XCSR
is able to take in real value inputs.
If rule interaction is the main objective, the Pittsburgh

approach would be a better choice, but of the motiva-
tion is to find a small number of rules with high fitness
that is evaluated independently of each other, the
Michigan approach is more suitable (Noda et al. 1999,
Freitas 2002a). As the Pittsburgh approach encodes the
whole rule set, the chromosome representing it will be
much longer than the chromosome representing the
Michigan approach. This enlarges the search space and
time taken for the Pittsburgh approach to find a good
solution. Also, special care needs to be taken when
applying the variation operators as the chromosomes
are more complex than in Michigan approach. However,
one of the shortcomings of the Michigan approach is
that there is no consideration for rules interactions
(Freitas 2002a). Niching methods such as token
competition is also often needed while applying the
Michigan approach in order to maintain the diversity
of population (Wong and Leung 2000).
To utilize advantages of both approaches and to

minimize the drawbacks of each, the two approaches
can be applied together in a certain way. Ishibuchi et al.

(2001) proposed a multi-criteria genetic algorithm for
extraction of linguistic fuzzy rules that considers both
the accuracy and length of a rule set. There is also an
extended version of this work, where local search and
rule weight learning are incorporated into the multi-
objective genetic algorithm for candidate rule selection
(Ishibuchi and Yamamoto 2004). In Ishibuchi et al.
(2001), a pre-screening technique was employed to
generate the candidate rules that are encoded with the
Michigan approach. These candidate rules are selected
solely based upon the length of fuzzy rules without
considering the applicability or usefulness of the rules.
These candidate rules are then used to construct rule sets
that are encoded with the Pittsburgh approach. Since the
rules and rule sets are searched at different stages, it does
not necessarily guarantee the cohesiveness (rules when
used together are able to achieve higher efficiency than
when used individually) of the rules obtained.

One approach to ensure cohesiveness of the solutions
is to evolve both elements simultaneously through
coevolutionary-based algorithms, which could evolve
multiple populations concurrently in data classification
(Mendes et al. 2001, Peña-Reyes and Sipper 2001). It has
been shown that by coevolving a population of fuzzy
membership function with a population of GA indi-
viduals (Peña-Reyes and Sipper 2001) or GP tree
individuals (Mendes et al. 2001), better results could be
produced compared to those without the coevolution.
Unlike existing approaches, a coevolutionary-based
rule extraction and classification system, namely
COevolutionary Rule Extractor (CORE), is proposed
in this paper to coevolve different types of species, e.g.
individuals of rules and rule sets in the evolutionary
process. It is shown that instead of evolving random
rules, the efficiency and performance of the classifier can
be improved by coevolving the populations of rules and
rule sets. Through the inter-communications between the
different species (rules and rule sets), the cooperation is
conducted in a more effective and efficient way. Rules
thus generated are all crucial to the problem, which
makes it easy to find the resultant rule set with a fairly
good performance.

The coevolutionary rule extractor is empowered with
token competition (Wong and Leung 2000) to generate
the pool of candidate rules. With this technique, the
number of candidate rules is significantly reduced and the
applicability and usefulness of the candidate rules is
automatically assured by the niching capability of the
token competition. The population of rules is coevolved
cooperatively in parallel with a group of co-populations
nurturing the rule sets. Because of the difference in
targeted solutions, the Michigan and Pittsburgh coding
approaches are employed in the main population and
co-populations respectively. The performance of the
proposed CORE is extensively evaluated upon seven
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selected datasets fromUCIMachineLearningRepository
(http://www.ics.uci.edu/�mlearn/MLRepository.html),
which is a widely used benchmark and real-world data
repository in data mining and knowledge discovery
community. The classification results of the proposed
CORE are analysed both qualitatively and statistically,
and are compared with many widely used traditional and
evolutionary based classifiers.
The rest of the paper is organized as follows.

In section 2, the classification task and rules extraction
in data mining are introduced. Besides giving a general
overview of coevolutionary algorithms, section 3 pre-
sents the proposed coevolutionary rule extraction
(CORE) algorithm. Various features in CORE such as
chromosome structure, co-populations, fitness evalua-
tion and token competition are also described in the
section. The problem sets used for validation and the
simulation results are presented in section 4. Section 5
presents the discussion and analysis of CORE results.
Conclusions are drawn in section 6.

2. Rule extraction and classification in data mining

The extraction of rules from a database not only serves
as the basis for rule-based classification but also
provides insight and further understanding of the
problem in hand with the novel knowledge discovered.
From the data mining point of view, rule-based
classification is favoured over many conventional classi-
fication techniques by the comprehensibility of its
classification decision. Given a set of classified exam-
ples, the goal of classification is to find a logical
description that correctly classifies novel cases. In the
classification task, the discovered knowledge is usually
represented in the form of decision trees or IF-THEN
prediction rules, which have the advantage of being a
high-level and symbolic knowledge representation con-
tributing towards the comprehensibility of the discov-
ered knowledge. In this paper, knowledge is represented
as multiple IF-THEN rules in a decision rule list. Such
rules state that the presence of one or more items
(antecedents) implies or predicts the presence of other
items (consequents). A typical rule has the form

Rule: If X1 and X2 and . . . Xn then Y,

where Xi, i2 {1, 2, . . . , n} is the antecedent that leads to
the prediction of consequent Y. One reason for using
classification rules instead of a decision tree is that each
rule can be seen as an independent piece of knowledge.
New rules can be added to an existing rule set without
disturbing those already there. Multiple rules can be
combined together to form a set of decision rules. This

set of decision rules is usually listed according to the
fitness of the rules, with the best rule listed first.
When the decision rule list is used to predict a new
instance, the best rule will be considered first. If the rule
does not match the instance, i.e. the antecedents of
the rule do not satisfy the value of the attributes in the
instance, then the next rule will be considered. In the
case where none of the rules in the decision list satisfies
the new instance, the predetermined default prediction
will be used. The default prediction class is the largest
class in the training set in this case (the class with the
largest number of instances). The basic structure of the
decision rule list could be built as follows:

IF ðantecedentsÞ1 THEN class1

ELSE IF ðantecedentsÞ2 THEN class2

. . .ELSE classdefault

The discovered decision rules can be evaluated accord-
ing to several criteria, such as classification accuracy on
unlabelled instances (testing set), degree of confidence
in the prediction, comprehensibility and interestingness.
Among these measures, classification accuracy is the
major metric to evaluate the performance of a classifier.
The comprehensibility measures how clear and easy a
rule is for humans to understand and take action on it
accordingly. Generally, rules that are incomprehensible
to humans are often useless in data mining or knowledge
discovery because such rules are not beneficial to the
users. Evaluation of a rule depends on its own
performance while evaluation of a rule set is the
collective performance of the rules that constitutes it.

3. Coevolutionary rule extractor

3.1 Coevolutionary algorithms

Coevolutionary algorithms provide an effective way to
broaden the application of the traditional evolutionary
algorithm (Potter and De Jong 2000, Rosin and Belew
1997). This is especially noticeable when handling large
and highly complex problems like coevolutionary
algorithms that employ the divide and conquer
strategy. Coevolution algorithms can be implemented
at different levels, i.e. single-level or two-level coevolu-
tionary, depending on the type of module to be evolved
simultaneously (Khare et al. 2004). In single-level coevo-
lution (Potter and De Jong 1994, 2000), each evolving
subpopulation represents a subcomponent of the pro-
blem to be solved and in two-level coevolution, system
and modules are simultaneously optimized in separate
subpopulations (Moriarty 1997, Khare et al. 2004).

There are basically two types of coevolution strategy,
i.e. competitive and cooperative. In competitive
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coevolution, individuals are made more competitive
through evolution, and in cooperative coevolution the
aim is to find the individual from which better systems
can be constructed. Competitive coevolution often leads
to an ‘‘arm race’’, causing the populations to continu-
ously force one another to improve their fitness level
(Angeline and Pollack 1993, Rosin and Belew 1997).
The competitive coevolution model is analogous to the
predator–prey interaction, where the preys model the
candidate optimization solutions while the predators
model the ‘‘fitness cases’’ of individuals. There is a direct
competition between the fitness of an individual of a
species to the fitness of another individual of another
species, thus an increase in the fitness level of one implies
the reduction of another. Hence new strategies are often
evolved within the population to sustain its continued
existence.
In cooperative coevolution, a large and complex

system is divided into many smaller modules to be
evolved separately (Potter and De Jong 2000), and these
separately evolving species form the basis of the solution
to the complex system. The fitness of an individual
depends on its ability to collaborate with individuals
from other species. Thus, evolutionary pressure would
encourage cooperative strategy and individuals.
Much work and research on the performance of how a

single population algorithm performs compared to
multiple population evolution has been done, and it is
well-known that a single population does not perform
better for the following reasons: search space is complex
and contains many local optima; a problem or solution
can be break down; the genotype is to encode fields
of different type e.g. nominal, integer, binary, etc.; and
components forming the solution demonstrated inter-
dependencies and their presentation are important.
These result in the single population algorithm getting
stuck in local optima, increase in computational com-
plexity and thus poor explorative performance compared
to its counterpart, i.e. coevolution algorithms that are
able to handle these issues (Peña-Reyes and Sipper 2001).
When different types of fields exist, coevolution can be
applied to encode the different types of fields with each
field corresponding to one species. The different species
then interact to provide the optimum solution. Apart
from the computational complexity, there can be
expected savings in terms of computational time, as
each individual population that exists in the coevolu-
tionary algorithm is significantly much smaller than the
single population (Potter and Dejong 2000).
The fundamental concept of evolving a basic species

in parallel with more complex species formed from the
basic species are employed in CORE, and this is
similar to what is being done in Moriarty (1997).
In Moriarty (1997), neural networks are evolved
using two cooperative coevolutionary populations.

