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Abstract

As opposed to traditional supervised learning,
multiple-instance learning concerns the problem
of classifying a bag of instances, given bags that
are labeled by a teacher as being overall positive
or negative. Current research mainly
concentrates on adapting traditional concept
learning to solve this problem. In this paper we
investigate the use of lazy learning and
Hausdorff distance to approach the multiple-
instance problem. We present two variants of the
K-nearest neighbor algorithm, called Bayesian-
KNN and Citation-KNN, solving the multiple-
instance problem. Experiments on the Drug
discovery benchmark data show that both
algorithms are competitive with the best ones
conceived in the concept learning framework.
Further work includes exploring of a
combination of lazy and eager multiple-instance
problem classifiers.

1.  Introduction

The multiple-instance problem or multiple-instance
learning is receiving growing attention in the machine
learning research field (Dietterich, Lathrop, & Lozano-
Pérez, 1997; Zucker & Ganascia, 1996; Auer, 1997; Blum
& Kalai, 1998; Maron, 1998; De Raedt, 1998; Ruffo,
2000). Most of the work in machine learning is focused
on supervised learning where each example is labeled by
a teacher. In multiple-instance learning, the teacher labels
examples that are sets (also called bags) of instances. The
teacher does not label whether an individual instance in a
bag is positive or negative. The learning algorithm needs
to generate a classifier that will classify unseen examples
(i.e. bags of instances) correctly.

Dietterich et al. (1994) encountered this problem in the
task of classifying aromatic molecules according to

whether or not they are "musky". Several steric (i.e.,
"molecular shape") configurations of the same molecule
can be found in nature, each with very different energy
properties. In this way it is possible to produce several
descriptions of the different configurations – instances –
of this molecule. These descriptions correspond to
measurements obtained in each of the different
configurations. To simplify, a molecule is said to be
musky if, in one of its configurations, it binds itself to a
particular receptor. The problem of learning the concept
"musky molecule" is one of the multiple-instance
problems. Maron and Ratan (1998) considered other
possible applications: one is to learn a simple description
of a person from a series of images that are labeled
positive if the person is somewhere in the image and
negative otherwise. There are also promising data mining
applications for this setting (Ruffo, 2000).

If we divide learning algorithms into lazy learning and
eager learning (Aha, 1997), it appears that up to now most
of the work in multiple-instance learning belongs to eager
learning, whose goal is to construct concept description
by generalizing training data. Dietterich et al. (1997)
assumed that the classifier could be represented as an
axis-parallel rectangle, and developed several algorithms
to learn such a rectangle in the "musk" drug activity
prediction application. Following Dietterich's original
work, Long & Tan (1996) showed from theoretical aspect
that it is possible to PAC-learn an axis-parallel concept
from multiple-instance examples. Auer (1997) also
focused on theoretical research and presented the
MULTINST algorithm to efficiently learn axis-parallel
concept. Maron & Lozano-Pérez (1998) described a new
general framework called Diverse Density based on the
assumption that the desired concept —the point of
intersection of the positive bags minus the union of the
negative bags— can be acquired by maximizing diverse
density. The multiple-instance representation language
has also been considered as an intermediary
representation between attribute vector and relational



description used in the inductive logic programming (ILP)
(Zucker & Ganascia, 1996; De Raedt, 1998; Blockeel &
De Raedt, 1998; Zucker & Ganascia, 1998; Sebag &
Rouveirol, 1998).

Lazy learning is the framework in which training
examples are simply stored for future use rather than used
to construct general, explicit description of the target
function. Typical types of lazy learning are instance-
based, case-based, memory-based, exemplar-based, and
experience-based learning (Aha, 1997). Dietterich et al.
(1994) were the first ones to apply the K-nearest neighbor
(KNN) algorithm (the most widely used method in lazy
learning (Dasarathy, 1991)) to attack the drug discovery
problem. However, their purpose was to show that nearest
neighbor methods with Euclidean distance and tangent
distance were worse than neural network with dynamic
reposing in the feature manifold problem.

