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Abstract 
This paper introduces a new technique for discretization of 
continuous variables based on zeru, a measure of strength 
of association between nominal variables developed for 
this purpose. Zeta is defined as the maximal accuracy 
achievable if each value of an independent variable must 
predict a different value of a dependent variable. We 
describe both how a continuous variable may be 
dichotomised by searching for a maximum value of zeta, 
and how a heuristic extension of tbis method can partition 
a continuous variable into more than two categories. 
Experimental comparisons with other published methods, 
show that zeta-discretization runs considerably faster than 
other techniques without any loss of accuracy. 

Introduction 
Many machine learning techniques can only be applied to 
data sets composed entireiy of nominal variabies but a 
very large proportion of real data sets include continuous 
variables. One solution to this problem is to partition 
numeric variables into a number of sub-ranges and treat 
each such sub-range as a category. This process of 
partitioning continuous variables into categories is usually 
termed discrerization. In this paper we describe a new 
technique for discretization of continuous variables based 
on zeta, a measure of strength of association that we have 
developed for this purpose. 

Discretization for Decision Tree Construction 
Procedures for constructing decision trees using sets of 
pre-classified examples (Breiman, Friedman, Olshen & 
StQne 15)84! fhiinlnn 19Rhi 5lTP. j&rcflfly Qnjy Qp]i&ie ., ~ --___--- -c --, -- 
to data sets composed entirely of nominal variables. If 
they are to be applied to continuous variables some means 
must be found of partitioning the range of values taken by 
a continuous variable into sub-ranges which can be treated 
as discrete categories. Such a partitioning process is 
frequently termed discretizatiun. A variety of 
discretization methods have been developed in recent 
years. Dougherty, Kohavi and Sahami (1995) have 
provided a systematic review in which discretization 
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techniques are located along two dimensions: 
unsupervised vs. supervised, and global vs. local. 

Unsupervised discretization procedures partition a 
variable using only information about the distribution of 
values of that variable: in contrast, supervised procedures 
also use the classification label of each example. Typical 
unsupervised techniques include equal interval width and 
equal frequency width methods. 

Supervised techniques normally attempt to rnaximise 
some measure of the relationship between the partitioned 
variable and the classification label. Entropy or 
information gain is often used to measure the strength of 
the relationship (Quinlan 1986, 1993; Catlett 1991; 
Fayyad & Irani 1992, 1993). Both ChiMerge (Kerber 
1992) and StatDisc (Richeldi & Rossotto 1995) employ 
procedures similar to agglomerative hierarchical 
clustering techniques. Holte’s (1993) 1R attempts to form 
partitions such that each group contains a large majority 
of a single classification. 

Global discretization procedures are applied once to the 
entire data set before the process of building the decision 
tree begins; local discretization procedures are applied to 
the subsets of examples associated with the nodes of the 
tree during tree construction. The majority of systems 
1nrino IlnallnPnricl=rl olnhd UUlllb UL.“q.wS 1 LVYV nmthnrlc cqr lll”Ul”Y” out pvv&u 
discretizations. Examples of supervised global methods 
include D-2 (Catlett 1991), ChiMerge (Kerber 1992), 
Holte’s (1993) 1R method, and StatDisc (Richeldi & 
Rossotto 1995). C4.5 (Quinlan 1993,1996) and Fayyad 
and Irani’s (1993) entropy minimisation method use a 
supervised technique to perform local discretization. The 
majority of supervised techniques could be used for either 
local or global discretization: for example, Fayyad and Tm..:~” mad.&4 l...” haa.. n..,.nann&ll., ~.n..l,w.Lwl .A CA- 
llillll a III~UI”U lldJ “GGll JubLGJJIuILJ GUqJ’“yal C” l”llU 

global discretizations (Ting 1994). 
Dougherty et al. (1995) report a comparative study of 