One population encodes a single hidden neuron together
with weight values to input and output layers and the
other population encodes a set of hidden neurons which
is made up of individuals from the other population.
These two populations co-evolve to form the required
neural networks. In CORE, the species of fundamental
elements is the population of rules and the species of the
complex elements is the population of rule sets. These
two coevolving populations are coupled cooperatively
by their fitness as the fitness of rule sets greatly depends
on the fitness of rules forming the rule sets. By doing so,
the rules forms are more relevant and useful for the rules
sets, thus rule sets with good classification accuracy
can be expected. Details of the proposed CORE are
presented in the following sub-sections.

3.2 Overall structure of CORE

The pseudocode of CORE is presented in figure 1 to give
a complete overview of the coevolutionary algorithm. As
can be seen, the learning process consists of two groups
of populations that evolve rules and rule sets respec-
tively and cooperatively. The evolution process of these
populations is described in figure 1.

The algorithm first builds from the training dataset a
gene map (range of values that each attribute is allowed
to take) to maintain a mapping of genes to the
corresponding attributes in the dataset. The main
population will then be initialized according to the
gene map to ensure only valid chromosomes are created.
Chromosomes in the main population are encoded using
the Michigan approach where each chromosome repre-
sents a single rule. These chromosomes are variable

Build a GeneMap from training dataset

Initialize the main population based on GeneMap

Evaluate each chromosome’s fitness 

Repeat

Use tournament selection to select parents from the main
     population for mating pool
Apply crossover operator base on probability of crossover to

Apply mutation operator base on probability of mutation to the

Evaluate the fitness of the chromosomes

offspring

create offspring

Apply token competition to the offspring

Apply regenerator operator base on probability of regeneration

Create co-population by selecting chromosomes from the pool 

of candidates and main population 

Until maximum number of allowed generation is reached

Figure 1. The pseudocode of the coevolutionary rule
extractor.
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in length, and all the initial chromosomes are evaluated
against the training dataset for their fitness before
starting the iteration looping. The mating pool is first
formed by selecting parents from the main population
using tournament selection. The genetic operators, such
as crossover and mutation, are then applied upon the
mating pool to reproduce the offspring. The offspring
are assigned as the new main population and passed into
the token competition (described in section 3.6) that
works as a covering algorithm. The token competition
effectively maintains a pool of good rules, i.e. rules that
cover the solution space well. As classification problems
generally contain not only one but many useful bits of
knowledge, it is crucial for the coevolutionary algorithm
to maintain a population with high diversity. To achieve
this, a regenerate operator is used, which replaces
chromosomes that are below average fitness in the
main population with randomly generated chromo-
somes at some user specified probability. After the
regeneration, all chromosomes in the pool resulting
from the token competition and one-tenth of randomly
selected chromosomes from the main population will be
used to create the co-populations.
The number of co-populations is determined by the

maximum number of rules allowed in a rule set.
For example, if a rule set is allowed to have up to
15 rules, then there will be 15 co-populations. Each
co-population maintains a number of rule sets with the
same number of rules. All chromosomes in the
co-populations are encoded with the Pittsburgh
approach where each chromosome represents a rule set.
The fitness of these rule sets is greatly affected by the rules
used. As an algorithm is still in the training phase, to
evaluate the co-chromosomes, the classification accuracy
on the training set is used. Here, only the mutation
operator is applied to evolve the co-chromosomes in
order to avoid reproduction of redundant rule sets. After
the new main population and co-populations have been
evolved, the coevolution will proceed to the next
generation and the process will be repeated until the
last generation is reached. At the end of the evolution,
each sub-population outputs its ‘‘best’’ candidate rule set,
which will compete (based on the classification accuracy)
with the ‘‘best’’ rule sets generated by other
co-populations to obtain the final optimal rule set.
To retain concise rule sets in the classification, a shorter
rule set is preferable to a longer one even if both achieved
the same classification accuracy. In this way, the order
and number of rules in the rule sets can be optimized and
determined simultaneously.

3.3 Population and chromosome structure

The coevolution strategy used two different population
structures, i.e. the main population coevolves with the

co-populations as illustrated in figure 2. The main

population contains subpopulation of each class. For

example, if there are 3 classes, the main population

consists of 3 subpopulations, with each subpopulation

evolving individual rules for each class. Chromosomes in

the main population are encoded with the Michigan

approach, that is, one chromosome represents a rule.

In a given chromosome, each gene is associated with an

attribute of the dataset. The structure of the chromo-

some and gene are depicted in figure 3. As can be seen,

the number of genes used to construct the chromosome

is variable. Therefore each chromosome does not need

to contain all the attributes or to contain the attributes

in order. Since most datasets consist of nominal and

numeric attributes, two types of genes are included to

handle them respectively.
Nominal attributes assume a finite set of ordinal

values while numerical attributes take on a continuous

range of values. As they are different in nature, different

handling techniques are required. To do that, the gene

structure is facilitated with 3 fields: attribute index,

relation and value. The attribute index is the index of the

attribute that the gene corresponds to. The relation field

is used to assign the relationship operator for the

attribute with respect to the value. For nominal

attribute, only equal (¼¼) and not equal (6¼) operators

are used. On the other hand, for numeric attribute, 6

comparison operators: greater than (>), greater than or

equal (�), less than or equal (�), less than (<), in-bound

(><) and out of bound (<>) are used. The in bound

and out bound operators enable the chromosome to

encode numeric attribute with range, i.e. rules with

a< attribute< b (in bound) and attribute< a and

attribute> b (out bound) are possible. The last field is

the value of the corresponding attribute. For nominal

attribute, the value is a bit string array that is associated

with the index of value for the attribute. For example,

if an attribute has three possible values, temperature¼

{low, medium, high}, then the value of [1 0 1]

corresponds to the first attribute value (low) and the

third attribute value (high). The numeric attribute on the

other hand is a scaled real value ranging from 0 to 1.

Thus, if a numeric attribute has the exact value ranged

from 50 to 68, the 0 and 1 will represent 50 and 68
respectively. In the case of bound relation, the value is

an array containing the lower and upper bounds of the

attribute. Since nominal attributes are encoded using

binary representation, the maximum and minimum

limits take on the values of 0 and 1. For consistency,

the numeric attributes take on the values bounded by the

limits of 0 and 1. The encoding style used here to

represent the attribute value in a chromosome is one of

the many ways available. Different encoding methods

can thus also be applied.
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The CORE algorithm applies a group of

co-populations to evolve rule sets with different

number of rules. The chromosomes in these

co-populations, namely co-chromosomes are encoded

with Pittsburgh approach where each co-chromosome

is encoded with a rule set. The structure of the

co-chromosome is depicted in figure 4. The basic

element that builds up the co-chromosomes is the

chromosome representing rules from the main popula-

tion. The number of rules in a co-chromosome depends

on which co-population the co-chromosome is attached

to. For example, the fourth co-population will only

contain co-chromosomes with 4 rules. Note that the

default class is also encoded in the co-chromosome

although it is not counted as a rule. The default class is
not counted as a rule in this case as there are no
antecedent elements. The default class is assumed if
conditions of previous rules in the rule set are not
fulfilled. This makes sure that an instance will definitely
be classified by a rule set, thus no instance will be left
unclassified. Since both the main and co-populations
differed from each other, the genetic operators applied
are also different as discussed in the next sub-section.

3.4 Genetic operators

The genetic operators applied to the main population
are crossover and mutation. Here, the genetic operations

Population of
Class 1

Population of
Class 2

1 Rule

2 Rules

n Rules

... Rules

Main Population
Co-Populations

Pool of Best Rules

Rules resulted from
Token Competition

 

Figure 2. Illustrative structure of populations and coevolution links in CORE.

Attribute Gene 0 Attribute Gene 1 Attribute Gene i... ... ... ... Class Attribute Gene

Attribute
Index Relation Value

Chromosome

Gene

Figure 3. Chromosome structure in CORE.
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take place at two levels, i.e. chromosome level and gene

level. At the chromosome level, one point crossover is

used for which a random crossover point is selected for

each parent chromosome and genes are exchanged. The

length of the offspring is not necessarily the same as

their parents’. The chromosome-level mutation removes

or inserts a newly generated gene into the chromosome.