The motivation of the present study is to investigate the
issues raised by introducing lazy learning approaches
such as KNN to deal with the multiple-instance problem
and evaluate the interest of using lazy learning. In fact,
using Hausdorff distance (Edgar, 1995) does allow KNN
algorithms to be adapted to the multiple-instance problem.
Our experiments show that the two general-purpose
algorithms we devised – Bayesian-KNN and Citation-KNN
– did reach the best results obtained so far by ad-hoc
algorithms on the drug discovery task. These good results
obtained may indicate that the multiple-instance problem
(at least in the drug discovery problem) is well fitted to
local approaches (Bottou & Vapnik, 1992), which yield
highly adaptive behavior not usually found in concept
learning. It also suggests that combining lazy learning
with concept learning classifiers could possibly lead to
better prediction accuracy than any other existing method.

Section 2 defines the semantics of nearest neighbor
learning in the multiple-instance learning context and
introduces a modified version of Hausdorff distance.
Section 3 presents the basis for adapting KNN algorithms
to the multiple-instance problem. Section 4 details
experimental evaluation and comparison with existing
learning algorithms. The last section is dedicated to
discussion and future work.

2.  Using Hausdorff Distance in the Lazy
Learning Setting

Different approaches have been adopted to classify an
unseen bag of instances in the context of multiple-
instance problem. The first approach consists in
classifying as positive a bag if at least one of its instances
belongs to the learned concept and negative otherwise
(Dietterich et al., 1997). Another approach implemented
in RELIC consists in making the different instances of a
bag vote for the class of the bag (Ruffo, 2000). Finally, if
a bag is considered as a particular kind of relational data,
classification techniques in classical structural learning

(Bergadano, Giordana, & Saitta, 1991) or inductive logic
programming (De Raedt, 1998) may be used.

In lazy learning, the class of a test example is computed
by combining the classes of training examples. In KNN,
the class values of the K nearest neighbors of the
considered test example are combined. This algorithm
assumes that all examples correspond to points in an n-
dimensional space, and the nearest neighbors of an
example are defined in terms of standard Euclidean
distance.

However, in the context of the multiple-instance problem,
an example is a bag that contains multiple instances and
therefore does not correspond to a single point. In order to
define a distance between bags we need to characterize
how the distance between two sets of instances could be
measured. The Hausdorff  distance provides such a metric
function between subsets of a metric space. By definition,
two sets A and B are within Hausdorff distance d of each
other iff every point of A is within distance d of at least
one point of B, and every point of B is within distance d
of at least one point of A (Edgar, 1995).

Formally speaking, given two sets of points A={a1,…,am}
and B={b1,…,bn}, the Hausdorff distance is defined as:
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For example, let A={ 1,2,3} and B={ 4,5,6} , and the ||a-b||
is defined as |a-b|. Thus h(A,B)=max{ |1-4|, |2-4|, |3-4|} =3,
and h(B,A)=max{ |4-3|, |5-3|, |6-3|} =3. Then the H(A,B) =
max{ h(A,B), h(B,A)} = 3.

The Hausdorff distance is very sensitive to even a single
outlying point of A or B. For example, consider
B={ 4,5,20} , where the 20 is some large distance away
from every point of A. In this case, H(A,B)= |20-3|=17,
which means that the distance is solely determined by this
outlying point.

To increase the robustness of this distance with respect to
noise, we shall thus consider a modification of the
Hausdorff distance. This modified measure is given by
taking the k-th ranked distance rather than the maximum,
or the largest ranked one,
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where kth denotes the k-th ranked value. When k=m, kth
reaches its maximum value, and thus the distance is the
same as h(A,B) defined above. We call hm(.,.)=h(.,.) the
maximal Hausdorff distance. When k=1, the minimal one
of the m individual point distances decides the value of
the overall distance. Since
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thus in this case, H(A,B)=h1(A,B)=h1(B,A). We call this
measure the minimal Hausdorff distance. We suggest in
this paper using this modified Hausdorff distance as a
basis for adapting KNN to the multiple-instance problem.
For the sake of clarity, only the minimal Hausdorff
distance will be used in the next section. Nevertheless, the
experiment section presents results that are based on both
the maximal and the minimal Hausdorff distance.

