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Abstract—Kohonen’s learning vector quantization (LVQ)is modifiedby attributingtrainingcountersto eachneuron,
whichrecordits trainingstatistics.Duringtraining,thisallowsfor dynamicself-allocationof theneuronsto classes.In
the classificationstage trainingcountersprovidean estimateof the reliabilityof classificationof the singleneurons,
whichcan be exploitedto obtaina substantiallyhigherpurity of classi$cation.Themethodturnsout to be especially
valuablein thepresenceof considerableoverlapsamongclassdistributionsin thepattem space.Theresultsof a typical
applicationto highenergyelementaq particlephysicsare discussedin detail. 01997 ElsevierScienceLtd.
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1. INTRODUCTION

Learning vector quantization (Kohonen, 1984, 1989,
1995)has proved over the years to representa highly
successfulapproach to pattern classificationin a wide
rangeof applicationfields.One shouldnot be surprised,
though,that as it is appliedin a new field,presentinga
differentsetof requirements,modificationsareneededto
meet new challenges.

High energyelementaryparticlephysicshas recently
become a mature field for neural networkapplications.
That is largely due to the availability of particle
accelerators which have substantially increased the
collision energy at which particle interactionscan be
studied.As a result,the problemof sortingout complex
interactionevents,in whichseveralhundredsofparticles
areproduced,hasbecomerathercommon.Typically,one
needsto selecta smallfractionof eventsassociatedwith
some signal of interest and to discard the remaining
events, constituting the background. Neural network
technologycan representa handy tool for this task. In
particular,thiskindof patternclassificationproblemcan
be handledby LVQ. However,for typicalchoicesof the
input variables,the signal and backgroundclass distri-
butionsin pattern space present strong overlapswhich
are hardlycopedwithby LVQand its existingmodifica-
tions. One is especiallyinterestedin selectingan event
sampleexhibitinga high degreeof purityfor the signrd,
paying willingly the price of substantiallosses in the
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signal collectionefficiency.In fact, the problemis not
somuch thatof losingproducedeventsbut ratherthatof
collectinga samplecontainingas much as possibleonly
the goodones.

The modificationto LVQ proposedhere is meant to
handlesituationswith strongoverlapsamongclass dis-
tributions.For that sake, each LVQ neuron is provided
with a set of trainingcounterswhich keep track of the
trainingstatisticsof the neuron.In particular,at the end
of training,onecanknowhowmanytimestheneuronhas
been trainedby patternsof its own class or of different
classes. That allows us to estimate how reliable the
classificationsgiven by the neuron are. Thus, one can
discard classificationsprovided by unreliable neurons
like, e.g., those sittingin regionswhere the fractionof
different class patterns is substantial.Neuron training
counterscan also be exploitedduringtraining,for self-
allocationof neuronsto classes,for neuronpruningand
for neuroncreation.

Section2 summarizes the standardLVQ.In Section3,
the LVQTCalgorithmis presented.Section4 dealswith
a typicalapplicationin high energyelementary particle
physics, and Section5 containsthe conclusions.

2. LEARNING VECTOR QUANTIZATION

Vector quantizationamounts to a subdivisionof the
patternspacein populatedregions(Voronoitessellation)
described by some suitably defined centroid vectors.
Learning vector quantization (LVQ) is an algorithm
(Kohonen, 1984) which adaptively builds up vector
quantizationfrom a training set of patterns. It can be
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usedfor the sakeof datacompressionor, if morepattern
classesare present,for patternclassification.

A set of class-labeledreference vectors m in the
pattern space is introduced.They may be initially set
equal to some training patterns s having their same
classes. Then, the whole training set of class-labeled
vectors s(t), t = 1, 2, 3... is presented.For each s(t)
one findsthe referencevectorm. closestto it, according
to some distance definition. The position of mc is
updated:if s(t) and mc have the same class, then mc is
madecloserto s(t)by someamountproportionalto their
relativedistance;otherwisem. is movedaway froms(t)
by a similaramount.The trainingset is recurrentlyread
over, progressivelyreducingthe amountof the correc-
tions, until some stabilizationis reached.Classification
of a patternvectors of unknownclassis carriedthrough
by assigningthevectorto theclassof itsclosestreference
vector.