At the gene level, crossover and mutation are different

for nominal and numeric attributes. For the nominal

gene, the gene-level crossover is a one-point crossover to

the bit string array of the parents. On the other hand,

the gene level crossover for the numeric gene is a

standard real-coded crossover with the following

equations,

offspring1 ¼ �parent1 þ ð1� �Þparent2 ð1Þ

offspring2 ¼ �parent2 þ ð1� �Þparent1 ð2Þ

where � is a random number that can take any value in

the range [0 . . . 1]. The gene level mutation is only done

on the ‘‘value’’ field and not other fields like ‘‘attribute

index’’ and ‘‘relation’’. The mutation operator would

make sure that the gene remains valid after mutation.

For example, if the ‘‘value’’ field of a gene is a nominal

value and can only take ‘‘low’’, ‘‘normal’’ and ‘‘high’’

then mutation occurs such that only these are possible

results of the mutation. If the ‘‘value’’ field is a

numerical value, a small number is randomly generated

and is added or subtracted from it. The mutation

operation also makes sure it falls within the bounds of

the minimum and maximum value that it can take.
Only the mutation operator is used in evolving the

co-population, e.g. one rule is removed from or inserted

into the co-chromosome. When the number of rules in a
co-chromosome is changed, the co-chromosome will be
moved to the correct co-population. For example, if a
five-rules co-chromosome in co-population 5 was
mutated and one rule was removed from it, then it will
be moved to co-population 4.

3.5 Fitness evaluations

When a rule or individual is used to classify a given
training instance, one of four possible concepts can be
observed: true positive (tp), false positive ( fp), true
negative (tn) and false negative ( fn). The true positive
and true negative are correct classifications, while false
positive and false negative are incorrect classifications.
For a two-class case, with class ‘‘Yes’’ and ‘‘No’’, the
four concepts can be easily understood with the
following descriptions (Fidelis et al. 2000):

. True positive (tp): the rule predicts that the class is yes
(positive) and the class of the given instance is indeed
yes (positive);

. False positive ( fp): the rule predicts that the class is
yes (positive) but the class of the given instance is in
fact no (negative);

. True negative (tn): the rule predicts that the class is no
(negative) and the class of the given instance is indeed
no (negative);

. False negative ( fn): the rule predicts that the class is
no (negative) but the class of the given instance is in
fact yes (positive).

In the multi-class case, for example, if an instance that
belongs to Class 3 is presented to a rule that has Class 5
encoded in its consequent part, and the rule predicts that

.

.

.

Rule 1
Rule 2
Rule 3
Rule 4

Rule n

1
2
3
4

n

Index

15 n 82 10 Co-population 6

95 2 Co-population 3

Pool of Candidate Rules

Figure 4. The structure of co-chromosomes in CORE.
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the instance does not belong to Class 5 then the concept
is a true negative. However, if an instance that belongs
to Class 5 is presented to the same rule while it predicts
the instance does not belong to Class 5, then the concept
is false negative.
Using these concepts, the fitness function used in

evaluating the main population of CORE is defined as,

Fitness ¼ penalty�
tp

ðtpþ fnÞ
� 1þ

tn

ðtnþ fpÞ

� �
ð3aÞ

With penalty ¼
N

Nþ fp
, ð3bÞ

where N is the total number of instances in the training
set; tp, fp, tn, and fn is true positive, false positive, true
negative and false negative, respectively. The value of
the fitness function is in the range of 0 to 2. The fitness
value is 2 (the fittest) when all instances are correctly
classified by the rule, i.e. when fp and fn are 0. The
penalty factor is included in the fitness function to
evaluate the fitness of the combined individuals in the
rule set. This is because the Boolean sequential rule list
(where rules are considered one after another) is too
sensitive and has the tendency of having a large number
of false positives ( fp) due to the virtual OR connection
among the rules. When a rule with large fp is considered
first in a rule list, many of the instances will be classified
incorrectly. Therefore, the fitness function should be
penalized based on the value of fp, e.g. a penalty factor
w that tends to minimize fp is included in equation (3).
Since the number of rules is fixed for each
co-population, there is no need to explicitly formulate
the comprehensibility in the fitness evaluation of
co-populations. Indeed, the fitness function of the
co-populations can be simply formulated as the classi-
fication accuracy. In order to evaluate the performance
of a rule set, it is necessary to order the rules according
to their fitness.

3.6 Token competition

Token competition is applied in CORE to evolve
different multiple rules for prediction of each class in
the dataset as well as to preserve the diversity in the
evolution (Wong and Leung 2000). It tries to find rules
that are able to cover all instances under a class, if
possible, and at the same time to exclude instances not in
the class. There is often no single rule that can cover all
instances of a class: hence there is a need to discover
more rules that can predict all instances of a class, but at
the same time do not overlap with instances of another
class. The CORE also applied the principle of control-
ling the fitness of rules via the concept of minimum

support as proposed by Tan et al. (2002a). Every
instance in a dataset is called a token, for which all
chromosomes in the population will compete to capture.
A chromosome has the chance to capture a token if all
its antecedents match that in the token and the class in
the token is the class predicted by the chromosome, i.e. a
tp concept case. If more than one chromosome is eligible
to capture the same token, then only the fittest
chromosome will be assigned the token. The adjusted
fitness is calculated for each chromosome after the token
competition as given by,

adjusted fitness ¼ fitness�
actualNumberofCapturedTokens

numberOfClassOccurences

ð4Þ

The term numberOfClassOccurences refers to the total
number of instances or tokens in the dataset containing
the class to be predicted, while actual
NumberofCapturedTokens refers to the total number of
tokens in the dataset that has been captured by the
chromosome. Obviously, the relation actual
NumberofCapturedTokens� numberOfClassOccurences
is always true.

4. Case study

4.1 Experimental setup

The proposed CORE is validated, based on seven
datasets from the UCI Machine Learning Repository
(http://www.ics.uci.edu/�mlearn/MLRepository.html).
These datasets are categorized into three categories (in
sections 4.2.1, 4.2.2 and 4.2.3) according to their unique
characteristics. The detailed descriptions of each dataset
abridged from the documentations in UCI are given in
tables 1–7. Table 8 describes the domains of the data
together with the classification tasks, while in table 9, the
characteristics of each dataset are summarized. Each of
these datasets is partitioned into two sets, a training set
and a testing set. The training set is used to train CORE,
through which its learning capability can be justified.
However, a classifier that learns well does not necessarily

Table 1. Iris dataset description.

Min Mean Max

Standard

dev.

Class

correlation

Sepal length 4.3 5.84 7.9 0.83 0.7826
Sepal width 2.0 3.05 4.4 0.43 �0.4194
Petal length 1.0 3.76 6.9 1.76 0.9490

Petal width 0.1 1.2 2.5 0.76 0.9565
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guarantee it is also good in generalization. In order to
evaluate the generalization capability, the rule sets
obtained by CORE are applied to the testing set after
training. Instances with missing data are discarded.
Removing observations with any missing data is one of
the ways to handle missing values. This has been widely
adopted by many works in literature and one of the
reasons for its popularity is due to its easy implementa-
tion (Little and Rubin 1987). The CORE was pro-
grammed using the Java Developers Kit (JDK 1.3.1)
from Sun Microsystems on an Intel Pentium IV 1.4GHz
computer with 128MB SDRAM (A).

4.1.1 The Fisher’s iris dataset. This dataset is perhaps
the best-known database to be found in pattern
recognition literature. Fisher (1936) is a classic in the
field and is referenced frequently to this day. The dataset
contains three classes of 50 instances each, where each
class refers to a type of Iris flower. One class is linearly
separable from the other two; the latter are not linearly

Table 5. Sick dataset description.

Attribute Description

1 Age Continuous

2 Sex M, F
3 On thyroxine f, t
4 Query on thyroxine f, t

5 On antithyroid medication f, t
6 Sick f, t
7 Pregnant f, t

8 Thyroid surgery f, t
9 I131 treatment f, t
10 Query hypothyroid f, t
11 Query hyperthyroid f, t

12 Lithium f, t
13 Goitre f, t
14 Tumour f, t

15 Hypopituitary f, t
16 Psych f, t
17 TSH measured f, t

18 TSH Continuous
19 T3 measured f, t
20 T3 Continuous
21 TT4 measured f, t

22 TT4 Continuous
23 T4U measured f, t
24 T4U Continuous

25 FTI measured f, t
26 FTI Continuous
27 TBG measure f, t

28 TBG Continuous
29 Referral source WEST, STMW, SVHC, SVI,

SVHD, other

Table 2. Hepatitis dataset description.

