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Abstract

As oppased to traditional supervised leaning,
multi ple-instance learning concerns the problem
of classfying a bag of instances, given bags that
are labeled by ateader as being overal positive
or negative. Current reseach mainly
concentrates on adapting traditional concept
leaning to solve this problem. In this paper we
investigate the use of lazy leaning and
Hausdorff distance to approach the multiple-
instance problem. We present two variants of the
K-neaest neighbor algorithm, cdled Bayesian-
KNN and Citation-KNN, solving the multiple-
instance problem. Experiments on the Drug
discovery benchmark data show that baoth
algorithms are cmpetitive with the best ones
conceived in the cncept leaning framework.
Further work includes exploring of a
combination of lazy and eager multiple-instance
problem classifiers.

1. Introduction

The multiple-instance problem or multiple-instance
learning is recaéving gowing attention in the madine
leaning reseach field (Dietterich, Lathrop, & Lozano-
Pérez, 1997; Zucker & Ganascia, 1996 Auer, 1997 Blum
& Kalai, 1998 Maron, 1998, De Raglt, 1998 Ruffo,
2000). Most of the work in macine leaning is focused
on supervised learning where ead example is labeled by
ateader. In multiple-instance leaning, the teacher labels
examples that are sets (also cdled bags) of instances. The
teater does not label whether an individual instancein a
bag is positive or negative. The learning agorithm needs
to generate a dassifier that will classify unseen examples
(i.e. bags of instances) corredly.

Dietterich et al. (1994 encountered this problem in the
task of classfying aromatic molecules acording to

whether or not they are "musky". Several steric (i.e,
"moleaular shape") configurations of the same molecule
can be found in nature, ead with very different energy
properties. In this way it is possble to produce several
descriptions of the different configurations — instances —
of this molecule. These descriptions correspond to
measurements obtained in ead of the different
configurations. To simplify, a molecule is sid to be
musky if, in one of its configurations, it binds itself to a
particular receptor. The problem of leaning the concept
"musky moleaule” is one of the multiple-instance
problems. Maron and Ratan (1998 considered ather
possble gplicaions: oneis to lean a simple description
of a person from a series of images that are labeled
positive if the person is smewhere in the image and
negative otherwise. There ae dso promising data mining
applicaionsfor this stting (Ruffo, 2000.

If we divide leaning algorithms into lazy leaning and
eayer leaning (Aha, 1997, it appeas that up to now most
of the work in multiple-instance leaning belongs to eager
leaning, whose goal is to construct concept description
by generalizing training data. Dietterich et al. (1997)
assumed that the dasdfier could be represented as an
axis-parallel redangle, and developed several agorithms
to lean such a redangle in the "musk" drug adivity
prediction application. Following Dietterich's original
work, Long & Tan (1996) showed from theoreticd asped
that it is possble to PAC-lean an axis-parallel concept
from multiple-instance examples. Auer (1997 aso
focused on theoreticd reseach and presented the
MULTINST algorithm to efficiently lean axis-parallel
concept. Maron & Lozano-Pérez (1998) described a new
general framework cdled Diverse Density based on the
assumption that the desired concept —the point of
intersedion of the pasitive bags minus the union of the
negative bags— can be aquired by maximizing diverse
density. The multiple-instance representation language
has aso been considered as an intermediary
representation between attribute vedor and relationa



description used in the inductive logic programming (ILP)
(Zucker & Ganascia, 1996 De Radlt, 1998 Blocked &
De Raalt, 1998 Zucker & Ganascia, 1998 Sebag &
Rouveirol, 1998).

Lazy leaning is the framework in which training
examples are simply stored for future use rather than used
to construct general, explicit description of the target
function. Typicd types of lazy leaning are instance-
based, case-based, memory-based, exemplar-based, and
experience-based leaning (Aha, 1997). Dietterich et al.
(1994) were the first ones to apply the K-nearest neighbor
(KNN) agorithm (the most widely used method in lazy
leaning (Dasarathy, 1991)) to attadk the drug discovery
problem. However, their purpose was to show that nearest
neighbor methods with Euclidean distance and tangent
distance were worse than neural network with dynamic
reposing in the feaure manifold problem.