Kohonen (1989, 1995) has subsequentlyproposed
modifications,LVQ2 and LVQ3, meant to provide an
improvedperformancenear decisionbordersin pattern
spaces.However,for stronglyoverlappingclassdistribu-
tions (and thus lack of definite decision borders) its
motivations remain to be clarified. Modificationsof
LVQ2 which have been presented (e.g., Solaiman,
Mouchot,& Maillard,1994)do not settlethis point.

3. LEARNING VECTOR QUANTIZATION WITH
TRAINING COUNT

Learning vector quantization with training count
(LVQTC) represents a modification of the original
LVQ scheme,where additionalattributesare appended
to each neuron.The attributesrecordstatisticalinfortrta-
tionaboutthe trainingundergoneby theneuron.Theaim
of LVQTC is to classifypattern vectorss accordingto
pattern classes Cl, Cz, C3...CN.The additionalneuron
attributesare exploitedboth during trainingand classi-
fication.During training, they help to replace neurons
with poor training performance and to create new
neurons when they are needed. During classification,
they provide an estimate of the reliability of the
classificationgivenby each neuron.

Neuronsare definedby the followingsetof attributes:

a referencevectorm in the patternspace;
a class label;
a counter for each class PI, Pz, Ps.. .PN, storingthe
numberof timesvectorsof that classhave trainedthe
neuron(trainingcounters);and
a vectorw in the patternspace,representingthe cen-
troid of wrong class (i.e., different from the neuron
class)patternswhichhave trainedthe neuron.

Patterns usedfor trainingare certifiedto belongto the
classescl, Cz,Cs.. .CN,withoutparticularrestrictionsm
to the numbersof patternsfor each class. In the follow-
ing, Gi and IViwill denote the global (or a priori)

probabilityand the total numberof trainingpatternsof
class Ci, respectively.

Neuron initialization makesuse of the informationon
classdistributionsavailablefromthe classcertifiedinput
patternsused to train the net. The initialtotalnumberof
neuronsistakenasa smallfraction(about5%orless)ofthe
totalnumberof inputpatterns.Thatis in orderto limitthe
occurrenceofneuronswhichwilleventuallybe trainedby
statisticallypoorpatternsamples.Neuronsareallocatedto
classesproportionallyto thevolumetricandlinearsizesof
theirdistributionsin patternspace.Classvolumeis esti-
matedas the squareroot of the determinantof the corre-
spondingcorrelationmatrix(timesa factorof 2 for eaeh
pattern variable),and the class linear size as twice the
squareroot of its trace. (Thejustificationfor that is easy
to see by consideringthe correlationmatrix in diagonal
form.)Neuronreferencevectorsm areinitialized by train-
ingpatternsof thesameclass,takenat random.

Training of neurons is arranged in a successionof
epoches.For each epoch,the followingstepsare taken:

. neuronresetting:set allneurontrainingcountersand
ws to zero;
● neuron training:present the whale training set of
class-labeledvectorss(t), t = 1, 2, 3.... choosingthe
patternclassat randomeachtime.Foreachs(t) findthe
neuronwith the closestreferenceveetor,mc. Let the
trainingveetors(t) belongto classC,, andsupposethat
m=is labeled according to class CC.Increment the
trainingcounterP, of the neuron for class C, by 1.
Updatem., leavingthe otherneuronreferenceveetors
unchanged,accordingto:

mc(t + 1)=mc(t) = (ar/PtoJ[s(t)– m.(t)]if C. = C.
(1)

mc(t + 1)= me(t)– aw/PtoJ[s(t)– me(t)]if C, # CC

a, and crWare two distinctlearningparameters.One
shouldtake:a., a, c 1 (Kohonen,1984).Ptot= P1+
P2 + P3... + PN k the c~ent s~ over all training
countersof the mCneuron.~, and CXWare monotoni-
callydecreasingwith the numberof epoches:for each
successiveepochthey are reducedby a factorF, <1.
If C, # CC,updatethe w of the mCneuron;l
. neuronpruningand creation:after the presentation
of the trainingset and before a new epoch is started,
prune undertrainedneurons and create new neurons
to reduce neuron contaminationfrom wrong class
training patterns, according to the following rules
appliedin order:

1Forw,onekeepsavectorsummer,whereoneaddsrdltheC, # CCs
(t) vectorstrainingtheneuron,anda scalaraccumulatorrecordingtheir
number.At any moment,w can be calculatedby dividingthe vector
summerby the value of the scalar accumulator.“Update the w“ in
practice means to add the s(t) vector to the vector summer and to
increasethe scalaraccumulatorby one.
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. neuronpruning:eliminateneuronswith

Pmt= PI + P~+ ... + P. < Ppm (2)

wherePP is a user-modifiablecutoffparameter(fora
discussionof its value,see at the end of this section);
and
. neuroncreation:let us denoteby P. the maximum
value of the wrong class training counters of the
neuron; if P. > PP~, create a neuron of a class
whosetrainingcounterPi = P. and with a vectorm
equalto the w of the originalneuron.

Trainingstops when the number of right classifica-
tionson the trainingset no longerimprovesappreciably.
For the calculationsreported here, training has been
stoppedwhen for three successiveepochesthe number
of right classificationson the training set is not larger
ha (I + Frog)timesthe numberof rightclassifications
of the previousepoch,whereO< Fw~C 1.

At the end of the last epoch,no neuronpruningand
creationis made. Trainingcountersare recalculatedby
reading the whole set of trainingpatternsand keeping
neurons frozen. At the same time, one calculates the. .
neuron contarmnationby wrong class trammgs,.f~~”t,

. .

and a neuronradius,Z&., as follows.
fcontis definedby:

fcmt=4hot (3)

where

Atot=Al +A2 +A3 + ... +A~ (4)

with

Ai = GiPilNi (5)

Gi and Ni being the global probabilityand the total
numberof trainingpatternsof class Ci, respectively,Pi
beingthe trainingcounterfor classCiof the neuron,and

Ax= sumoverall Ai exceptfik (6)

k indicatingthe class ck which labelsthe neuron.
R,,. is calculatedas the squarerootof themeansquare

(r.m.s.)of thedistancefromtheneuronof all the training
patternswhichhaveit as theclosestneuronandbelongto
its sameclass.

Theneuronparametersf...tandR..u areused,together
with Pbt, in the classificationprocess.

Chzssijicationof a patternvectors of unknownclassis
carriedthroughby assigningthe vectorto the classof its
closest neuron. An estimate of the classification
uncertainty is provided by the neuron contamination
fcont,introducedabove. The classificationmay also be
considereduncertain, if the neuron has too low a PtOt
(i.e., its training is statisticallypoor) or is too distant
from s. Then, the classificationcan be considered

unreliableif for the closestneuronone has:

fcont ‘fcmax (7)

D > Dm=

where f-, Pti. and D= are user-defined cutoff
parameters; D is the distance of s from the neuron
measuredin unitsof its Rne,.

In the following, there will be made reference to
classificationefficiency and purity. The classification
efficiency~ is definedas the fraction of events in the
originalsignal samplewhich are correctlyclassifiedas
signalevents.Theclassificationpurityu is definedas the
fractionof actual signaleventswhichare presentin the
sampleof eventsclassifiedas signal.

Distance metric can be chosen from a variety of
options. StraightforwardEuclidean metric is fast to
calculate,but it may be inadequateif pattern variables
range over widely different scales. A wiser choice is
providedby a Euclideanmetricweightedby the inverses
of the pooled-over-classesvariances of the single
variables.In otherwords,onegaugesthe inputvariables
in unitsof theirvariancesoverthe trainingset.Thatdoes
not cost a great loss in computingspeed.