Attribute Description

No. of missing

attribute

1 Age Integer 0
2 Sex male, female 0
3 Steroid No, yes 1

4 Antivirals No, yes 0
5 Fatigue No, yes 1
6 Malaise No, yes 1

7 Anorexia No, yes 1
8 Liver big No, yes 10
9 Liver firm No, yes 11
10 Spleen palpable No, yes 5

11 Spiders No, yes 5
12 Ascites No, yes 5
13 Varices No, yes 5

14 Bilirubin Continuous 6
15 Alk phosphate Integer 29
16 Sgot Integer 4

17 Albumin Continuous 16
18 Protime Integer 67
19 Histology No, yes 0

Table 4. Breast cancer dataset description.

Attribute Description

No. of missing

attribute

1 Age Integer –
2 Menopause lt40, ge40, premeno –
3 Tumour size Integer –

4 Inv-node Integer –
5 Node-caps Yes, no –
6 Deg-malig 1, 2, 3 8

7 Breast Left, right –
8 Breast-quad Left-up, left-low, right-up,

noright-low, central

–

9 Irradiation Yes, no 1

Table 3. Diabetes dataset description.

Attribute Mean

Standard

deviation

1 Number of times pregnant 3.8 3.4
2 Plasma glucose concentration 120.9 32.0
3 Diastolic blood pressure (mm Hg) 69.1 19.4

4 Triceps skin fold thickness (mm) 20.5 16.0
5 2-Hour serum insulin (mu U/ml) 79.8 115.2
6 Body mass index 32.0 7.9

7 Diabetes pedigree function 0.5 0.3
8 Age (years) 33.2 11.8
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separable from each other. Although Fisher’s Iris

dataset is a rather simple domain compared to the
next two categories of databases, it can be regarded

as a multi-class (more than two classes) problem since it

contains three classes. Through the performance study
on this dataset, the classification capability of CORE for
multi-class problems could be assessed. The attributes
are sepal length, sepal width, petal length and petal
width (all in centimeters). The output classes are iris
setosa, iris versicolour and iris virginica. There are no
missing attribute values in the dataset. Table 1 gives the
summary statistics.

4.1.2 The hepatitis dataset. This dataset was collected
at Carnegie-Mellon University (Cestnik et al. 1987) by
Gail Gong and donated to UCI ML repository in 1988.
It consists of 155 instances with 32 (20.65%) dead
samples and 123 (79.35%) live samples. Each instance
contains 19 attributes (table 2), inside which 14 are
nominal and 5 are numeric. The hepatitis problem is a
complex and noisy dataset as it contains a large number
of missing data (there are 167 missing values in total in
this dataset). This dataset challenges any rule-based
classifier to find the optimal rule set. The learning task is
to predict whether a patient with hepatitis will live or die.

4.1.3 The diabetes dataset. This dataset was first
collected at Johns Hopkins University by Vincent

Table 6. Heart disease dataset description.

Attribute Description

1 Age (years) Integer

2 Sex 1¼male, 0¼ female

3 Chest pain type Value 1: typical angina

Value 2: atypical angina

Value 3: non-anginal pain

Value 4: asymptomatic

4 Resting blood pressure (in mm Hg on

admission to the hospital)

Integer

5 Serum cholesterol (mg/dl) Integer

6 Fasting blood sugar>120 (mg/dl) 1¼ true, 0¼ false

7 Resting electrocardiographic results Value 0: normal

Value 1: having ST-T wave abnormality

(T wave inversions and/or ST elevation

or depression of >0.05mV)

Value 2: showing probable or definite left

ventricular hypertrophy by Estes’ criteria

8 Thalach: maximum heart rate achieved Integer

9 Exercise induced angina 1¼ yes, 0¼ no

10 Oldpeak¼ST depression induced by exercise relative to rest Continuous

11 Slope of the peak exercise ST segment Value 1: upsloping

Value 2: flat

Value 3: downsloping

12 Number of major vessels Value 0–3: coloured

by flourosopy

13 Thal Value 3: normal

Value 6: fixed defect

Value 7: reversable defect

Table 7. Australian credit card assessment dataset

description.

Value

No. of

missing value

1 a, b (0, 1) 12
2 Continuous 12
3 Continuous –

4 p, g, gg (1, 2, 3) 6
5 ff, d, i, k, j, aa, m, c, w, e, q, r, cc,

x (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14)

6

6 ff, dd, j, bb, v, n, o, h,

z (1, 2, 3, 4, 5, 6, 7, 8, 9)

9

7 Continuous 9

8 t, f (1, 0) –
9 t, f (1, 0) –
10 Continuous –
11 t, f (1, 0) –

12 s, g, p (1, 2, 3) –
13 Continuous –
14 Continuous 13

844 K. C. Tan et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
G
r
a
n
a
d
a
]
 
A
t
:
 
1
1
:
5
6
 
1
7
 
A
p
r
i
l
 
2
0
1
0



Sigillito and then constructed by constrained selection

from a large database held by the National Institute of

Diabetes and Digestive and Kidney Diseases. Among

the total 768 instances in this dataset, there are 500

examples of class 1 (tested positive) and 268 of class 2

(tested negative). Eight attributes are included in this

dataset, all of which are numeric ones (table 3). The

learning task is to predict whether a patient shows signs

of diabetes according to World Health Organization

criteria.

4.1.4 The breast cancer dataset. This dataset was
collected from the University Medical Centre,

Institute of Oncology, Ljubljana, Yugoslavia and

provided by M. Zwitter and M. Soklic. It includes

201 instances of one class (no recurrence events) and

85 instances of another class (recurrence events). The

instances are described by 9 attributes (table 4), which

are all nominal. Missing attribute values also exist in

this dataset but cover a small portion. The learning

task is to predict whether the tumour of a patient will

reoccur or not.

4.1.5 The sick dataset. This dataset was supplied by
the Garavan Institute and J. Ross Quinlan, New South
Wales Institute, Sydney, Australia. Each of the total
3772 instances is represented by 29 attributes, among
which 7 are numeric and all the rest are nominal. There
are 6064 missing values, which account for 5.4% of the
total. The learning task is to predict whether a patient is
sick or not. The description for each attribute and its
encoding is given in table 5.

4.1.6 The heart disease dataset. This dataset was
collected at Cleveland Clinic Foundation and docu-
mented by Robert Detrano. Though the database
contains 76 attributes, all published experiments refer
to using a subset of 14. There are 297 samples in total,
after discarding 6 which contain missing values. Each
sample in this dataset can be described by 13 attributes
(table 6), among which 6 are numeric and 7 are nominal.
The learning task is to predict the presence or absence of
heart disease given the results of various medical tests
carried out on a patient. An integer value of 0 is used
to indicate the absence of heart disease while values
1, 2, 3 and 4 show the presence. The distribution of

Table 9. The characteristics of the datasets.

Attribute characteristics

Dataset

No. of

attributes

No. of

classes

No. of

instances

% of major

class Numeric Nominal Missing

Iris 4 3 150 33 Yes No No
Hepatitis 19 2 155 79 Yes Yes Yes
Diabetes 8 2 768 65 Yes No No

Breast cancer 9 2 286 66 No Yes Yes
Sick 29 2 3772 94 Yes Yes Yes
Heart-c 13 5 303 55 Yes Yes Yes

Australian credit card assessment 14 2 690 56 Yes Yes Yes

Table 8. Classification task descriptions of the datasets.

Dataset Domain Classification task

Iris Botany Classify 3 species of iris flower based on their physical characteristics

Hepatitis Medicine Determine whether a hepatitis patient will live or

die according to given medical conditions
Diabetes Medicine Determine whether a patient shows sign of diabetes according

to World Health Organization Criteria
Breast cancer Medicine Determine the patients for whom the cancer will re-occur
Sick Medicine Determine whether a patient is sick or not

Heart-c Medicine Determine the risk of heart disease given a certain medical condition in patients
Australian credit

card assessment

Finance Determine a certain aspect of credit card applications given other specifications
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classes 0, 1, 2, 3 and 4 in the original database is
54%, 18%, 12%, 12% and 4% respectively.