The motivation of the present study is to investigate the
issues raised by introducing lazy leaning approaches
such as KNN to ded with the multi ple-instance problem
and evauate the interest of using lazy leaning. In fact,
using Hausdorff distance (Edgar, 1995) does allow KNN
algorithms to be alapted to the multiple-instance problem.
Our experiments show that the two genera-purpose
algorithms we devised —Bayesian-KNN and Citation-KNN
— dd read the best results obtained so far by ad-hoc
algorithms on the drug discovery task. These good results
obtained may indicate that the multi ple-instance problem
(at least in the drug discovery problem) is well fitted to
local approaches (Bottou & Vapnik, 1992, which yield
highly adaptive behavior not usually found in concept
leaning. It also suggests that combining lazy leaning
with concept leaning classifiers could possbly lead to
better prediction acarracy than any other existing method.

Sedion 2 defines the semantics of neaest neighbor
leaning in the multiple-instance leaning context and
introduces a modified version of Hausdorff distance
Sedion 3 presents the basis for adapting KNN algorithms
to the multiple-instance problem. Section 4 details
experimental evaluation and comparison with existing
leaning agorithms. The last section is dedicaed to
discussion and future work.

2. Using Hausdorff
L earning Setting

Digance in the Lazy

Different approaches have been adoped to classfy an
unseen bag of instances in the mntext of multiple-
instance problem. The first approach consists in
clasdfying as positive abag if at least one of its instances
belongs to the leaned concept and negative otherwise
(Dietterich et a., 1997). Another approach implemented
in RELIC consists in making the different instances of a
bag vote for the dassof the bag (Ruffo, 2000. Finaly, if
a bag is considered as a particular kind of relational data,
clasdficdion techniques in classicd structural leaning

(Bergadano, Giordana, & Saitta, 1991) or inductive logic
programming (De Raedt, 1998 may be used.

In lazy leaning, the dassof a test example is computed
by combining the dasses of training examples. In KNN,
the dass values of the K neaest neighbors of the
considered test example ae cmbined. This algorithm
assumes that all examples correspond to pantsin an n
dimensional space and the neaest neighbors of an
example ae defined in terms of standard Euclidean
distance

However, in the mntext of the multi ple-instance problem,
an example is a bag that contains multiple instances and
therefore does not correspond to asinge point. In order to
define adistance between bags we neel to charaderize
how the distance between two sets of instances could be
measured. The Hausdorff distance provides such a metric
function between subsets of a metric space By definition,
two sets A and B are within Hausdorff distance d of eat
other iff every point of A is within distance d of at least
one point of B, and every point of B is within distance d
of at least one point of A (Edgar, 1995).

Formally spe&king, given two sets of points A={ay,....an}
and B={b,...,b,}, the Hausdorff distanceis defined as:

H (A, B) = maxfh(A B),h(B, A)}

where
h(A, B) = maxminja—bj|.
alJA bOB
For example, let A={1,2,3} and B={4,5,6}, and the |ja-b||
is defined as [a-b|. Thus h(A,B)=max{ |1-4, |2-4], [3-4]} =3,
and h(B,A)=max{ |4-3|, |5-3|, |6-3|} =3. Then the H(A,B) =
max{ h(A,B), h(B,A)} = 3.

The Hausdorff distance is very sensitive to even a single
outlying point of A or B. For example, consider
B={4,5,20}, where the 20 is ome large distance away
from every point of A. In this case, H(A,B)=|20-3|=17,
which means that the distanceis lely determined by this
outlying point.

To increase the robustness of this distance with resped to
noise, we shal thus consider a modificaion of the
Hausdorff distance This modified measure is given by
taking the k-th ranked distance rather than the maximum,
or the largest ranked one,
h.(A B) = kthmin|a-b|
aJA bOB

where kth denotes the k-th ranked value. When k=m, kth
reades its maximum vaue, and thus the distance is the
same & h(A,B) defined above. We cdl hy(.,)=h(.,.) the
maximal Hausdorff distance When k=1, the minimal one
of the m individual point distances deddes the value of
the overall distance Since

h(A B) =minmirja-b| = minmirfa-b| =h(B,A),

bOB alA



thus in this case, H(A,B)=h;(A,B)=h.(B,A). We call this
mesasure the minimal Hausdorff distance We suggest in
this paper using this modified Hausdorff distance as a
basis for adapting KNN to the multiple-instance problem.
For the sake of clarity, only the minima Hausdorff
distance will be used in the next section. Nevertheless, the
experiment section presents results that are based on both
the maximal and the minimal Hausdorff distance.