Two importantconsequencesof keepingtrack of the
trainingcountfor each neuronare:

(1) thenumberof neuronsassignedto eachclassis no
longerrequiredto be proportionalto the globalprob-
abilityfor the class, as in standardLVQ. In the latter
the densityof neuronsof each class in pattern space
representsthe only ingredientto (statistically)control
classificationin overlap regions. In LVQTC, on the
otherhand,thisrole is largelytakenoverby the train-
ing counters.That can be exploitedby assigningrela-
tivelyfewneuronsto classeswhichareconcentratedin
smallregionsof thepatternspace,andmoreneuronsto
classeswhichare spreadoutoverlargeregions.In this
way, with a given total numberof neurons,one can
better representthe shapesof the class distributions;
and
(2) similarly,the numberof trainingpatternsfor each
class is no longer required to be proportionalto the
globalprobabilityfortheclass,as in standardLVQ.As
for neurons,one can more usefullyallocatethe total
numberof trainingpatternsto classesaccordingto the
effectivesizesof theirdistributionsin patternspace,so
as to have a moreuniformneurontraining,That may
also be expedientwhen dealingwithlimitedsamples
oftrainingpatternsforsome,mall, classes:all training
vectorscan be exploitedwithouthavingto leavepart
of them unused so as to satisfy the constraint of
proportionalityto classprobabilities.

In LVQTC a fuller use is made of the information
availableon the distributionof trainingpatterns,which
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is storedintotheneurontrainingcounters.Exploitingthis
information,neuronsare left more sparse in regionsof
small class overlapand concentratedin regionsof sub-
stantial class overlap.Trainingcounters,togetherwith
neuron “radius“ information,are also of help in esti-
mating the reliability of pattern classifications, as
discussedabove.

On a generalground,LVQ can be viewedas a three-
layeredneuralnetwork:(1) the first, input, layer has as
many neuronsas the pattern variables;(2) the second,
intermediatelayer, containsthe standardLVQ neurons;
and(3)thethird,output,layerhasasmanyneuronsas the
number of classes. The intermediate neurons are
governedby a winner-takes-alldynamicsand compete
for being correctedby the excitationsof inputneurons.
Each oneof themis comected to just oneoutputneuron
(accordingto its class label), whose excitationcan be
either O or 1. In LVQTC, the excitationof an output
neuron can be identifiedwith 1 —jC~t, where~CO~~is
the contaminationof the winning intermediateneuron
firinginto it, and thus it varieswith continuitybetween
O and 1. Also, the tiring can be inhibitedif the inter-
mediate neuron has not received enough training or if
the input pattern is too distant from it. An advantage
with respect to other neural net architecturesis that at
the end of trainingthe referencevectorsof intermediate
neuronscan be directly interpretedas “typical” class
patterns.

Overlapsbetweenclassdistributionscan be estimated
fromLVQTC.Let us considerthedistributionspi(s) and
P2(s) of classes Cl and C2.,respectively,normalized to
the corresponding global class probabilities G1and G2.
Letusdefinetheoverlapbetweenthetwodistributionsas

J J0(1,2)= 1– lpl(s)-pz(s)lds/l IP1(s)+P2(sMs (8)

so that the overlapof a classdistributionwith itselfis 1,
and the overlap of two non-overlappingclass distribu-
tions is O). Then 0(1,2) can be estimated from the
LVQTCneurontrainingcountersas

0(1,2)= 1– ~.lP@)Gl/Nl –P2(n)G2/N21/[G1+ G21

(9)

where the sumis extendedover all neurons,Pi(n) is the
trainingcounterof neuronn for classCi$Gi is the global
probabilityand Ni is the numberof trainingpatternsfor
class Ci.

The variousLVQTC trainingand classificationpara-
metersshouldbe variedto achieveoptimalclassification
of an independenttest set of class certifiedvectors.a,
anda. canbe increasedto improvespeedor decreasedto
refineconvergence(initialvaluesof about0.1 are typi-
cally used). DecreasingPP~will increasethe numberof
neurons and thus resolution in pattern space, while
increasingit will make neuron positionsmore reliable
statisticallyand consequentlywill improvegeneraliza-
tion. The total number of neuronscan be increasedto