4.1.7 The Australian credit card assessment

dataset. This dataset contains 690 examples and was
submitted by Quinlan to UCI machine-learning reposi-
tory. Among the total 14 attributes, 8 are nominal and
6 are numeric. The learning task is to assess applications
for credit cards based on these attributes, whether the
application should be approved. Due to the confidenti-
ality of the data, all attributes names and values have
been changed to meaningless symbols (table 7). Labels
have been changed for the categorical attributes, e.g.
attribute 4 originally had labels p, g, gg, and these are
changed to 1, 2 and 3 in the dataset. This dataset set is
interesting as it contains a good mix of attributes. There
are continuous and nominal attributes, with a few
missing values. The nominal attributes have a small and
large number of values. 37 instances (5%) have missing
value. These missing values are being replaced by the
mode if it is a categorical attribute or else it is replaced
by the mean if it is a continuous attribute in the UCI
repository.
As indicated by Prechelt (1995), a fuzzy specification

of the partitioning of training versus testing data is a
big obstacle to reproducing and comparing published
machine-learning results. Only indicating the number of
examples for each set in the partition is insufficient
because the experimental results may vary significantly
for different partitions even when the numbers in each
set are the same (Yao and Liu 1997). In order to ensure
the replicability and clarity of the validation results, all
experiments have been designed carefully in this study.
In the total of 100 evolutionary runs on each of the
seven datasets, a random seed, which is the same as the
number of runs (i.e. the 50th run uses random seed 50),
is first used to randomize the order of data in the
datasets. The randomized data is then partitioned with
the first 66% as the training data and the remaining
34% as the test data. The random number generator
used in the experiments is provided with Sun’s JDK
1.3.1 and the data set randomizer used is provided with
WEKA (Witten and Frank 1999). Different partitioning
of data sets might have resulted under different
programming environments.
Table 10 lists the parameter settings in CORE that are

applied to all the seven datasets. These parameters have
been chosen after some preliminary experiments and
heuristics (Tan et al. 2003, Tan et al. 2006), and then
applied upon all the experiments. Therefore the settings
should not be regarded as an optimal set of parameter
values but rather a generalized one with which the
CORE can perform well over a wide range of datasets.
For the algorithm to work better, users can try other

values that are suited to the problem at hand. Note that
by choosing large values for probability of mutation and
probability of regeneration, the algorithm will resemble
random search which is undesirable. Any good proper-
ties that are passed down from the parents to the
offspring during crossover will be lost. There is no
guarantee that a good solution can be found within a
given period of time.

4.2 Simulation results and comparisons

4.2.1 The botany dataset. (A) Experimental results.
Table 11 summarizes the results of CORE on the Iris
data, which include the results obtained by the default
parameter settings in table 10 as well as by another set of
parameter settings with smaller training time (with a
population and generation size of 50). One hundred
independent simulation runs have been conducted for
both of the settings.

In order to have a clearer view of the classification
performance for the default parameter settings over

Table 11. Summary of results on the Iris dataset.

Default setting The 2nd setting

Training

Max 100% 100%
Min 90.91% 90.91%
Mean 97.64% 96.97%

StdDev 1.28% 2.17%

Test

Max 100% 100%
Min 90.20% 90.91%
Mean 96.61% 96.06%

StdDev 2.34% 2.59%

Avg # rules 3.77 3.12

Training Time (s) 151 76

Max: Maximum classification accuracy. Min: Minimum
classification accuracy. Mean: Mean classification accuracy.

Table 10. Parameter settings used in the experiments.

Parameter Value

Population size 100

Co-population size 50
Number of generations 100
Number of co-populations 15

Probability of crossover 0.9
Probability of mutation 0.3
Probability of regeneration 0.5

846 K. C. Tan et al.
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the 100 independent evolutionary runs, the histo-

grams plots for the results are shown in figure 5.
Clearly, a normally distributed performance has been
achieved by CORE for this dataset. The classification

rule set that has the highest predictive accuracy (i.e.
the highest classification accuracy on the testing set)

on the Iris data is presented in table 12. It should
be noted that larger rule sets might not perform
better than the smaller rule set on testing set if

overfitting has occurred. Due to over training, larger
rule sets perform well on the training set however
poorly they performed on the test set. Besides the

fitness value, the support factor and confidence factor
are provided as additional information to show the
performance of each rule. The support factor

measures the coverage of a rule, which is the ratio
of the number of instances covered by the rule to the
total number of instances. On the other hand, the

confidence factor measures the accuracy of the rule.
For a rule ‘if X then Y’ and with a training set of

N instances, the support and confidence factors are

given as,

Support ¼
Number of instances with both X and Y

N
ð5Þ

Confidence ¼
Number of instances with both X and Y

Number of instances with X
:

ð6Þ

It can be seen from the rule set in table 12 that the
classification rules are not ordered in any specific

pattern since the rule sets were formed randomly

during the evolution. As shown in table 12, all the
rules in this rule set have relatively high accuracy and

confidence factor. It can also be observed that the rule

set was constructed of only petal length and petal width
attributes, which clearly demonstrates the autonomous

attribute selection ability of CORE. Since the rule set is

Table 12. The best classification rule set for the Iris data.

Rule Fitness Support factor Confidence factor

1 IF petallength<1.9471, 2.0 0.3434 1.0
THEN class¼ Iris-setosa

2 IF petallength><[1.1, 2.0582], 2.0 0.3434 1.0

THEN class¼ Iris-setosa,
3 IF petalwidth<>[0.1, 1.6747], 1.7031 0.303 0.9375

THEN class¼ Iris-virginica

4 IF petallength><[4.4422, 4.9938], 1.4697 0.2424 0.8889
THEN class¼ Iris-versicolor

5 IF petallength<>[1.2707, 4.4234], 1.8084 0.3333 0.8089

THEN class¼ Iris-virginica,
6 ELSE class¼ Iris-versicolor

Classification accuracy¼ 100%

(a) (b)

Figure 5. The performance of CORE upon the Iris data: (a) training; (b) testing.
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a 2 dimensional function, it can be well visualized as
shown in figure 6.

(B) Comparisons with other works. As stated in the
Introduction, the proposed CORE is capable of
generating comprehensible rule sets with good classifica-
tion accuracy. For comparison, two famous rule-based
machine-learning algorithms C4.5 rules, e.g. J48 in
WEKA (Witten and Frank 1999) and PART as well as
a statistical classifier Naı̈ve Bayes have been applied to
the seven datasets. The first two algorithms are chosen
due to their rule-based characteristics as offered in
CORE. Comparisons between these two algorithms and
CORE include the performance of classification accu-
racy and rule set size (i.e. the number of rules in a rule
set), since a good rule set should be both accurate and
succinct. The method of Naı̈ve Bayes is included here
since it is a well-known statistical classifier that often
gives high classification accuracy and provides good
comparison to CORE in terms of classification ability.
A brief description of these methods is given below.

. C4.5 system proposed by Quinlan (1993) is a land-
mark decision tree program, which is one of the
machine learning methods most widely used in
practice to date.

. PART is a rule-learning scheme, which can generate
good classification rules (Frank and Witten 1998).

. Naı̈ve Bayes utilizes Bayesian techniques, which have
recently been used by many machine learning
researchers (John and Langley 1995).

To study the performance of CORE more thoroughly,
the best and the latest results achieved by the rule-based
classifiers in literature (including traditional and evolu-
tionary approaches) according to our best knowledge
are also included in the comparisons. Although such
comparisons are not meant to be exhaustive, it provides
a good basis to assess the reliability and robustness
of CORE.

The classification results for all algorithms under
comparisons are listed in table 13. The co-evolutionary
system (GP-Co) proposed by Mendes et al. (2001)
aimed to discover fuzzy classification rules. Two
evolving populations, based on GP and EA, co-evolve
to generate fuzzy rule sets and membership function
definitions. These two populations are co-evolved to
generate well adapted fuzzy rule sets and membership
function definitions. Ten-fold cross-validation was used
to test this system on the Iris dataset. The GGP was
proposed by Wong (2001), which is a flexible knowledge
discovery system that applied genetic programming
(GP) and logic grammars to learning in various
knowledge representation formalisms. The GBML was
proposed by Ishibuchi et al. (2001), which is a fuzzy
genetic-based machine-learning algorithm that hybrids
the Michigan and Pittsburgh approach. Ishibuchi et al.
(2001) tested this algorithm on several datasets, but only
the training accuracy was provided for the Iris data. The
GPCE was proposed by Kishore et al. (2000), which is a
GP-based technique dedicated to solving multi-category
pattern recognition problems. In this algorithm,

Figure 6. The visualization graph for the rule set of Iris data.
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the n-class problem was modelled as n two-class
problems and GPCE was trained to recognize samples
belonging to its own class and reject samples belonging
to other classes. The 50/50 split percent method was
adopted by Kishore et al. (2000) as the validation
scheme, and the average results on the validation set
over several simulation runs are shown in table 13. Two
well known learning classifiers, XCS and XCSR which is
another version of XCS, are also included for compar-
ison. XCS developed by Wilson (1995) is a classifier
system based on the Michigan coding approach. The
results presented are taken from Bernadó et al. (2001).
XCSR (Wilson 2000) is a version of XCS which takes in
real value inputs. The results presented are taken from
Bacardit and Garrell (2003).
As shown in figure 7, the simulation results are

represented in box plot format (Chambers et al. 1983) to
visualize the distribution of simulation data in term of
classification accuracy over the 100 independent runs.
Each box plot represents the distribution of a sample
population where a thick horizontal line within
the box represents the median, while the upper and
lower ends of the box are the upper and lower quartiles.
Dashed appendages illustrate the spread and shape of
the distribution, and the ‘þ’ represents the outliers.
It can be seen that although the best accuracy of 100%
has been achieved by all algorithms, CORE is superior
to other algorithms in terms of average accuracy by
having the smallest variance. Furthermore, CORE is
shown to be statistically more stable as it produced no
outlier for the 100 simulation runs.