two unsupervised global methods (equal width interval 
procedures), two supervised global methods (1RD (Holte 
1993) and Fayyad & Irani’s (1993) entropy minimisation), 
and C4.5, a supervised local method. They found only 
small differences between the classification accuracies 
achieved by resulting decision trees. None produced the 
highest accuracy for all data sets but our own replication 
of these experiments (see below) shows a clear 
speed/accuracy trade-off. 
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c4.5 
Data Set Continuous Entropy IRD Bin-log I n-Bins Zeta 

allbp 97.45+-0.10 97.22+-0.16 96.05+-0.32 96.39+-0.32 96.32vO.13 96.63+-0.23 
ann-thyroid 99.61 -I--0.1 1 99.38+-0.13 97.64+-0.04 94.06+-0.19 92.72wO.24 98.38+-0.16 . . -m-m .^^ ^_^^ >^- ^>^^ ^A- ^*^^ ^-- ^^^^ _^^ 

Average 11 l54.04 I W./Y I t5l.lti I W.UU I fY.44 I UY.YU 
I 

Table 1: Classification accuracies and standard deviations using C4.5 (Quinlan 1996) with different discretization methods. 
Continuous: C4.5 on undiscretized data. Entropy: Global variant of Fayyad & Irani’s (1993) method. 1RD: Holte’s (1993) IR 
discretizer. Bin-log 1 and n-Bins: Equal width binning. Zeta: Method proposed in this paper. (c.f. Dougherty et al. 1995) 

Zeta: A New Measure of Association 
Our initial attempts to develop a fast and accurate 
discretization technique based upon lambda, a widely used 
measure of strength of association between nominal 
variables (Healey 1990) that measures the proportionate 
reduction in prediction error that would be obtained by 
using one variable to predict the other, using a modal 
value prediction strategy in all cases. Unfortunately 
lambda is an ineffective measure in those situations were 
the dependency between two variables is not large enough 
to produce different modal predictions since in such cases 
its value is zero. 

A closely related measure, which we term zeta, has 
been developed that overcomes this limitation because it is 
not based on a modal value prediction strategy: the 
assumption made in determining zeta is that each value of 
the independent variable will be used to predict a difSerent 
value of the dependent variable. 

Zeta is most readily understood by first considering the 
simplest case: using a dichotomous variable A to predict 
values of another dichotomous variable B. Suppose we 
have a sample of N items whose value distribution is given 
in the following 2 by 2 table: 

AI AZ 
4 nil ni2 . 

, B2 n21 n22 

where 
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N = &Q 
i=l j=l 

If each value of A is used to predict a different value of B 
then there are only two possibilities: either A+B, and 
A2+B2 ,or A,+B2 and A+B,. If the former is used then 
the number of correct prediction would be nll + nz2 ; if the 
latter then n12 + n2] would be correct. Zeta is defined to 
be the percentage accuracy that would be achieved if the 
pairings that lead to greater accuracy were used for 
prediction. Hence it is defined as follows: 

z= 
max(n,, + n,, ,n12 + nzl) X 100% 

N 
This definition may be generalised to the case of one k- 
valued variable A being used to predict the values of 
another variable B that has at least k values thus: 

k 

c nf G)i 

z = i=’ 
N 

x 100% 

where f(i) should be understood as follows. In order to 
make predictions each of the k values of A must be paired 
with a non-empty set of values of B: these k sets must 
together form a partition of the set of possible values for 
B. If B has k distinct values there will be k! ways in which 
such sets of pairings could be made. One such set of 
pairing will give the greatest prediction accuracy; call this 
the best pairing assignment. Then Br(i) is the value of B 
that is paired with Ai in the best pairing assignment. 
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Figure 2: Total execution time for all data sets plotted as a function of average final classification accuracy for different 
diicretization methods (see caption to Table 1). - 

Discretization Using Zeta 
We now proceed to describe how this measure may be 
used to partition a continuous variable. The underlying 
principle is very simple. In theory, given a k-valued 
classification variable C, a continuous variable X could be 
partitioned into k sub-ranges by calculating zeta for each 
of the possible assignments of the k-l cut points and 
selecting that combination of cut points that gives the 
largest value of zeta. In general such a method will not be 
practicable because the number of combinations of cut 
points is extremely large. 