3. Adapting K-Nearest Neighbor to the Multiple-
I nstance Problem

3.1 A Contradiction: Minor Being Winner

Based on the minimal Hausdorff distance between bags,
we applied the conventional KNN method to the multiple-
instance problem in the Muskl data set in the drug
discovery application (from the UCI repository). There
are 47 positive bags and 45 negative in the Musk1 data set
(see section 4.1 for more detail). According to the KNN
method, the class value of an unseen bag is the most
common class of its nearest training bags. Thus, assuming
the classes of its three (k=3) nearest neighbors are
{P,P,N} (P stands for positive and N for negative), then
its class will be predicted to be P. However, this
prediction strategy appeared not to be optimal. In fact,
using the Hausdorff distance was not sufficient to adapt
KNN to the multiple-instance problem.

Table 1. Class distribution of the K nearest neighbors of the
positive/negative bags on the Muskl data set. The third/fourth
column means the number of positive/negative bags whose k
nearest neighbors have the class set in the second column.

K K nearest number of number of
neighbors positive negative
G 41 9 50
{N} 6 36 42
{P,P} 41 3 44
2 {P,N} 5 15 20
{N,N} 1 27 28
{P,P,P} 40 2 42
3 |{PPN} 5 13 18
{P,N,N} 2 9 11
{N,N,N} 0 21 21

Table 1 shows the class distribution of the nearest
neighbors of negative or positive bags. The table aso
shows a seemly contradictory case. When k=3, there are
18 bags whose K nearest neighbors have the classes
{P,P,N}. Among these 18 bags, thirteen are negative and
five are pogtive. This observation indicates that for an
unseen bag whose three nearest neighbors have the
classes { P,P,N}, if it is predicted as negative rather than
positive, the overall prediction accuracy will be much
higher.

In traditional supervised learning, the contradiction will
not happen. The contradiction in multiple-instance
learning may be explained by the fact that positive bags
contain "true positive instances' as well as "false positive
instances’, and the latter may attract negative bags. A
simple illustration may clarify this particular case (see
Figure 1). Given {P;, P,, N4} as three training bags, N,
will be classified as positive. Given {N;, N, P;} as three
training bags, P, will be classified as negative.
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Figure 1. The instances of each negative bag are represented as
aligned round dots, and the instances of each positive bag as
aligned square blocks.

There are several ways to avoid this classification
problem. One way is to modify the definition of bag
distance so as to take the problem into account (i.e., using
a weighted Hausdorff distance). Table 1 suggests that in a
multiple-instance setting negative bags should be weighed
more than positive ones. Table 8 (in Appendix) gives a
more detailed anaysis of the class distribution of K
nearest neighbors on the Muskl and Musk2 data sets. It
shows that the contradiction also occurs for values of K
greater than three. Another way to cope with the
classification problem mentioned above is to consider
new methods about how to combine the nearest bags to
derive a better result. In this paper we will take the second
approach for the purpose of evaluating the benefits of
using straightforward adaptation of KNN methods to the
multiple-instance problem.

3.2 A Bayesian Approach

One way to overcome the above classification problem is
to use a Bayesian approach. Let us first examine the
typical majority vote method as introduced in the previous
section and then introduce a Bayesian version of it. For an
unseen bag b, assume its K nearest bags are {b,b,,...,.b},
and their classes are respectively {c,C,,...,C}, Where ¢ is
either positive or negative. If we use the mgjority vote to
determine the class of b, then the result will be:

k
arg max o(c,c;)

cl{ positive ,negative} =

where 8(a,b)=1 if a=b, and d(a,b)=0 otherwise.