4.2.2 The medical diagnosis datasets. Medical diagno-
sis has been known as a crucial application domain of
classification in data mining.

(A) Experimental results. Table 14 summarizes the
classification results produced by CORE over the 100

independent runs for the medical diagnosis problems.
The histograms for CORE are illustrated in figures 8–12,
which again generally show a normally distributed
performance. The classification rule sets that have the
highest predictive accuracies on these medical datasets
are presented in tables 15–19. It can be observed from
the relationship between the predictive accuracy of a
rule set and its rule number that rule sets with a larger
number of rules will not necessarily lead to higher
predictive accuracies. From the rule sets obtained, it is
found that a typical rule set usually contains generalized
rules followed by the more specific rules (which is
particularly obvious on the Diabetes dataset). Generally,
the first few rules in a rule set will cover a great portion
of the samples and leave relatively few samples for the
remaining rules. This situation is especially severe when
there are many remaining rules. Therefore when the
dataset is not noise free, a large rule number may cause

Table 13. Performance comparisons for the Iris dataset.

Algorithm Reference # Rules Avg accuracy Best accuracy Standard deviation

CORE – 3.77 96.61% 100% 2.35%

C4.5 (Quinlan 1993) 3.87 93.67% 100% 3.73%
PART (Frank and Witten 1998) 4.15 93.94% 100% 3.93%
Naı̈ve Bayes (John and Langley 1995) – 95.47% 100% 2.93%

GP-Co (Mendes et al. 2001) – 95.3% – 7.1%
GGP (Wong 2001) 4 94.24% 100% 3.57%
GBML (Ishibuchi et al. 2001) 5 – 98% –

GPCE (Kishore et al. 2000) – 96% – –
XCS (Bernadó et al. 2001) – 94.7% – 5.3%
XCSR (Bacardit and Garrell 2003) 3.5 95.2% – 2.3%

Figure 7. Box plot for the Iris dataset.
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Table 14. Classification results of CORE for the medical datasets.

CORE Hepatitis Diabetes Breast cancer Sick Heart disease

Training

Max 95.10% 80.24% 82.98% 97.55% 88.72%
Min 77.45% 72.92% 70.21% 93.33% 77.44%
Mean 88.47% 76.96% 77.82% 95.17% 83.22%

StdDev 2.82% 1.30% 2.03% 1.18% 2.00%

Test

Max 92.45% 80.15% 84.69% 98.05% 90.10%
Min 75.47% 69.85% 67.35% 92.67% 70.30%
Mean 84.39% 75.34% 75.41% 95.17% 80.77%

StdDev 3.72% 2.30% 3.24% 1.53% 3.17%
Avg # rules 4.14 5.99 4.32 3.49 6.24
Training time (m) 3.55 8.18 3.30 55.80 8.07

Max: Maximum classification accuracy. Min: Minimum classification accuracy. Mean: Mean classification accuracy.

(a) (b)

Figure 9. The performance of CORE upon the diabetes problem: (a) training; (b) testing.

(a) (b)

Figure 8. The performance of CORE upon the hepatitis problem: (a) training; (b) testing.
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(a) (b)

Figure 12. The performance of CORE upon the heart disease problem: (a) training; (b) testing.

(a) (b)

Figure 11. The performance of CORE upon the sick problem: (a) training; (b) testing.

(a) (b)

Figure 10. The performance of CORE upon the breast cancer problem: (a) training; (b) testing.
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Table 16. The best classification rule set of CORE for diabetes data.

Rule Fitness Support factor Confidence factor

1 IF plas<¼ 130.7996, 1.0853 0.4881 0.7554
THEN class¼ tested_negative

2 IF mass<>[5.8079, 29.9191], 0.8765 0.3202 0.4737
THEN class¼ tested_positive

3 IF preg<¼ 4.585, 0.8966 0.4348 0.6984

AND age><[21, 74.0987],
THEN class¼ tested_negative

4 IF plas<¼ 138.9471, 1.0745 0.5237 0.7341

AND insu<538.5572,
THEN class¼ tested_negative

5 IF preg><[0, 12.2091], 0.9893 0.3775 0.8059
AND plas>< [0, 117.3103],

THEN class¼ tested_negative
6 IF plas><[0, 164.4243], 0.9436 0.5909 0.6765

AND age<¼ 77.064,

THEN class¼ tested_negative
7 IF plas>5.8884, 0.6149 0.3794 0.3817

THEN class¼ tested_positive

8 IF preg >¼ 4.195, 0.0128 0.004 0.6667
AND plas<124.8156,
AND pres<3.3973,

AND skin<¼ 53.9336,
AND insu><[0, 236.2939],
AND mass<10.1695,
AND pedi><[0.078, 1.6306],

AND age<50.9739,
THEN class¼ tested_negative

9 IF preg>7.1177, 0.0103 0.002 1.0

AND plas>¼ 33.5901,
AND pres <> [47.0321, 78.2014],
AND mass<¼ 15.1642,

AND age<>[61.8127, 71.4335],
THEN class¼ tested_positive

10 ELSE class¼ tested_positive

Classification accuracy¼ 80.15%

Table 15. The best classification rule set of CORE for hepatitis data.

Rule Fitness Support factor Confidence factor

1 IF ASCITES¼ no, 1.3773 0.6373 0.9155

AND BILIRUBIN<¼ 1.9077,
THEN Class¼LIVE

2 IF SPLEEN_PALPABLE !¼ yes, 1.2252 0.6275 0.8767

AND ASCITES !¼ yes,
THEN Class¼LIVE

3 IF ALBUMIN<¼ 3.7234, 1.0183 0.1569 0.4848

THEN Class¼DIE
4 ELSE Class¼LIVE

Classification accuracy¼ 92.45%
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over-fitting and leads to poor generalization, which is
undesirable. On the other hand, having an appropriate
number of specific rules could increase the precision of
the rule set as a whole, which will further enhance the
classification accuracy. Having considered this situation,
the designers of CORE give much flexibility to its users
and let them decide whether they prefer longer or
shorter rule sets (users can change the number of
co-populations to make the selection). If users have little
knowledge of their problem, they can discard this
flexibility and use the default setting of CORE, which
can still generate fairly good results.

(B) Comparisons with other works. The hepatitis dataset.
Wang et al. (2000) proposed an evolutionary rule-
learning algorithm, called GA-based Fuzzy Knowledge
Integration Framework (GA-based FKIF), which
utilized genetic algorithms to generate an optimal or
near optimal set of fuzzy rules and membership
functions from the initial knowledge population. Since
the average performance of GA-based FKIF was not
provided in Wang et al. (2000), only the best result of
this algorithm is compared with CORE as given in
table 20. Figure 13 shows the box plot of CORE and
other algorithms for comparison. As can be seen,

Table 18. The best classification rule set of CORE for sick data.

Rule Fitness Support factor Confidence factor

1 IF pregnant¼ f, 1.3675 0.6778 0.9906

AND T3 measured !¼ f,
AND T3<>[0.05, 1.1936],
THEN class¼ negative

2 IF referral source !¼ SVI, 1.3492 0.7131 0.9817
THEN class¼ negative

3 IF on thyroxine¼ f, 0.7905 0.0562 0.0919

AND on antithyroid medication¼ f,
AND tumor¼ f,
AND TSH><[0.005, 296.6705],

AND T3 measured !¼ f,
AND T3><[0.05, 5.9537],
AND T4U>¼ 0.4118,
THEN class¼ sick

4 IF T3 measured¼ t, 0.0772 0.0611 0.0882
AND referral source !¼ SVHC,
AND ca<>[0, 1.4164],

THEN class¼ sick
5 ELSE class¼ negative

Classification accuracy¼ 98.05%

Table 17. The best classification rule set of CORE for breast cancer data.

Rule Fitness Support factor Confidence factor

1 IF age !¼ 90–99,

AND node-caps !¼ yes,

1.0388 0.4894 0.7797

AND deg-malig !¼ 3,
THEN class¼ no-recurrence-events

2 IF deg-malig !¼ 3, 1.0387 0.5426 0.7556
THEN class¼ no-recurrence-events

3 IF inv-nodes¼ 0–2, 0.9924 0.5426 0.7391

THEN class¼ no-recurrence-events
4 IF deg-malig !¼ 2, 0.7203 0.2074 0.4063

AND breast-quad !¼ central,
THEN class¼ recurrence-events

5 ELSE class¼ no-recurrence-events

Classification accuracy¼ 84.69%
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although CORE does not achieve the best accuracy for

this dataset, it does produce the best average accuracy

with no outlier data point.

The diabetes dataset: The classification results for

Diabetes dataset from several rule-based (Itrule and

CN2) and tree-based (CART, AC2 and Cal5) algorithms

(Michie et al. 1994) are listed in table 21 for comparison.