3.  Adapting K-Nearest Neighbor to the Multiple-
Instance Problem

3.1  A Contradiction: Minor Being Winner

Based on the minimal Hausdorff distance between bags,
we applied the conventional KNN method to the multiple-
instance problem in the Musk1 data set in the drug
discovery application (from the UCI repository). There
are 47 positive bags and 45 negative in the Musk1 data set
(see section 4.1 for more detail). According to the KNN
method, the class value of an unseen bag is the most
common class of its nearest training bags. Thus, assuming
the classes of its three (K=3) nearest neighbors are
{P,P,N} (P stands for positive and N for negative), then
its class will be predicted to be P. However, this
prediction strategy appeared not to be optimal. In fact,
using the Hausdorff distance was not sufficient to adapt
KNN to the multiple-instance problem.

Table 1. Class distribution of the K nearest neighbors of the
positive/negative bags on the Musk1 data set. The third/fourth
column means the number of positive/negative bags whose K

nearest neighbors have the class set in the second column.

K
K nearest
neighbors

number of
positive

number of
negative

sum

{P} 41 9 50
1

{N} 6 36 42
{P,P} 41 3 44
{P,N} 5 15 202
{N,N} 1 27 28
{P,P,P} 40 2 42
{P,P,N} 5 13 18
{P,N,N} 2 9 11

3

{N,N,N} 0 21 21

Table 1 shows the class distribution of the nearest
neighbors of negative or positive bags. The table also
shows a seemly contradictory case. When K=3, there are
18 bags whose K nearest neighbors have the classes
{P,P,N}. Among these 18 bags, thirteen are negative and
five are positive. This observation indicates that for an
unseen bag whose three nearest neighbors have the
classes {P,P,N}, if it is predicted as negative rather than
positive, the overall prediction accuracy will be much
higher.

In traditional supervised learning, the contradiction will
not happen. The contradiction in multiple-instance
learning may be explained by the fact that positive bags
contain "true positive instances" as well as "false positive
instances", and the latter may attract negative bags. A
simple illustration may clarify this particular case (see
Figure 1). Given {P1, P2, N1} as three training bags, N2

will be classified as positive. Given {N1, N2, P1} as three
training bags, P2 will be classified as negative.

P1

P2

Feature 2

Feature 1 N1 N2
false positive

instances

Figure 1. The instances of each negative bag are represented as
aligned round dots, and the instances of each positive bag as
aligned square blocks.

There are several ways to avoid this classification
problem. One way is to modify the definition of bag
distance so as to take the problem into account (i.e., using
a weighted Hausdorff distance). Table 1 suggests that in a
multiple-instance setting negative bags should be weighed
more than positive ones. Table 8 (in Appendix) gives a
more detailed analysis of the class distribution of K
nearest neighbors on the Musk1 and Musk2 data sets. It
shows that the contradiction also occurs for values of K
greater than three. Another way to cope with the
classification problem mentioned above is to consider
new methods about how to combine the nearest bags to
derive a better result. In this paper we will take the second
approach for the purpose of evaluating the benefits of
using straightforward adaptation of KNN methods to the
multiple-instance problem.

3.2  A Bayesian Approach

One way to overcome the above classification problem is
to use a Bayesian approach. Let us first examine the
typical majority vote method as introduced in the previous
section and then introduce a Bayesian version of it. For an
unseen bag b, assume its K nearest bags are {b1,b2,…,bk},
and their classes are respectively {c1,c2,…,ck}, where ci is
either positive or negative. If we use the majority vote to
determine the class of b, then the result will be:

∑
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where δ(a,b)=1 if a=b, and δ(a,b)=0 otherwise.



The aforementioned contradiction tells us that the
majority vote approach does not always provide the best
prediction result. Bayesian method provides a
probabili stic approach that calculates explicit probabiliti es
for hypotheses. For each hypothesis c that the class of b
can take, the posterior probabilit y of c is p(c|{ c1,c2, …,
ck} ). We are interested in finding the most probable
hypothesis c∈{ positive, negative} given the observed data
{ c1,c2,…,ck} . According to Bayes theorem, the maximally
probable hypothesis is:
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Since ci is either positive or negative, the maximal
number of combination that { c1,c2,…,ck} can take is k+1,
the computational cost of this measure  is therefore not
expensive. This algorithm is called Bayesian-KNN, and its
performances are presented in section 4.