The dorementioned contradiction tells us that the
majority vote gproach does not always provide the best
prediction result. Bayesian method povides a
probabili stic gpproadch that cdculates explicit probabiliti es
for hypotheses. For eat hypothesis c that the dass of b
can take, the posterior probability of c is p(cl{c..cy, ...
ct). We ae interested in finding the most probable
hypothesis cl{ positive, negative} given the observed data
{c1,Ca,..,C} - According to Bayes theorem, the maximally
probable hypothesisis:

argmax p(c|{c,,c,,...,C.})

p({c,;C,,--5C} | C) p(c)
p({c.,CyiesC )
=argmax p({c,,c,,....c,} |c) p(c)

C

= argmax
Cc

Since ¢ is ether postive or negative, the maximal
number of combination that {c;,c,,...,c can take is k+1,
the computational cost of this measure is therefore not
expensive. This algorithm is cdled Bayesian-kNN, and its
performances are presented in sedion 4.

3.3 A Citation Approach

Another way to adapt KNN to the multiple-instance
problem was inspired to us by the notion of citation from
library and information science (Garfield, 1979. In this
domain, finding related documents (espedally reseach
papers) is an important reseach topic. One well-known
method is based on references and citers. If a reseach
paper does cite another previously published paper (as
known as its reference), the paper is sid to be related to
the reference Similarly, if a paper is cited by a
subsequent article (as known asits citer), the paper is also
said to be related to its citer. Therefore, both citers and
references are mnsidered to be cadidate documents
related to a given paper.

What suggests the notion of citation is to take not only
into acount the neighbors of a bag b (acwrding to the
Hausdorff distance) but also the bags that count b as a
neighbor. We auld use dther references or citers of an
unseen example to predict the dassof the example rather
than only use the references. It is easy to define the R-
nearest references of an example b as the R-neaest
neighbors of b. However, it is a little more mmplex to
define the dters of an example. Let n be the number of all
example bags BS={by, ..., by}, then for an example b BS,
all other examples BS\b={b; | b;CBS, b;zb} can be ranked
acording to the simil arity to the example b. For b'C/BS\b,
let its rank number be Rarnk(b',b). For the sake of
completeness let us st Rank(b,b) to be «. Now, for any
example b in BS, we define the c-nearest citers of b as
Citers(b, c)={ bj|Rank(b;,b)<c, b,[/BS}. (It should be noted
that we could also define c-neaest citers acmrding to
distancerather than rank.)

For example, assuming that there ae only 6 bags of
instances {by,b,,bs,bs,bs,bg} in a data set. Their neaest
neighbors are shown in Table 2. Let both R and C be 2,
then for the bag by, its R-neaest references are {bs,by},
and its c-neaest citersare {b,,bs,bs} .

Table 2. The neaest neighbars of 6 bags {b;,b,,b3,bsbs,be}. N
means the nearest rank number.

Let us now concentrate on how to combine the R-neaest
references and the c-neaest citers of an unseen bag b to
derive its class. Assume that for the R-neaest references,
the numbers of positive and negative bags are R, and R,
respedively; and for the c-neaest citers, the numbers of
positive and negative bags are C, and C, respedively (see
Table 3).

Table 3. Distribution of positive and negative bags in R-neaest
references and c-neaest citers of an urseen bag.

positivebags  negative bags
R-neaest
references Ro Ry R
C-neaest
citers Co G c
p=Ry,+C, n=R,+C,

Let p=R,+C, , and n=R,+C,,. We cdled Citation-KNN the
KNN agorithm in which p and n are cmputed by using
the Hausdorff distance and classification is defined as
follows: if p>n, then the dass of the bag b is predicted as
positive, otherwise negative. It should be noted that when
a tie happens, the dassof b is st to be negative (see
sedion 3.1 for detailed reasons). The performances of
Citation-KNN are presented in the foll owing sedion.

4. Experimental Space Evaluation

4.1 TheMusk Data Sets

The two leaning agorithms are tested on the two data
sets Muskl and Musk2 (from the UCI repository) that
share some molecules. The main difference between the
two data sets is that Musk2 contains molecules that have
more possble cnformations than Muskl — Musk2 is
about 4.5MB large. Some daraderistics of the two data



sets are shown in Table 4. Each instance (conformation)
has 166 numerical attributes.

Table 4. Some characteristics of the two Musk data sets.