Note that these results were obtained by 12-fold cross

validation. The GGP (Wong 2001) was also applied

to this dataset and the results are given in table 21.

CORE achieves a higher accuracy than GGP generally.

However, as GGP is a flexible algorithm, significant

performance improvement may be achieved if experts in

the relevant domain can incorporate the non-trivial

hidden knowledge into its predefined grammars.

Figure 14 shows the comparisons of CORE with other

algorithms using the box plot. Clearly, CORE has

Table. 19. The best classification rule set of CORE for heart-C data.

Rule Fitness Support factor Confidence factor

1 IF exang !¼ yesþ, 1.1673 0.3692 0.8276

AND ca<¼ 0.6762,
THEN num¼<50þ

2 IF oldpeak><[0, 5.0737], 1.0974 0.3179 0.7294

AND thal !¼ normalþ,
THEN num¼>50_1þ

3 IF cp¼ asymptþ, 1.0585 0.3128 0.7093

THEN num¼>50_1þ
4 IF cp !¼ non_anginalþ, 0.0932 0.0256 0.7143

AND slope¼ upþ,
AND ca<> [0, 1.4164],

THEN num¼<50þ
5 ELSE num¼<50þ

Classification accuracy¼ 90.10%

Table 20. Performance comparisons for the hepatitis problem.

Algorithm Reference # Rules Avg accuracy Best accuracy Standard deviation

CORE – 4.14 84.40% 92.45% 3.72%
C4.5 (Quinlan 1993) 5.85 78.94 90.57% 4.84%
PART (Frank and Witten 1998) 6.64 80.02% 94.34% 4.98%

Naı̈ve Bayes (John and Langley 1995) – 83.62% 94.34% 4.90%
GA-based FKIF (Wong et al. 2000) � – 92.9% –
XCS (Bernadó et al. 2001) – 76.8% – –

*The authors did not provide average rule number of the rule sets generated by their algorithm.

Figure 13. Box plot for the hepatitis problem.

854 K. C. Tan et al.

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
G
r
a
n
a
d
a
]
 
A
t
:
 
1
1
:
5
6
 
1
7
 
A
p
r
i
l
 
2
0
1
0



achieved the best performance with very competitive
classification results.

The breast cancer dataset: Table 22 compares the

classification results from CORE, C4.5 rules, PART
and Naı̈ve Bayes for the Breast Cancer dataset. In terms

of concision, the average rule number in a rule set

generated by CORE is less than one third of those
obtained by C4.5 rules and PART. Figure 15 shows the

comparison results of CORE with other algorithms using
the box plot. As can be seen, CORE has again achieved a

very competitive classification result for this dataset.

The sick dataset: The comparison results of the sick

dataset are summarized in table 23. C4.5 and PART

generated very good results on this dataset in terms of

classification accuracy. The box plot in figure 16

shows that CORE is less accurate for this dataset

compared to other rule-based classifiers although it

has outperformed Naı̈ve Bayes with great confidence.

On the other hand, the rule sets from CORE on this

dataset are fairly succinct and have less than 4 rules

on average. The C4.5 and PART have approximately

21 and 17 rules respectively, which are all more than

the permitted number of rules in the rule sets from

CORE. Although the small number of rules in the

rule sets of CORE is relatively easy to understand for

users, it also accounts for the slightly worse classifica-

tion accuracy of CORE on this dataset, since less rules

often result in the loss of precision in the classifica-

tion. To overcome the problem, users can increase the

permitted number of rules in CORE at the expense of

longer training time by adding more co-populations,

which will enhance the appearance opportunity of the

longer rule sets in the final results.

The heart disease dataset: Setiono and Liu (1997)

proposed the algorithm of NeuralLinear, which is a

system for extracting oblique decision rules from

neural networks that have been trained for classifi-

cation of patterns. The algorithm has been tested on

the Heart Disease dataset through ten repetitions of

ten-fold cross validation. As shown in table 24,

CORE obtains more accurate and concise rule sets

than C4.5 rules and PART for this dataset.

However, the average accuracy obtained by Naı̈ve

Table 21. Performance comparisons for the diabetes problem.

Algorithm Reference # Rules Avg accuracy Best accuracy Standard deviation

CORE – 5.99 75.34% 80.15% 2.30%

C4.5 (Quinlan 1993) 5.85 73.13% 77.39% 2.55%
PART (Frank and Witten 1998) 6.64 72.78% 80.08% 2.53%
Naı̈ve Bayes (John and Langley 1995) – 75.09% 81.61% 2.45%

Itrule (Michie et al. 1994) – 75.5% – –
CN2 (Michie et al. 1994) – 71.1% – –
CART (Michie et al. 1994) – 74.5% – –

AC2 (Michie et al. 1994) – 72.4% – –
Cal5 (Michie et al. 1994) – 75.0% – –
GGP (Wong 2001) 14.54 72.60% 77.95% 2.97%
XCS (Bernadó et al. 2001) – 75.4% – 4.7%

XCSR (Bacardit and Garrell 2003) 3.4 74.2% – –

Figure 14. Box plot for the diabetes problem.
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Bayes classifier is better than CORE, which may be
due to the distribution of this dataset that benefits
the statistical type of classifiers. It is believed that
the Naı̈ve Bayes is an optimal classifier when the
class distributions and a priori probabilities are
known. Figure 17 shows the comparison results of
CORE with other algorithms using the box plot.
In this case, the Naı̈ve Bayes classifier offers the
best accuracy although CORE has the lowest
standard deviation among all algorithms. If only
rule-based classifiers are considered, however, CORE
achieved the best results by outperforming C4.5 rules
and PART significantly.

4.2.3 The financial dataset. (A) Experimental results.
Table 25 summarizes the average results of CORE
over 100 simulation runs, while the classification rule set
that has the highest predictive accuracy of this data is
shown in table 26. The histograms are given in figure 18.

As can be seen from the training performance histo-
grams, there are over 30 runs with accuracy in the range
of 87% to 87.5% and 17 runs with accuracy in the range
of 85% to 85.5% over the total 100 simulation runs.
Such a phenomenon has caused the overall histograms
to not be normally distributed (the same phenomenon
also applied to the Hepatitis dataset). The reason for
this phenomenon is that the evolutionary search has
been trapped in local optima during these simulation
runs, which could be overcome by having a larger
population and generation size. To further examine
the classification results, the rule number of the best
rule set in every evolutionary run is recorded in table 27.
As can be seen, although the rule number varies from
1 to 16, rule sets with number of rules below 5 cover
over fifty percent of all the best rule sets in 100 runs.
This shows that short rule sets have a good chance
of survival in the course of co-evolution, which justifies
their excellent classification performances for this
dataset.

(B) Comparisons with other works. As shown in
table 28 and figure 19, CORE has offered a very
good classification solution for the Credit Card
Assessment dataset. Setiono and Liu (1997) also
applied the algorithm of NeuroLinear to this dataset
and generated a concise rule set with an average rule
number of 6.60. As shown in the table, the Naı̈ve
Bayes classifier has the worst performance for this
dataset compared to other algorithms.

5. Discussions

The proposed CORE has been examined on seven
datasets obtained from UCI machine learning reposi-
tory and has produced good classification results
as compared to many existing classifiers. Most of
the comparisons were performed statistically using box
plots to show the robustness of the proposed classifier.
Extensive simulation results show that CORE has

Figure 15. Box plot for the breast cancer problem.

Table 22. Performance comparisons for the breast cancer problem.

Algorithm Reference # Rules Avg accuracy Best accuracy Standard deviation

CORE – 4.32 75.41% 84.69% 3.24%

C4.5 (Quinlan 1993) 14.27 71.81% 78.35% 3.55%
PART (Frank and Witten 1998) 13.71 69.32% 80.41% 4.33%
Naı̈ve Bayes (John and Langley 1995) – 72.34% 94.34% 3.29%
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outperformed two other rule-based classifiers (C4.5

and PART) in almost all test problems except for the

Sick dataset and is very competitive as compared to

statistical based techniques, such as Naı̈ve Bayes (e.g.