3.3  A Citation Approach

Another way to adapt KNN to the multiple-instance
problem was inspired to us by the notion of citation from
library and information science (Garfield, 1979). In this
domain, finding related documents (especially research
papers) is an important research topic. One well-known
method is based on references and citers. If a research
paper does cite another previously published paper (as
known as its reference), the paper is said to be related to
the reference. Similarly, if a paper is cited by a
subsequent article (as known as its citer), the paper is also
said to be related to its citer. Therefore, both citers and
references are considered to be candidate documents
related to a given paper.

What suggests the notion of citation is to take not only
into account the neighbors of a bag b (according to the
Hausdorff distance) but also the bags that count b as a
neighbor. We could use either references or citers of an
unseen example to predict the class of the example rather
than only use the references. It is easy to define the R-
nearest references of an example b as the R-nearest
neighbors of b. However, it is a littl e more complex to
define the citers of an example. Let n be the number of all
example bags BS={b1, …, bn}, then for an example b∈BS,
all other examples BS\b={bi | bi∈BS, bi≠b} can be ranked
according to the similarity to the example b. For b'∈BS\b,
let its rank number be Rank(b',b). For the sake of
completeness, let us set Rank(b,b) to be ∞. Now, for any
example b in BS, we define the C-nearest citers of b as
Citers(b, C)={ bi|Rank(bi,b)≤C, bi∈BS}. (It should be noted
that we could also define C-nearest citers according to
distance rather than rank.)

For example, assuming that there are only 6 bags of
instances { b1,b2,b3,b4,b5,b6} in a data set. Their nearest
neighbors are shown in Table 2. Let both R and C be 2,
then for the bag b1, its R-nearest references are { b3,b2} ,
and its C-nearest citers are { b2,b3,b5} .

Table 2. The nearest neighbors of 6 bags { b1,b2,b3,b4,b5,b6} . N
means the nearest rank number.

N=1 N=2 N=3 N=4 N=5
b1 b3 b2 b5 b4 b6

b2 b1 b4 b5 b3 b6

b3 b5 b1 b2 b6 b4

b4 b6 b2 b1 b3 b5

b5 b1 b2 b3 b6 b4

b6 b4 b3 b1 b2 b5

Let us now concentrate on how to combine the R-nearest
references and the C-nearest citers of an unseen bag b to
derive its class. Assume that for the R-nearest references,
the numbers of positive and negative bags are Rp and Rn

respectively; and for the C-nearest citers, the numbers of
positive and negative bags are Cp and Cn respectively (see
Table 3).

Table 3. Distribution of positive and negative bags in R-nearest
references and C-nearest citers of an unseen bag.

positive bags negative bags

R-nearest
references Rp Rn R

C-nearest
citers Cp Cn C

p=Rp+Cp n=Rn+Cn

Let p=Rp+Cp , and n=Rn+Cn. We called Citation-KNN the
KNN algorithm in which p and n are computed by using
the Hausdorff distance and classification is defined as
follows: if p>n, then the class of the bag b is predicted as
positive, otherwise negative. It should be noted that when
a tie happens, the class of b is set to be negative (see
section 3.1 for detailed reasons). The performances of
Citation-KNN are presented in the following section.

4.  Experimental Space Evaluation

4.1  The Musk Data Sets

The two learning algorithms are tested on the two data
sets Musk1  and Musk2 (from the UCI repository) that
share some molecules. The main difference between the
two data sets is that Musk2 contains molecules that have
more possible conformations than Musk1 – Musk2 is
about 4.5MB large. Some characteristics of the two data



sets are shown in Table 4. Each instance (conformation)
has 166 numerical attributes.

Table 4. Some characteristics of the two Musk data sets.

Data set Musk1 Musk2

# of bags 92 102

# of positive bags 47 39

# of negative bags 45 63

average # of instances per bag 5.2 64.7

average # of instances per positive bag 4.4 26.1

average # of instances per negative bag 6.0 88.6

4.2  Experimental Method

We ran Bayesian-KNN and Citation-KNN on Musk1 and
Musk2 for different values of K or R and the two
Hausdorff distance methods: minimal Hausdorff distance
(briefly called minHD) and maximal Hausdorff distance
(briefly called maxHD). Since each instance is a point in
166-dimensional real-valued Euclidean space, the
distance between two instances is calculated in Euclidean
distance.