Dichotomising Using Zeta 
However it is practicable for the special case of k = 2 
since there will only be one cut point. Fortunately this is 
an extremely common special case in real world 
classification problems, many of which reduce to a choice 
between positive and negative diagnoses. If there are N 
examples in the data set there are at most N - 1 candidate 
cut points. Zeta can be calculated for every one of these 
and the point yielding the maximum value selected. 

In practice it is not necessary to consider every possible 
cut point. Fayyad and Irani (1992) have shown that 
optimal cut points for entropy minimisation must lie 
between examples of different classes. A similar result can 
be proved for zeta maximisation. Hence it is only 
necessary to calculate zeta at points corresponding to 
transitions between classes, thus reducing the 
computational cost. 

More Than Two Classes 
The dichotomising procedure forms the basis of a heuristic 
method of discretizing a variable into k categories. This is 

a stepwise hill-climbing procedure that locates and fixes 
each cut point in turn. It therefore finds a good 
combination of cut points but offers no guarantee that it is 
the best. As noted above, examining all possible 
combinations is likely to be too time consuming. 

The procedure for discretizing a variable A into k 
classes, given a classification variable B which takes k 
distinct values is as follows. First find the best dichotomy 
of A using the procedure described above. If k is greater 
than 2 then at least one of the resulting sub-ranges of A 
will be associated with 2 or more values of B: use the 
dichotomising procedure again on such a sub-range to 
place the second cut point. Proceed in a similar fashion 
until k - 1 cutpoints have been placed and each sub-range 
is associated with a different value of B. 

This is a heuristic method: once a cut point is placed it 
is not moved so not all cut point combinations are 
considered. Nevertheless, as some of the results discussed 
later show, the cut points chosen lead to high predictive 
accuracy and hence the use of the heuristic is justified. 

Experimental Results 
A series of experiments were carried out using both real 
and artificial data sets to establish whether the zeta 
technique partitioned individual variable in a useful 
fashion. (see Ho and Scott 1997). These established that 
zeta discretization is an effective procedure for locating 
good cut points within the ranges of continuous variables. 

The next set of experiments was designed to evaluate 
the performance of zeta in the role for which it was 
developed: the construction of decision trees. Our 
experimental procedure was closely modelled on that 
employed by Dougherty et al. (1995) in their comparative 
study of five discretization techniques. 
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We compared the live methods considered by 
Dougherty et al. and zeta discretization. C4.5 (Quinlan 
1996) was used to construct all of the decision trees. In 
five of the six cases, the data was first processed by the 
global discretization procedure and then passed to C4.5. 
In the sixth case no prior discretization took place; hence 
the local discretization procedures that form part of C4.5 
were used. 

The code for zeta discretization was written in C by one 
of the authors (Ho); the code for C4.5, also written in C, 
was the version distributed to accompany Quinlan (1993) 
updated to Release 8 (Quinlan 1996); all the remaining 
code was taken from the MLC++ machine learning library 
(Kohavi, John, Long, Manley & Pfleger 1994). The data 
sets used for these experiments were all obtained from the 
UC Irvine repository. Each set was tested five times with 
each discretization method. 

The results are shown in Table 1. As is to be expected 
the results for the first five columns are very similar to the 
results reported by Dougherty et al. (1995). The zeta 
discretization method stands up to the comparison very 
well. The average accuracy over all the data sets was 
higher than all the other global methods and only slightly, 
but not significantly, less than that achieved by C4.5 
using local discretization. Thus we can conciude that on 
average zeta discretization method achieves accuracies at 
least as good as the best global methods. 

