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Abstract—Kohonen’s learning vector quantization (LVQ) is modified by attributing training counters to each neuron,
which record its training statistics. During training, this allows for dynamic self-allocation of the neurons to classes. In
the classification stage training counters provide an estimate of the reliability of classification of the single neurons,
which can be exploited to obtain a substantially higher purity of classification. The method turns out to be especially
valuable in the presence of considerable overlaps among class distributions in the pattern space. The results of a typical
application to high energy elementary particle physics are discussed in detail. © 1997 Elsevier Science Ltd.
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1. INTRODUCTION

Learning vector quantization (Kohonen, 1984, 1989,
1995) has proved over the years to represent a highly
successful approach to pattern classification in a wide
range of application fields. One should not be surprised,
though, that as it is applied in a new field, presenting a
different set of requirements, modifications are needed to
meet new challenges.

High energy elementary particle physics has recently
become a mature field for neural network applications.
That is largely due to the availability of particle
accelerators which have substantially increased the
collision energy at which particle interactions can be
studied. As a result, the problem of sorting out complex
interaction events, in which several hundreds of particles
are produced, has become rather common. Typically, one
needs to select a small fraction of events associated with
some signal of interest and to discard the remaining
events, constituting the background. Neural network
technology can represent a handy tool for this task. In
particular, this kind of pattern classification problem can
be handled by LVQ. However, for typical choices of the
input variables, the signal and background class distri-
butions in pattern space present strong overlaps which
are hardly coped with by LVQ and its existing modifica-
tions. One is especially interested in selecting an event
sample exhibiting a high degree of purity for the signal,
paying willingly the price of substantial losses in the
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signal collection efficiency. In fact, the problem is not
so much that of losing produced events but rather that of
collecting a sample containing as much as possible only
the good ones.

The modification to LVQ proposed here is meant to
handle situations with strong overlaps among class dis-
tributions. For that sake, each LVQ neuron is provided
with a set of training counters which keep track of the
training statistics of the neuron. In particular, at the end
of training, one can know how many times the neuron has
been trained by patterns of its own class or of different
classes. That allows us to estimate how reliable the
classifications given by the neuron are. Thus, one can
discard classifications provided by unreliable neurons
like, e.g., those sitting in regions where the fraction of
different class patterns is substantial. Neuron training
counters can also be exploited during training, for self-
allocation of neurons to classes, for neuron pruning and
for neuron creation.

Section 2 summarizes the standard LVQ. In Section 3,
the LVQTC algorithm is presented. Section 4 deals with
a typical application in high energy elementary particle
physics, and Section 5 contains the conclusions.

2. LEARNING VECTOR QUANTIZATION

Vector quantization amounts to a subdivision of the
pattern space in populated regions (Voronoi tessellation)
described by some suitably defined centroid vectors.
Learning vector quantization (LVQ) is an algorithm
(Kohonen, 1984) which adaptively builds up vector
quantization from a training set of patterns. It can be
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used for the sake of data compression or, if more pattern
classes are present, for pattern classification.

A set of class-labeled reference vectors m in the
pattern space is introduced. They may be initially set
equal to some training patterns s having their same
classes. Then, the whole training set of class-labeled
vectors s(t), t = 1, 2, 3... is presented. For each s(t)
one finds the reference vector m, closest to it, according
to some distance definition. The position of m, is
updated: if s(z) and m, have the same class, then m, is
made closer to s(z) by some amount proportional to their
relative distance; otherwise m, is moved away from s(z)
by a similar amount. The training set is recurrently read
over, progressively reducing the amount of the correc-
tions, until some stabilization is reached. Classification
of a pattern vector s of unknown class is carried through
by assigning the vector to the class of its closest reference
vector.

Kohonen (1989, 1995) has subsequently proposed
modifications, LVQ2 and LVQ3, meant to provide an
improved performance near decision borders in pattern
spaces. However, for strongly overlapping class distribu-
tions (and thus lack of definite decision borders) its
motivations remain to be clarified. Modifications of
LVQ2 which have been presented (e.g., Solaiman,
Mouchot, & Maillard, 1994) do not settle this point.