betterrepresentdetailsof the shapesof theclassdistribu-
tions. However,the numberof neuronsshouldbe kept
much smaller than the number of training patterns, to
avoidthat neuronssimplyact as a look-uptable for the
training patterns, which would hamper generalization.
Also,a smallnumberof neuronsspeedsup classification.
The classificationcutoffparameters~Cw,Ptin and D-
should be chosen according to how much purity one
wishes to achieve in the classificationprocess at the
price of depriving classificationefficiency.Parameter
tuningcan be realizedby embeddingLVQTCin a minim-
ization programand choosinga suitablecost function
(e.g., the numberof misclassificationon the test set of
patterns).Each call fromthe minimizationprogramis to
be answeredby a full trainingand classificationLVQTC
run.LVQTCtrainingis typicallyfastenoughto allowfor
that.

4. AN APPLICATION TO HIGH
ENERGY PHYSICS

Highenergyelementaryparticlephysicsoffersa hostof
examplesof classificationproblemsexhibitinga substan-
tialoverlapamongclasses.A typicalproblemconsistsin
the extractionof a signal from a *uge bulk of events
stronglycontaminatedby background.The interaction
between two elementary particles colliding at high
energyusuallyleadsto the productionof a largenumber
of elementaryparticles,which can reach up to a few
hundreds.In a typical experiment,only a tiny fraction
of the producedevents(oftenhundredsof millions)are
relevant:they have to be sorted out online (i.e., at the
timeonehas to decideabouttheirrecording)by exploit-
ing characteristicfeaturesof the multiparticlefinalstate.
Thiskindof ‘needlein thehaystack”problemis solved
by a multistageprocess in which a series a filters are
employed:one first eliminatesthe most obviousback-
ground,and thenonegoeson tryingto eliminatetrickier
and trickierbackgrounds.Oneis rarelyableto achievea
100%puresignalandevenmorea 100%efficiencyin its
collection.One must rather make a tradeoff between
classificationpurity and efficiencyand try to increase
as much as possiblethe signal/backgroundratio at the
priceof a limitedlossfor thesignalcollectionefficiency.
Fromwhatis measurableonlineon the finalstateit is not
possibleto drawa clearlineseparatingsignalfromback-
ground:somebackgroundeventsare verycloseto signal
eventsandsometimesundistinguishablefromthemasfar
as the allowed measurementsare concerned. Neural
networkscanbe of considerablehelpin thisundertaking,
sincetheycan systematicallyexploitcorrelationsamong
particletracksand othermeasuredquantities.However,
they have to cope with the substantialoverlapbetween
signal and backgroundevents in the space of patterns
of the measured variables presented to them for
discrimination.

The example picked up here comes from an
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experimentat CERN aimed to the study of unstable
(“beauty”) particlesproducedin hadronicinteractions
(Baldanzaet al., 1995).Theparticlesdecaybeforereach-
ing the detectors.Thus,theirproductionis provedby the
presence,in additionto the primaryinteractionvertexto
which most of the produced particle trajectories
converge, of a secondary decay vertex to which the
trajectoriesof particlesgeneratedin the decayconverge.
The problemis made more complicatedby the fact that
secondaryvertices may also be due to the subsequent
interactionof particlesproducedin the eventwith parts
of theexperimentalapparatus.In orderto makethesignal
discriminationamenableto a neural networkapproach,
thelargebandwidthrawdatacollectedfromthedetectors
haveto be organizedand condensedin a limitednumber
of significantvariables,constitutingthe inputpatternto
be submittedto theneuralnetwork.Detailsaboutthatcan
be foundin Baldanzaet al. (1995).Here,it sufficesto say
that the input patterns are made of 14 variables,with
integer values ranging from O to 16. The training set
has been obtainedby certificationfroma lengthyoffline
reconstructionand analysisof the experimentalevents.
Three thousandtrainingpatternshavebeen used for the
signal and the same amount for the background.The
independenttest set, for which results are quoted,has
the samecompositionas the trainingset.