However, the zeta method is also fast. Figure 2 shows 
the total execution time required by each of the six 
methods to complete all the data sets listed in Table 1, 
plotted as a function of final classification accuracy. It is 
clear that four of the six data points lie roughly in a 
straight line, indicating a time accuracy trade-off. Two 
points lie well below this line: continuous (i.e. C4.5’~ 
local method) and zeta. These two methods not only 
achieve high accuracy but do so in appreciably less time. 

Conclusion 
These results show that zeta discretization is both an 
effective and a computationally efficient method of 
partitioning continuous variables for use in decision trees. 
Indeed of the methods considered in our comparative 
study it would appear to be the method of choice. 

Acknowledgements 
We are grateful to the Economic and Social Research 
Council’s programme on the Analysis of Large and 
Complex Datasets for supporting part of the work reported 
in this paper under grant number H5i9255030. 

References 
Breiman, L., Friedman, J, H., Olshen, R. A., & Stone, C. 
J. 1984. Classi$cation and Regression Trees. Wadsworth, 
Pacific Grove, CA.. 

Catlett, J. 199 1. On changing continuous attributes into 
ordered discrete attributes. In Machine Learning: EWSL- 
91, Proceedings European Working Session on Learning, 
Lecture Notes in Artificial Intelligence 482. pp. 164-178. 
Springer Verlag. 
Dougherty, J., Kohavi, R., & Sabami, M. 1995. 
Supervised and Unsupervised Discretization of 
Continuous Features. In Proc. Twelfth Znternational 
Conference on Machine Learning. Morgan Kaufmann, 
Los Altos, CA. 
Fayyad, U. M., & Irani, K. B. 1992. On the handling of 
continuous-valued attributes in decision tree generation. 
Machine Learning 8 pp. 87-102. 
Fayyad, U. M., & Irani, K. B. 1993. Multi-interval 
discretization of continuous-valued attributes for 
classification learning. In Proc. 13th International Joirit 
Conference on Artificial Intelligence. pp 1022- 1027 
Morgan Kaufmann, Los Altos, CA. 
Healey, J. 1990. Statistics: A Tool for Social Research. 
Wadsworth, Belmont, CA. 
Ho, K. M. and Scott, P. D. 1997. Zeta: A Global Method 
for Discretization of Continuous Variables. Technical 
Report CSM-287, Dept of Computer Science, University 
of Essex, Colchester, UK. 
Holte, R. C. 1993. Very simple classification rules 
perform well on most commonly used datasets. In 
Machine Learning, 11, pp. 63-91. 
Kerber, R. 1992. ChiMerge: Discretization of numeric 
attributes. In Proc. Tenth National Conference ofi 
Artificial ZnteZZigence, pp. 123-128. MIT Press. 
Kohavi, R., John, G., Long, R., Manley, D. & Pfleger, K. 
1994. MLC++: A machine learning library in C++. In 
Tools with Artificial Intelligence, IEEE Computer Society 
Press, pp. 740-743. 
Quinlan, J. R. 1986. Induction of Decision Trees 
Machine Learning 1 pp 81-106. 
Quinlan, J. R. 1993. Programs for Machine Learning. 
Morgan Kaufmann, Los Altos CA. 
Quinlan, J. R. 1996. Improved use of continuous attributes 
in C4.5. Journal of Artificial Intelligence Research 4 pp. 
77-90. 
Richeldi, M. & Rossotto, M. 1995. Class-Driven 
statistical discretization of continuous attributes. In 
Machine Learning: ECML-95 Proceedings European 
Conference on Machine Learning, Lecture Notes in 
Artificial Intelligence 914. pp 335-338. Springer Verlag. 
Ting, K. M, 1994. Discretization of continuous-valued 
Rttrihuteq and instance-had learnim. Technical Renort --------c-----c---- --L ---------- El. -- __.-._ -_-.- =--- 
491, University of Sydney. 
Van de Merckt, T. 1993. Decision trees in numerical 
attribute spaces. In Proc. 13th International Joint 
Conference on Artificial Intelligence. pp 1016-1021 
Morgan Kaufmann, Los Altos, CA. 

194 KDD-97 