3. LEARNING VECTOR QUANTIZATION WITH
TRAINING COUNT

Leamning vector quantization with training count
(LVQTC) represents a modification of the original
LVQ scheme, where additional attributes are appended
to each neuron. The attributes record statistical informa-
tion about the training undergone by the neuron. The aim
of LVQTC is to classify pattern vectors s according to
pattern classes Cy, C,, Cs...Cy. The additional neuron
attributes are exploited both during training and classi-
fication. During training, they help to replace neurons
with poor training performance and to create new
neurons when they are needed. During classification,
they provide an estimate of the reliability of the
classification given by each neuron.

Neurons are defined by the following set of attributes:

a reference vector m in the pattern space;

a class label;

a counter for each class P, P, Ps...Py, storing the
number of times vectors of that class have trained the
neuron (training counters); and

a vector w in the pattern space, representing the cen-
troid of wrong class (i.e., different from the neuron
class) patterns which have trained the neuron.

Patterns used for training are certified to belong to the
classes C, C3, Cs...Cy, without particular restrictions as
to the numbers of patterns for each class. In the follow-
ing, G; and N; will denote the global (or a priori)
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probability and the total number of training patterns of
class C;, respectively.

Neuron initialization makes use of the information on
class distributions available from the class certified input
patterns used to train the net. The initial total number of
neurons is taken as a small fraction (about 5% or less) of the
total number of input patterns. That is in order to limit the
occurrence of neurons which will eventually be trained by
statistically poor pattern samples. Neurons are allocated to
classes proportionally to the volumetric and linear sizes of
their distributions in pattern space. Class volume is esti-
mated as the square root of the determinant of the corre-

‘sponding correlation matrix (times a factor of 2 for each

pattern variable), and the class linear size as twice the
square root of its trace. (The justification for that is easy
to see by considering the correlation matrix in diagonal
form.) Neuron reference vectors m are initialized by train-
ing patterns of the same class, taken at random.

Training of neurons is arranged in a succession of
epoches. For each epoch, the following steps are taken:

¢ neuron resetting: set all neuron training counters and
ws to zero;

e neuron training: present the whole training set of
class-labeled vectors s(1), t = 1, 2, 3..., choosing the
pattern class at random each time. For each s(¢) find the
neuron with the closest reference vector, m,. Let the
training vector s(z) belong to class C;, and suppose that
m, is labeled according to class C,. Increment the
training counter P; of the neuron for class C; by 1.
Update m,, leaving the other neuron reference vectors
unchanged, according to:

me(t+ 1) =m(t) = (a,/Pyoy)[s(2) — mc()] if C;=C,
@

mc(t + 1) = mc(t) - aw/Ptot)[s(t) - mc(t)] if Cs # Cc

a, and «,, are two distinct learning parameters. One
should take: a,,, o, < 1 (Kohonen, 1984). P,,, = P, +
P, + P,... + Py is the current sum over all training
counters of the m. neuron. «, and «,, are monotoni-
cally decreasing with the number of epoches: for each
successive epoch they are reduced by a factor F, < 1.
If C, # C., update the w of the m, neuron;’

¢ neuron pruning and creation: after the presentation
of the training set and before a new epoch is started,
prune undertrained neurons and create new neurons
to reduce neuron contamination from wrong class
training patterns, according to the following rules
applied in order:

! For w, one keeps a vector summer, where one adds all the C; # C. s
(f) vectors training the neuron, and a scalar accumulator recording their
number. At any moment, w can be calculated by dividing the vector
summer by the value of the scalar accumulator. ‘‘Update the w’” in
practice means to add the s(f) vector to the vector summer and to
increase the scalar accumulator by one.
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® neuron pruning: eliminate neurons with

Ptot=Pl+P2+"'+Pn<Ppm (2)

where P, is a user-modifiable cutoff parameter (for a
discussion of its value, see at the end of this section);
and

e neuron creation: let us denote by P, the maximum
value of the wrong class training counters of the
neuron; if P, > Py, Create a neuron of a class
whose training counter P; = P,, and with a vector m
equal to the w of the original neuron.

Training stops when the number of right classifica-
tions on the training set no longer improves appreciably.
For the calculations reported here, training has been
stopped when for three successive epoches the number
of right classifications on the training set is not larger
than (1 + F,,,) times the number of right classifications
of the previous epoch, where 0 < F,, < 1.