TheLVQTCtrainingconvergesinjust 1epoch(FCv~=
0.013),andleadsto N, = 133neuronsfor thesignalclass
and N~ = 40 neurons for the backgroundclass. The
metricadoptedis the Euclideanmetricweightedby the
inverses of the pooled-over-classesvariances of the
singlevariables.Trainingparametershavebeen initially
set to thevalues:a,= 0.2,a. = 0.1,F, = 0.9,Pm = 10.
The volumes in pattern space of the signal and back-
grounddistributions,V, and Vb respectively,are in the
ratio v~vb = 41.51 as estimatedfrom the correlation
matrices, whereas their maximumlinear sizes, L, and
Lbrespectively,are in the ratio L~Lb= 1.27.That pro-
videsa rationalefor whytrainingrequiresa muchhigher
numberofneuronsforthesignalthanforthebackground.

Acceptingevent classificationsfrom all the neurons,
oneobtainsonthetest samplesa classificationpurityu =
0.69, and a classificationefficiencyc = 0.76. By com-
parison,in standard,LVQ, assigning100neuronsto each
class,oneobtainsT = 0.72,and6= 0.66(convergenceis
achievedin two epoches).

In orderto improveonpurity,onecan acceptasproper
classificationsonly those given by “reliable” neurons
and discardthe other ones as unreliable.The parameter
we have used to estimatethe neuronrehabdlty is ~CO~(,. .

gaugingthe fractionof timestheneuronhasbeentrained
by patternsof a classdifferentfromitsown [seeeqn(3)].
In Figure1 it is shownhowpurityand efficiencychange
whenmovingthe uppercutoffonjCO.t,referredto in the
figureas “contaminationcutoff’ Purity increasessub-
stantiallyas the cutoff is broughtdown, reachingup to
valuesof m= 0.85. Of courseone has to pay a price in

termsof efficiency,which,however,iskeptat acceptable
levelsfor the applicationat hand.

Also shownin Figure 1 are the correspondingresults
when using a neuron reliability measure based on
distance. Specifically,denotingby DCthe distance of
the classifiedpatternfrom the closestneuronand by Dx
its distance from the closest neuron of class different
from that of the classifyingneuron,the ratio DJ(DC+
D,) is consideredand purityand efficiencyare reported
when varying the upper cutoff on this quantity. One
mightexpectthat purity would increasewhen reducing
the cutoff on D&(DC+ DJ. But in this application
exactly the oppositeoccurs.That is related to the fact
that the signal distribution is much wider than the
backgrounddistributionand many of the signalneurons
sparsely cover the vast regions with little background
contamination.Patternsfallingin theseregions,although
they could be reliably classifiedas signal, may easily
have a relatively large DA(DC + D,) and thus fall
underthe axe of the cutoff.

In Figure 2 purity is directly shown versus the
correspondingefficiencywhenthe cutoffsare varied,in
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order to better comparethe resultsobtainedwhen using
the neuron training counters and the neuron pattern
distance.

The presentpaper exclusivelydiscussesthe meritsof
the LVQTC modificationswithin LVQ. The interested
reader, though,may find a comparisonof the LVQTC
resultspresentedhere with those from MLP and Fisher
discriminationin Baldanzaet al. (1995)(theenrichment
factorp usedthereis relatedto the classificationpurityr
introducedhere by l/m = 1 + I/p). A comparisonin a
differenthigh energy physicsproblemamongLVQTC,
MLPandFisherdiscruminationcanbe foundin Mazzanti
and Odorico (1993). In both applicationsthe purity/
efficiency performances of the three classifiers are
qualitativelycomparable.

5. CONCLUSIONS

The additionof neurontrainingcountersto LVQ allows
for a viable handling of classificationproblems with
strongly overlapping class distributions in pattern
space. In fact, it becomespossibleto reject unreliable
classificationsand, thus, to select pattern sampleswith
a considerablyhigherdegreeof classpurity.In general,
that cannotbe achievedwhen trying to rely on criteria
basedon the neuronpatterndistance.As a consequence,
LVQTCcan be used in a way similarto MLPs,with the
MLPoutputreplacedby theneuroncontamination~COntas
the quantitygaugingclassificationreliability.Training
counterscan also be exploitedduring training,so as to
provide a dynamicallocationof neuronsto classesby
meansof neuronpruningand creation.
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