Data set Muskl Musk2
# of bags 92 102
# of positive bags 47 39
# of negative bags 45 63
average # of instances per bag 52 64.7
average # of instances per positivebag | 4.4 26.1
average # of instances per negativebag | 6.0 88.6

4.2 Experimental Method

We ran Bayesian-KNN and Citation-kNN on Musk1 and
Musk2 for different vaues of K or R and the two
Hausdorff distance methods: minimal Hausdorff distance
(briefly called minHD) and maximal Hausdorff distance
(briefly called maxHD). Since each instance is a point in
166-dimensional real-valued Euclidean space, the
distance between two instances is calculated in Euclidean
distance.

We report experimental results using the leave-one-out
test to predict accuracy rather than using the 10-fold or
20-fold cross validation. One reason is that to date the
best prediction accuracy acquired by "“iterated-discrim
APR" (Dietterich et al., 1997) was tested implicitly using
the leave-one-out. Another reason is that there is no
variation for this test method athough usualy the
difference between the leave-one-out and the 10-fold or
20-fold is not significant.

4.3 Experimental Results

For Bayesian-KNN algorithm, the experimental result is
shown in Table 5 for different values of K and the two
kinds of Hausdorff distance. With the Musk1 data set, the
minimal Hausdorff distance method acquired the best
prediction accuracy 90.2%. With the Musk2 data set, the
maximal Hausdorff distance method performs the best
(85.3%), but when k>2 it is worse than the minimal
method. On the whole, when K=2 the results are the best.

Table 5. Bayesian-kNN prediction accuracy in % for different K
and the two kinds of Hausdorff distance: minHD and maxHD.

data set K=1 K=2 K=3 K=4 K=5
minHD 83.7 902 90.2 859 891

- maxHD 82.6 826 815 783 783
minHD 745 824 814 824 784

- maxHD 755 853 66.7 794 657

Table 6. Citation-KNN prediction accuracy in % on different R
and the two kinds of Hausdorff distance: minHD and maxHD.

data set R=0 R=1 R=2 R=3 R=4
minHD 84.8 870 924 924 837
Musk1
maxHD 783 848 848 848 837
minHD 833 784 863 833 833
Musk2 maxHD 84.3 804 853 824 794

For Citation-kNN algorithm, the result is shown in Table
6 for different values of R and the two kinds of Hausdorff
distance. The value of ¢ was empirically set to be R+2 so
as to reflect that citers seem to be more important than
references. Generally, the minimal Hausdorff distance
method performs better than the maximal one, and when
R=2 the results are the best.

Results on the Muskl and Musk?2 data sets suggests that
while the two methods appear to work well when there
are not too many instances per bag (as in Muskl), they
seem insufficient with many instances per bag (as in
Musk?2). One possible explanation is that positive bags
contain "false positive instances', and negative bags in
Musk2 contain much more instances than Muskl,
therefore the "false positive instances’ in Musk2 are
easier to be trapped by negative bags. One possible
solution might be to remove those false positive instances
from the positive bags and to recalculate the Hausdorff
distance between those bags.

4.4 Comparison with Existing Algorithms

Table 7. Comparison of the prediction accuracy obtained with
Citation-kNN and Bayesian-KNN (only with minimal Hausdorff
distance) with those of other systems on the Musk data sets.

Algorithms Musk1 Musk2
%ocorrect  %correct
iterated-discrim APR 924 89.2
Citation-k NN 92.4 86.3
Bayesian-K NN 90.2 824
Diverse Density 88.9 82,5
RELIC 83.7 87.3
MULTINST 76.7 84.0
TILDE N/A 79.4

Comparison with previous algorithms includes the ones
specially designed for attacking the multiple-instance
problem and two ILP algorithms RELIC and TILDE (see
Table 7). "iterated-discrim APR" is the best one of the



four APR algorithms reported in Dietterich et a. (1997).
MULTINST agorithm is taken from Auer (1997, and
Diverse Density algorithm from Maron & Lozano-Pérez
(1998). TILDE is atop-down induction system for learning
first order logicd dedsion tree (Blocked & De Radlt,
1998). The Musk data set being totally numericd is not a
typicd ILP task, which explains the result of TILDE.
RELIC is an efficient top-down induction system that
extends C4.5 so as to lean multiple-instance dedsion
trees (Ruffo, 2000).