At the end of the last epoch, no neuron pruning and
creation is made. Training counters are recalculated by
reading the whole set of training patterns and keeping
neurons frozen. At the same time, one calculates the
neuron contamination by wrong class trainings, feont
and a neuron radius, R, as follows.

feont is defined by:
Joont =AxlArot 3
where
A=A +A+A3+ ... +Ay “
with
A;=G,;P;/N; &)

G; and N; being the global probability and the total
number of training patterns of class C,, respectively, P;
being the training counter for class C; of the neuron, and

A, =sum over all A; except A; ©6)

k indicating the class C; which labels the neuron.

Ry is calculated as the square root of the mean square
(r.m.s.) of the distance from the neuron of all the training
patterns which have it as the closest neuron and belong to
its same class.

The neuron parameters f o and R, are used, together
with P, in the classification process.

Classification of a pattern vector s of unknown class is
carried through by assigning the vector to the class of its
closest neuron. An estimate of the classification
uncertainty is provided by the neuron contamination
feom» introduced above. The classification may also be
considered uncertain, if the neuron has too low a Py
(i.e., its training is statistically poor) or is too distant
from s. Then, the classification can be considered
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unreliable if for the closest neuron one has:
.ﬁ:ont >ﬁ:max (7)
P tot <P min
D > Doy

where fipax, Pmin and D, are user-defined cutoff
parameters; D is the distance of s from the neuron
measured in units of its R .

In the following, there will be made reference to
classification efficiency and purity. The classification
efficiency e is defined as the fraction of events in the
original signal sample which are correctly classified as
signal events. The classification purity = is defined as the
fraction of actual signal events which are present in the
sample of events classified as signal.

Distance metric can be chosen from a variety of
options. Straightforward Euclidean metric is fast to
calculate, but it may be inadequate if pattern variables
range over widely different scales. A wiser choice is
provided by a Euclidean metric weighted by the inverses
of the pooled-over-classes variances of the single
variables. In other words, one gauges the input variables
in units of their variances over the training set. That does
not cost a great loss in computing speed.

Two important consequences of keeping track of the
training count for each neuron are:

(1) the number of neurons assigned to each class is no
longer required to be proportional to the global prob-
ability for the class, as in standard LVQ. In the latter
the density of neurons of each class in pattern space
represents the only ingredient to (statistically) control
classification in overlap regions. In LVQTC, on the
other hand, this role is largely taken over by the train-
ing counters. That can be exploited by assigning rela-
tively few neurons to classes which are concentrated in
small regions of the pattern space, and more neurons to
classes which are spread out over large regions. In this
way, with a given total number of neurons, one can
better represent the shapes of the class distributions;
and

(2) similarly, the number of training patterns for each
class is no longer required to be proportional to the
global probability for the class, as in standard LVQ. As
for neurons, one can more usefully allocate the total
number of training patterns to classes according to the
effective sizes of their distributions in pattern space, so
as to have a more uniform neuron training. That may
also be expedient when dealing with limited samples
of training patterns for some, or all, classes: all training
vectors can be exploited without having to leave part
of them unused so as to satisfy the constraint of
proportionality to class probabilities.

In LVQTC a fuller use is made of the information
available on the distribution of training patterns, which
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is stored into the neuron training counters. Exploiting this
information, neurons are left more sparse in regions of
small class overlap and concentrated in regions of sub-
stantial class overlap. Training counters, together with
neuron ‘‘radius’’ information, are also of help in esti-
mating the reliability of pattern classifications, as
discussed above.

On a general ground, LVQ can be viewed as a three-
layered neural network: (1) the first, input, layer has as
many neurons as the pattern variables; (2) the second,
intermediate layer, contains the standard LVQ neurons;
and (3) the third, output, layer has as many neurons as the
number of classes. The intermediate neurons are
governed by a winner-takes-all dynamics and compete
for being corrected by the excitations of input neurons.
Each one of them is connected to just one output neuron
(according to its class label), whose excitation can be
either 0 or 1. In LVQTC, the excitation of an output
neuron can be identified with 1 — f.., Where feon i
the contamination of the winning intermediate neuron
firing into it, and thus it varies with continuity between
0 and 1. Also, the firing can be inhibited if the inter-
mediate neuron has not received enough training or if
the input pattern is too distant from it. An advantage
with respect to other neural net architectures is that at
the end of training the reference vectors of intermediate
neurons can be directly interpreted as ‘‘typical’’ class
patterns.