Naı̈ve Bayes achieved better results only on the Heart-

C problem). One reason for CORE being less efficient

than the C4.5 and PART in terms of generalization

ability for Sick dataset could be due to the low

number of rules used. While CORE uses 3.49 (on

average) number of rules, C4.5 uses 21.61 number of

rules and PART uses 17.05 number of rules,

these figures are about 600% and 500% more

compared to the number of rules CORE uses. In

order to improve the performance of CORE for this

problem, the upper limit of allowed rules can be

increased but at the expense of higher computational

cost. The performance comparisons to other evolu-

tionary based classifiers (GP-Co, GGP, GBML,

GPCE, GA-based FKIF, XCS and XCSR) are

mainly restricted by the availability of data, e.g. not

all the datasets used in our experiments were tested in

other publications. Since there have been so many

classifiers proposed in literature over the years, it is

very difficult, if not impossible, to include every one

of them in the comparisons. Therefore the compar-

isons are not meant to be exhaustive, but to assess

the reliability and robustness of CORE by comparing

it to some established methods widely used in the

literature.
The paired t-tests with Bonferroni correction made

for multiple comparisons have been performed between

CORE and three widely used classifiers (C4.5 rules,

PART and Naı̈ve Bayes) by taking each dataset as

independent observation and the results are shown in

table 29. These p-values suggested that there is not much

significant difference between the means as opposed to

the results presented in previous tables; this could be due

to the number of independent observations taken being

too small. The results reported by CORE shown in

previous tables show the lowest standard deviation in

all the problems except Sick, compared to all other

algorithms (subjected to availability of standard devia-

tion value). The box plots show that CORE has a

relatively lesser number of outliers as compared to

traditional rule-based classifiers (C4.5 rule and PART),

which indicates that CORE is relatively more robust and

less affected by the random partition of learning and

testing sets.
Observations from results show that larger rule sets

might not perform better than smaller rule sets in terms

of classification accuracy on the training set. This

observation opposes findings that there is a trade off

between the classification accuracy on the training set

and the number of rules used (Ishibuchi and Yamamoto

2003, Ishibuchi and Namba 2004). One of the reasons

might be that in large rule sets, it does not necessary

imply that all rules in the rule set are considered. Very

often, an instance will only visit the first few rules and

the later rules are not considered. Therefore in such

cases, it does not really matter whether the rule set is

Figure 16. Box plot for the Sick problem.

Table 23. Performance comparisons for the Sick problem.

Algorithm Reference # Rules Avg accuracy Best accuracy Standard deviation

CORE – 3.49 95.17% 98.05% 1.53%

C4.5 (Quinlan 1993) 21.61 98.59% 99.53% 0.12%
PART (Frank and Witten 1998) 17.05 98.27% 99.06% 0.16%
Naı̈veBayes (John and Langley 1995) – 92.59% 94.93% 1.28%
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extremely big as the latter rules have become redundant.

This type of large rule set actually has the same effect as

small rule sets whereby their classification accuracy does

not outperform that of the small rule sets. It can also be

observed from the experiment results that the number

of rules for the best rule set produced by CORE is

relatively small compared to other algorithms. For all

the problems, the size of rule sets (average) is

significantly smaller or comparable to other rule based

algorithms. This is an important advantage of CORE

since the comprehensibility of the classification results is

directly reflected by its number of rules.
Figure 20 shows the convergence performance analy-

sis of CORE for all the datasets. As can be seen,

although the main population evolves in a very

stochastic way (mainly due to the regenerate operator

and to a lesser extent by the mutation operator), it

provides a ground for the co-populations to progress in
a positive direction and resulted in a good exponentially
increased convergence trace. This shows how the
populations are coevolved cooperatively to produce
good solutions. The stochastic nature of the main
population plays an important role in the proposed
coevolutionary model to maintain the diversity of the
individual pool. As shown in figure 20, the convergence
of CORE is fast and with less than 40 generations
on average. The good performance in terms of
generalization ability and fast convergence could be
suggested by the large solution space visited by the
algorithm. With regards to the small number of
evaluations (co-population size¼ 50 and converges
around 40 generations on average), this might suggest
that a simpler, more computationally efficient local
search technique, e.g. hill climbing technique,
could also perform relatively well. However local
search techniques are characterized by getting trapped
in local optima, where solutions found are usually sub-
optimal points and do not exhibit good generalization
ability.

6. Conclusions

This paper has proposed a cooperative coevolutionary
algorithm (CORE) for rule extraction and classification
in data mining applications. CORE utilizes the evolu-
tionary algorithm principles which possess global search
ability to search for rules and rule sets. These solutions
are presented in high level linguistic rule sets that are
easily comprehensible for humans. Unlike existing
evolutionary approaches, the proposed coevolutionary
classifier coevolves the rules and rule sets concurrently
in two cooperative populations. The main population
encodes a population of rules using Michigan encoding
which are syntactically shorter thus making the search
for good candidate solutions faster. The co-populations

Table 24. Performance comparisons for the heart disease problem.

Algorithm Reference # Rules Avg accuracy Best accuracy Standard deviation

CORE – 6.24 80.77% 90.10% 3.17%

C4.5 (Quinlan 1993) 18.12 76.61% 84.16% 3.27%
PART (Frank and Witten 1998) 15.13 77.97% 86.14% 3.65%
Naı̈veBayes (John and Langley 1995) – 82.96% 90.10% 3.37%

NeuralLinear (Setiono and Liu 1997) 5.69 78.15% – 6.86%
XCS (Bernadó et al. 2001) – 80.3% – 7.8%

Figure 17. Box plot for the heart-C problem.
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are then presented with these good candidate rules to

form rule sets using Pittsburgh encoding, and in this way

the normally large search space often encountered while

using Pittsburgh encoding is confined. The rule sets in

the co-population take into account the rules interaction

in order to produce good solutions, and this is not

achievable in the main population. Rules and rule sets

are coevolved simultaneously in CORE to ensure that

the solutions are cohesive and comprehensive. CORE

ensures that the merits of both encoding approaches are

Table 26. Best classification rule set for the credit-A data.

Rule Fitness Support factor Confidence factor

1 IF A9 !¼ t, 1.4402 0.4352 0.9252
AND A15<36765.7028,
THEN class¼�

2 IF A4 !¼ l, 1.0532 0.2813 0.7314
AND A7 !¼ ff,
AND A10¼ t,

AND A15><[0, 42794.9549],
THEN class¼þ

3 IF A4 !¼ y, 0.8579 0.3429 0.5235
AND A13 !¼ s,

AND A14<1031.244,
THEN class¼þ

4 ELSE class¼�

Classification accuracy¼ 91.06%

(a) (b)

Figure 18. Performance of CORE for the credit card assessment problem: (a) training; (b) testing.

Table 25. Summary of results for the credit card assessment dataset.

Max Min Mean StdDev Avg # rules Training time (m)

Training 88.79% 84.18% 86.71% 1.00% 4.75 11.03

Test 91.49% 81.70% 86.49% 1.86% 4.75 11.03

Max: Maximum classification accuracy. Min: Minimum classification accuracy. Mean: Mean classification
accuracy.
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utilized while compromising their drawbacks. The

proposed CORE has been extensively validated upon

seven datasets obtained from the UCI Machine

Learning Repository, and the results have been analysed

both qualitatively and statistically. Comparison results

show that the proposed CORE produces comprehensive

and good classification rules for all the datasets, which

are very competitive or better than many classifiers

widely used in literature. For most datasets, CORE is

able to produce a small number of rules for the best rule

set without the expense of generalization ability.

Moreover, the standard deviation reported by CORE

is the smallest in almost all cases. Simulation results

obtained from the box plots have unveiled that CORE is

relatively robust and invariant to random partitioning of

datasets. CORE appears as a good rule-based classifier

for two-class and multi-class problems. To reduce the

computational effort significantly, the CORE is cur-

rently being integrated into the ‘‘Paladin-DEC’’ dis-

tributed evolutionary computing framework (Tan et al.

2002b), where multiple inter-communicating subpopula-

tions are implemented to share and distribute the

classification workload among multiple computers

over the Internet. Other distributed frameworks can

also be implemented to test the efficiency.

Table 28. Performance comparisons for the credit card assessment problem.

Algorithm Reference # Rules Avg accuracy Best accuracy Standard deviation

CORE – 4.75 86.48% 91.49% 1.86%

C4.5 (Quinlan 1993) 19.34 85.14% 90.21% 2.06%
PART (Frank and Witten 1998) 27 83.59% 89.36% 2.25%
Naı̈ve Bayes (John and Langley 1995) – 77.87% 83.83% 2.57%

Itrule (Michie et al. 1994) – 86.3% – –
CN2 (Michie et al. 1994) – 79.6% – –
CART (Michie et al. 1994) – 85.5% – –

AC2 (Michie et al. 1994) – 81.9% – –
Cal5 (Michie et al. 1994) – 86.9% – –
Neura Linear (Setiono and Liu 1997) 6.60 83.64% – 5.74%

XCS (Bernadó et al. 2001) – 84.8% – –

Figure 19. Box plot for the credit-A problem.

Table 27. Occurrence of different number of rules.

Rule set 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16

Appearance time in 100 runs 11 9 6 20 13 7 6 5 7 3 5 3 1 1 3

Table 29. Paired t-test.

C4.5 PART Naı̈ve Bayes

P-value 0.037532 0.025068 0.080511

860 K. C. Tan et al.
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Iris (a) Iris (b)

Hepatitis (a) Hepatitis (b) 

Diabetes (a) Diabetes (b) 

Breast-cancer (a) Breast-cancer (b) 

Figure 20. Coevolution progress for all datasets: (a) fitness of main population; (b) fitness of co-populations.
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