We report experimental results using the leave-one-out
test to predict accuracy rather than using the 10-fold or
20-fold cross validation. One reason is that to date the
best prediction accuracy acquired by "iterated-discrim
APR" (Dietterich et al., 1997) was tested implicitly using
the leave-one-out. Another reason is that there is no
variation for this test method although usually the
difference between the leave-one-out and the 10-fold or
20-fold is not significant.

4.3  Experimental Results

For Bayesian-KNN algorithm, the experimental result is
shown in Table 5 for different values of K and the two
kinds of Hausdorff distance. With the Musk1 data set, the
minimal Hausdorff distance method acquired the best
prediction accuracy 90.2%. With the Musk2 data set, the
maximal Hausdorff distance method performs the best
(85.3%), but  when K>2 it is worse than the minimal
method. On the whole, when K=2 the results are the best.

Table 5. Bayesian-KNN prediction accuracy in % for different K
and the two kinds of Hausdorff distance: minHD and maxHD.

data set K=1 K=2 K=3 K=4 K=5

minHD 83.7 90.2 90.2 85.9 89.1
 Musk1

maxHD 82.6 82.6 81.5 78.3 78.3

minHD 74.5 82.4 81.4 82.4 78.4
 Musk2

maxHD 75.5 85.3 66.7 79.4 65.7

Table 6. Citation-KNN prediction accuracy in % on different R
and the two kinds of Hausdorff distance: minHD and maxHD.

data set R=0 R=1 R=2 R=3 R=4

minHD 84.8 87.0 92.4 92.4 83.7
Musk1

maxHD 78.3 84.8 84.8 84.8 83.7

minHD 83.3 78.4 86.3 83.3 83.3
Musk2

maxHD 84.3 80.4 85.3 82.4 79.4

For Citation-KNN algorithm, the result is shown in Table
6 for different values of R and the two kinds of Hausdorff
distance. The value of C was empirically set to be R+2 so
as to reflect that citers seem to be more important than
references. Generally, the minimal Hausdorff distance
method performs better than the maximal one, and when
R=2 the results are the best.

Results on the Musk1 and Musk2 data sets suggests that
while the two methods appear to work well when there
are not too many instances per bag (as in Musk1), they
seem insufficient with many instances per bag (as in
Musk2). One possible explanation is that positive bags
contain "false positive instances", and negative bags in
Musk2 contain much more instances than Musk1,
therefore the "false positive instances" in Musk2 are
easier to be trapped by negative bags. One possible
solution might be to remove those false positive instances
from the positive bags and to recalculate the Hausdorff
distance between those bags.

4.4  Comparison with Existing Algorithms

Table 7. Comparison of the prediction accuracy obtained with
Citation-KNN and Bayesian-KNN (only with minimal Hausdorff
distance) with those of other systems on the Musk data sets.

Algorithms Musk1
%correct

Musk2
%correct

iterated-discrim APR 92.4 89.2

Citation-KNN 92.4 86.3

Bayesian-KNN 90.2 82.4

Diverse Density 88.9 82.5

RELIC 83.7 87.3

MULTINST 76.7 84.0

TILDE N/A 79.4

Comparison with previous algorithms includes the ones
specially designed for attacking the multiple-instance
problem and two ILP algorithms RELIC and TILDE (see
Table 7). "iterated-discrim APR" is the best one of the



four APR algorithms reported in Dietterich et al. (1997).
MULTINST algorithm is taken from Auer (1997), and
Diverse Density algorithm from Maron & Lozano-Pérez
(1998). TILDE is a top-down induction system for learning
first order logical decision tree (Blockeel & De Raedt,
1998). The Musk data set being totall y numerical is not a
typical ILP task, which explains the result of TILDE.
RELIC is an efficient top-down induction system that
extends C4.5 so as to learn multiple-instance decision
trees (Ruffo, 2000).