Overlaps between class distributions can be estimated
from LVQTC. Let us consider the distributions p,(s) and
pas) of classes C, and C,, respectively, normalized to
the corresponding global class probabilities G; and G,.
Let us define the overlap between the two distributions as

0(1,2)=1- J1P1(S) _P2(s)|dS/|j|pl(s)+P2(s)|ds ®

so that the overlap of a class distribution with itself is 1,
and the overlap of two non-overlapping class distribu-
tions is 0). Then 0(1,2) can be estimated from the
LVQTC neuron training counters as

0(1,2)=1= D ,IP{(m)G\/N) — Py(m)Go/N,/[Gy + G]
&)

where the sum is extended over all neurons, P(n) is the
training counter of neuron n for class C;, G; is the global
probability and N; is the number of training patterns for
class C;.

The various LVQTC training and classification para-
meters should be varied to achieve optimal classification
of an independent test set of class certified vectors. «,
and «a,, can be increased to improve speed or decreased to
refine convergence (initial values of about 0.1 are typi-
cally used). Decreasing P, will increase the number of
neurons and thus resolution in pattern space, while
increasing it will make neuron positions more reliable
statistically and consequently will improve generaliza-
tion. The total number of neurons can be increased to
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better represent details of the shapes of the class distribu-
tions. However, the number of neurons should be kept
much smaller than the number of training patterns, to
avoid that neurons simply act as a look-up table for the
training patterns, which would hamper generalization.
Also, a small number of neurons speeds up classification.
The classification cutoff parameters fonax, Pmin and Dy
should be chosen according to how much purity one
wishes to achieve in the classification process at the
price of depriving classification efficiency. Parameter
tuning can be realized by embedding LVQTC in a mini-
mization program and choosing a suitable cost function
(e.g., the number of misclassification on the test set of
patterns). Each call from the minimization program is to
be answered by a full training and classification LVQTC
run. LVQTC training is typically fast enough to allow for
that.

4. AN APPLICATION TO HIGH
ENERGY PHYSICS

High energy elementary particle physics offers a host of
examples of classification problems exhibiting a substan-
tial overlap among classes. A typical problem consists in
the extraction of a signal from a huge bulk of events
strongly contaminated by background. The interaction
between two elementary particles colliding at high
energy usually leads to the production of a large number
of elementary particles, which can reach up to a few
hundreds. In a typical experiment, only a tiny fraction
of the produced events (often hundreds of millions) are
relevant: they have to be sorted out online (i.e., at the
time one has to decide about their recording) by exploit-
ing characteristic features of the multiparticle final state.
This kind of ‘‘needle in the haystack’’ problem is solved
by a multistage process in which a series a filters are
employed: one first eliminates the most obvious back-
ground, and then one goes on trying to eliminate trickier
and trickier backgrounds. One is rarely able to achieve a
100% pure signal and even more a 100% efficiency in its
collection. One must rather make a tradeoff between
classification purity and efficiency and try to increase
as much as possible the signal/background ratio at the
price of a limited loss for the signal collection efficiency.
From what is measurable online on the final state it is not
possible to draw a clear line separating signal from back-
ground: some background events are very close to signal
events and sometimes undistinguishable from them as far
as the allowed measurements are concerned. Neural
networks can be of considerable help in this undertaking,
since they can systematically exploit correlations among
particle tracks and other measured quantities. However,
they have to cope with the substantial overlap between
signal and background events in the space of patterns
of the measured variables presented to them for
discrimination.

The example picked up here comes from an
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experiment at CERN aimed to the study of unstable
(“‘beauty’’) particles produced in hadronic interactions
(Baldanza et al., 1995). The particles decay before reach-
ing the detectors. Thus, their production is proved by the
presence, in addition to the primary interaction vertex to
which most of the produced particle trajectories
converge, of a secondary decay vertex to which the
trajectories of particles generated in the decay converge.
The problem is made more complicated by the fact that
secondary vertices may also be due to the subsequent
interaction of particles produced in the event with parts
of the experimental apparatus. In order to make the signal
discrimination amenable to a neural network approach,
the large bandwidth raw data collected from the detectors
have to be organized and condensed in a limited number
of significant variables, constituting the input pattern to
be submitted to the neural network. Details about that can
be found in Baldanza et al. (1995). Here, it suffices to say
that the input patterns are made of 14 variables, with
integer values ranging from 0 to 16. The training set
has been obtained by certification from a lengthy offline
reconstruction and analysis of the experimental events.
Three thousand training patterns have been used for the
signal and the same amount for the background. The
independent test set, for which results are quoted, has
the same composition as the training set.