4.5 Discussion

Citation-KNN did quite well on both data sets. On average
it is only worse than the best one "iterated-discrim APR".
However, the high acarracy of the latter on Musk2 is
partly due to the fact that some of its parameters were set
based on the experiments on the Muskl data set. In fad,
the APR algorithm was designed with the drug discovery
problem in mind, it is unclea whether it will generalize
well to ather problems or not. In contrast, Citation-KNN
and Bayesian-kNN agorithms are genera-purpose and
effective.

Although the two adaptation algorithms of KNN to the
multiple-instance problem performed remarkably well,
the basic reasons why they aaquired such high acaracy
on the Musk data sets are unclea. It is also not clea
whether they are fit for other multiple-instance leaning
applicdions such as gock prediction (not available
publicly) and image retrieval (Maron, 1998. It should
finally be noted that, as oppaed to our algorithms, both
ILP systems ReLIC and TILDE produce ®mprehensible
results. Moreover, they are dso dredly applicable on
symbalic data.

5. Conclusion and Future Work

The motivation of our work is to investigate the devising
of lazy learning algorithms to attack the multi ple-instance
problem. Results of the experimental comparison show
that using a modified version of Hausdorff distance for
adapting the KNN agorithm to the multiple-instance
problem led to high performance in the drug discovery
task, competitive with that of algorithms developed within
the mncept learning framework. Two kinds of adaptation
of KNN were proposed in this paper, a Bayesian one
(Bayesian-kNN) and another based on the notion of
citation (Citation-kNN). Experimental results on the
Musk data sets $ow that the multiple-instance problem
(at least in the drug discovery task) may be solved by both
concept leaning and lazy leaning. It is likely that
combining both approaches would lead to an increase in
prediction acaracy.

The two algorithms presented in this paper did not
consider the arse of dimensionality, where many feaures
are irrelevant to the performance task (the neaest
neighbor algorithm is highly sensitive to this Stuation).

Both Dietterich et a. (1997 and Maron (1998) stated that
the number of relevant feaures are much fewer than 166
—the number of al feaures. If afeaure seledion function
was added as a preprocessng of the dgorithms, it is also
likely that better results would be obtained. Another
promising diredion is to consider other definitions of
distance between bags. We ae aurrently investigating
how to recast our approach in the mntext of suppat
vedor machine (Vapnik, 1995. Suppat vedors could be
used to measure the distance between two bags as the
distance between suppart vedors from two bags. We ae
also investigating multicriteria analysis methods (Perny,
198) to weigh the instances role in the dasdfication
dedsion. In the Citation-k NN agorithm, the importance
of the relative numbers of citers and references neels also
to be further explored.
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Table 8. Classdistribution o K nearest neighbars of the positi ve/negative bags on the Musk1 (left) and Musk2 (right) data sets.

K | neaest neighbars | # of positive  # of negative
1| P 41 9
{N} 6 36
{PP} 41 3
2 | {P,N} 5 15
{N,N} 1 27
{P,P,P} 40 2
3 | (PPN} 5 13
{P,N,N} 2 9
{N,N,N} 0 21
{P,P,P,P} 35 2
{P,P,P,N} 10 9
4 | {P,P,N,N} 1 12
{P.N,N,N} 1 8
{N,N,N,N} 0 14
{P,P,P,P,P} 25 1
{P,P,P,P,N} 18 6
5 {P,P,P,N,N} 3 11
{P,P,N,N,N} 1 9
{P,N,N,N,N} 0 10
{N,N,N,N,N} 0 8

K | neaest neighbas | # of positive  # of negative
1 {P} 32 19
{N} 7 44
{P.P} 28 7
2 | {PN} 8 25
{N,N} 3 31
{PPP} 23 3
3 | (PPN} 13 19
{P,N,N} 2 19
{N,N,N} 1 22
{P,P,P,P} 18 2
{P,P,P,N} 18 13
4 | {PP,N,N} 1 13
{P,N,N,N} 1 21
{N,N,N,N} 1 14
{P,P,P,P,P} 15 1
{P,P,P,P,N} 14 11
5 {P,P,P,N,N} 8 10
{P,P,N,N,N} 1 18
{P,N,N,N,N} 1 12
{N,N,N,N,N} 0 11