4.5  Discussion

Citation-KNN did quite well on both data sets. On average
it is only worse than the best one "iterated-discrim APR".
However, the high accuracy of the latter on Musk2 is
partly due to the fact that some of its parameters were set
based on the experiments on the Musk1 data set. In fact,
the APR algorithm was designed with the drug discovery
problem in mind, it is unclear whether it will generalize
well to other problems or not. In contrast, Citation-KNN
and Bayesian-KNN algorithms are general-purpose and
effective.

Although the two adaptation algorithms of KNN to the
multiple-instance problem performed remarkably well ,
the basic reasons why they acquired such high accuracy
on the Musk data sets are unclear. It is also not clear
whether they are fit for other multiple-instance learning
applications such as stock prediction (not available
publicly) and image retrieval (Maron, 1998). It should
finally be noted that, as opposed to our algorithms, both
ILP systems RELIC and TILDE produce comprehensible
results. Moreover, they are also directly applicable on
symbolic data.

5.  Conclusion and Future Work

The motivation of our work is to investigate the devising
of lazy learning algorithms to attack the multiple-instance
problem. Results of the experimental comparison show
that using a modified version of Hausdorff distance for
adapting the KNN algorithm to the multiple-instance
problem led to high performance in the drug discovery
task, competitive with that of algorithms developed within
the concept learning framework. Two kinds of adaptation
of KNN were proposed in this paper, a Bayesian one
(Bayesian-KNN) and another based on the notion of
citation (Citation-KNN). Experimental results on the
Musk data sets show that the multiple-instance problem
(at least in the drug discovery task) may be solved by both
concept learning and lazy learning. It is likely that
combining both approaches would lead to an increase in
prediction accuracy.

The two algorithms presented in this paper did not
consider the curse of dimensionali ty, where many features
are irrelevant to the performance task (the nearest
neighbor algorithm is highly sensitive to this situation).

Both Dietterich et al. (1997) and Maron (1998) stated that
the number of relevant features are much fewer than 166
– the number of all features. If a feature selection function
was added as a preprocessing of the algorithms, it is also
likely that better results would be obtained. Another
promising direction is to consider other definitions of
distance between bags. We are currently investigating
how to recast our approach in the context of support
vector machine (Vapnik, 1995). Support vectors could be
used to measure the distance between two bags as the
distance between support vectors from two bags. We are
also investigating multicriteria analysis methods (Perny,
1998) to weigh the instances role in the classification
decision. In the Citation-KNN algorithm, the importance
of the relative numbers of citers and references needs also
to be further explored.
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Appendix

Table 8. Class distribution of K nearest neighbors of the positive/negative bags on the Musk1 (left) and Musk2 (right) data sets.

K nearest neighbors # of positive # of negative
{ P} 41 9

1
{ N} 6 36
{ P,P} 41 3
{ P,N} 5 152
{ N,N} 1 27
{ P,P,P} 40 2
{ P,P,N} 5 13
{ P,N,N} 2 9

3

{ N,N,N} 0 21
{ P,P,P,P} 35 2
{ P,P,P,N} 10 9
{ P,P,N,N} 1 12
{ P,N,N,N} 1 8

4

{ N,N,N,N} 0 14
{ P,P,P,P,P} 25 1
{ P,P,P,P,N} 18 6
{ P,P,P,N,N} 3 11
{ P,P,N,N,N} 1 9
{ P,N,N,N,N} 0 10

5

{ N,N,N,N,N} 0 8

K nearest neighbors # of positive # of negative
{ P} 32 19

1
{ N} 7 44
{ P,P} 28 7
{ P,N} 8 252
{ N,N} 3 31
{ P,P,P} 23 3
{ P,P,N} 13 19
{ P,N,N} 2 19

3

{ N,N,N} 1 22
{ P,P,P,P} 18 2
{ P,P,P,N} 18 13
{ P,P,N,N} 1 13
{ P,N,N,N} 1 21

4

{ N,N,N,N} 1 14
{ P,P,P,P,P} 15 1
{ P,P,P,P,N} 14 11
{ P,P,P,N,N} 8 10
{ P,P,N,N,N} 1 18
{ P,N,N,N,N} 1 12

5

{ N,N,N,N,N} 0 11