The LVQTC training converges in just 1 epoch (F,, =
0.013), and leads to N; = 133 neurons for the signal class
and N, = 40 neurons for the background class. The
metric adopted is the Euclidean metric weighted by the
inverses of the pooled-over-classes variances of the
single variables. Training parameters have been initially
set to the values: o, = 0.2, &, = 0.1, F, = 0.9, P, = 10.
The volumes in pattern space of the signal and back-
ground distributions, V; and V, respectively, are in the
ratio V/V, = 41.51 as estimated from the correlation
matrices, whereas their maximum linear sizes, L, and
L, respectively, are in the ratio L/L, = 1.27. That pro-
vides a rationale for why training requires a much higher
number of neurons for the signal than for the background.

Accepting event classifications from all the neurons,
one obtains on the test samples a classification purity = =
0.69, and a classification efficiency ¢ = 0.76. By com-
parison, in standard L.VQ, assigning 100 neurons to each
class, one obtains 7 = 0.72, and e = 0.66 (convergence is
achieved in two epoches).

In order to improve on purity, one can accept as proper
classifications only those given by ‘‘reliable’’ neurons
and discard the other ones as unreliable. The parameter
we have used to estimate the neuron reliability is fioq,
gauging the fraction of times the neuron has been trained
by patterns of a class different from its own [see eqn (3)].
In Figure 1 it is shown how purity and efficiency change
when moving the upper cutoff on f,,, referred to in the
figure as ‘‘contamination cutoff’’. Purity increases sub-
stantially as the cutoff is brought down, reaching up to
values of 7 = 0.85. Of course one has to pay a price in
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terms of efficiency, which, however, is kept at acceptable
levels for the application at hand.

Also shown in Figure 1 are the corresponding results
when using a neuron reliability measure based on
distance. Specifically, denoting by D, the distance of
the classified pattern from the closest neuron and by D,
its distance from the closest neuron of class different
from that of the classifying neuron, the ratio D J/(D, +
D,) is considered and purity and efficiency are reported
when varying the upper cutoff on this quantity. One
might expect that purity would increase when reducing
the cutoff on DJ(D. + D,). But in this application
exactly the opposite occurs. That is related to the fact
that the signal distribution is much wider than the
background distribution and many of the signal neurons
sparsely cover the vast regions with little background
contamination. Patterns falling in these regions, although
they could be reliably classified as signal, may easily
have a relatively large DJ(D. + D,) and thus fall
under the axe of the cutoff.

In Figure 2 purity is directly shown versus the
corresponding efficiency when the cutoffs are varied, in
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FIGURE 2. Same results as in Figure 1, with purity directly plotted
versus efficiency.

order to better compare the results obtained when using
the neuron training counters and the neuron pattern
distance.

The present paper exclusively discusses the merits of
the LVQTC modifications within LVQ. The interested
reader, though, may find a comparison of the LVQTC
results presented here with those from MLP and Fisher
discrimination in Baldanza et al. (1995) (the enrichment
factor p used there is related to the classification purity =
introduced here by 1/w = 1 + 1/p). A comparison in a
different high energy physics problem among LVQTC,
MLP and Fisher discrimination can be found in Mazzanti
and Odorico (1993). In both applications the purity/
efficiency performances of the three classifiers are
qualitatively comparable.

R. Odorico

5. CONCLUSIONS

The addition of neuron training counters to LVQ allows
for a viable handling of classification problems with
strongly overlapping class distributions in pattern
space. In fact, it becomes possible to reject unreliable
classifications and, thus, to select pattern samples with
a considerably higher degree of class purity. In general,
that cannot be achieved when trying to rely on criteria
based on the neuron pattern distance. As a consequence,
LVQTC can be used in a way similar to MLPs, with the
MLP output replaced by the neuron contamination fqy as
the quantity gauging classification reliability. Training
counters can also be exploited during training, so as to
provide a dynamic allocation of neurons to classes by
means of neuron pruning and creation.
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