Memetic Computing manuscript No.
(will be inserted by the editor)

Jaume Bacardit - Edmund K. Burke -
Natalio Krasnogor

Improving the scalability of rule-based
evolutionary learning

Received: date / Accepted: date

Abstract Evolutionary learning techniques are comparable in accuracy with
other learning methods such as Bayesian Learning, SVM, etc. These tech-
niques often produce more interpretable knowledge than e.g. SVM; however,
efficiency is a significant drawback. This paper presents a new representa-
tion motivated by our observations that Bioinformatics and Systems Biology
often give rise to very large-scale datasets that are noisy, ambiguous and
usually described by a large number of attributes. The crucial observation
is that, in the most successful rules obtained for such datasets, only a few
key attributes (from the large number of available ones) are expressed in a
rule, hence automatically discovering these few key attributes and only keep-
ing track of them contributes to a substantial speed up by avoiding useless
match operations with irrelevant attributes. Thus, in effective terms this pro-
cedure is performing a fine-grained feature selection at a rule-wise level, as
the key attributes may be different for each learned rule. The representation
we propose has been tested within the BioHEL machine learning system,
and the experiments performed show that not only the representation has
competent learning performance, but that it also manages to reduce consid-
erably the system run-time. That is, the proposed representation is up to
2-3 times faster than state-of-the-art evolutionary learning representations
designed specifically for efficiency purposes.

Work supported by the UK Engineering and Physical Sciences Research Council
(EPSRC) under grant GR/T07534/01.

J. Bacardit - E.K. Burke - N. Krasnogor

ASAP research group, School of Computer Science, Jubilee Campus, Nottingham,
NGS8 1BB

E-mail: {jaume.bacardit,natalio.krasnogor} @nottingham.ac.uk

J. Bacardit
Multidisciplinary Centre for Integrative Biology, School of Biosciences, Sutton Bon-
ington, LE12 5RD, University of Nottingham, UK

Keywords Evolutionary Algorithms - Evolutionary Learning - Learning
Classifier Systems - Rule Induction - Bioinformatics - Protein Structure
Prediction

1 Introduction

Learning Classifier Systems (LCS) (Wilson, 1995; De Jong and Spears, 1991)
and Genetics-Based Machine Learning (GBML) (Freitas, 2002), collectively
named evolutionary learning (EL) methods for the rest of this paper are very
powerful and flexible machine learning tools that have been applied to a very
large variety of real-world datasets, small (Bernadé et al, 2001; Bacardit and
Butz, 2007) and large (Bacardit et al, 2006; Llora et al, 2008). However, their
computational cost in general is quite high, when compared to other kinds
of machine learning techniques (Bacardit, 2004).

In recent years we have extensively applied LCS to data mine large-scale
Bioinformatics domains (Bacardit et al, 2006, 2007b; Stout et al, 2008). First
we used the GAssist system (Bacardit, 2004) belonging to the Pittsburgh ap-
proach of LCS (De Jong and Spears, 1991). This system was designed for data
mining purposes, containing components that generate very compact and in-
terpretable solutions as well as some efficiency enhancement techniques. Later
on, in order to have better scalability, we created a new system, BioHEL
(Bioinformatics-oriented hierarchical evolutionary learning) (Bacardit et al,
2007b). BioHEL applies an iterative rule learning (IRL) approach (Venturini,
1993), and was explicitly designed to handle large-scale datasets. This sys-
tem allowed us to improve (Bacardit et al, 2007b; Stout et al, 2008) upon
our original results (Bacardit et al, 2006) but, more importantly, it enabled
us to tackle larger and more complex datasets. Still, its computational cost
is high, and this is the main issue that we are addressing in this paper.

In recent years many techniques have been developed to reduce the com-
putational cost of EL methods by using mechanisms such as windowing tech-
niques (Bacardit, 2004), precomputing the possible matches of the individ-
uals (Girdldez et al, 2005) or using the vectorial instructions (SSE, Altivec)
available in modern day computers (Llora et al, 2008).

In this paper we take a different approach where instead of trying to speed
up the match operations for a given representation, we modify the represen-
tation itself to eliminate irrelevant computations. Previous large scale exper-
iments using LCS (Bacardit et al, 2006) support the observation that in real
world datasets containing a large number of attributes, only a small fraction
of these are expressed in a given rule. On certain domains this fraction (as
will be shown later) can be as small as 5% or less of the available attributes.

In the proposed representation a rule, instead of coding all the domain
attributes, keeps only a list containing the expressed ones. Two operators can
add attributes to this list (specializing operator) or remove attributes from
this list (generalizing operator) with a given probability, and the crossover
operator has been adapted to recombine these lists too. As a consequence
of keeping only a subset of attributes, match operations only evaluate this
subset (ignoring all the non-expressed attributes), thus avoiding hundreds of
irrelevant computations. Furthermore, as the representation only holds rele-
vant attributes (if the system is able to discover them), the exploration oper-
ators will always recombine/mutate data that matters, potentially leading to

(1) a better learning process and (2) more compact and, hence, interpretable
solutions.

We have tested this representation integrated within BioHEL. We have
compared our representation against the representation for continuous at-
tributes of the NAX system (Llora et al, 2008), integrated inside BioHEL.
We have decided to compare our representation against this one because
it was also explicitly designed for efficiency purposes, using SSE vectorial
instructions to boost the match operations.

Our evaluation process consists of two stages. In the first stage, a range
of real-world domains of relatively small sizes (UCI data sets) and with a
wide set of characteristics is used as test bed for the new representation.
By doing this, we can (1) verify that the new representation can, indeed,
learn as well as the state-of-the-art and (2) perform a sensitivity analysis
on some of its parameters. In the second stage of the evaluation process,
and to demonstrate the full potential of the new representation, we recur
to much larger problems arising from the bioinformatics domain for which
hundreds of attributes are needed. Afterwards, the performance of the best
configuration of our representation is compared to two standard machine
learning techniques. We also propose a simple model of the efficiency gain of
this representation against the NAX representation.

The rest of the paper is structured as follows: First, section 2 summarizes
some related work. Next, section 3 describes the framework of the paper: the
BioHEL system and the NAX rule representation for continuous attributes.
Section 4 contains the full description of our attribute list knowledge repre-
sentation After the definition of the new representation, section 5 describes
the experimental design, section 6 shows and analyzes the results of our ex-
periments. Finally, section 7 provides some conclusions and details of further
work.

2 Related work

This paper combines two different areas of research within an EL context:
representations for continuous attributes and efficiency enhancement tech-
niques. This related work section mainly comments on both topics.

In relation to the first topic, rule representations for real-valued at-
tributes, many different approaches exist. Some methods use some kind of
discretization (Giraldez et al, 2003; Divina et al, 2003; Bacardit, 2004) to
convert the continuous attributes to categorical ones, which allows the usage
of categorical knowledge representations (De Jong and Spears, 1991; Wilson,
1995). A different alternative is to use rules based on fuzzy logic. A good
review of these systems is (Cordén et al, 2001).

Another approach, in which the work presented in this paper can be
placed, is to use rules that define a hyper-rectangle in the feature space, hav-
ing for each dimension an interval with a lower bound and an upper bound.
Many different EL methods use such kind of representation (Corcoran and
Sen, 1994; Wilson, 1999; Stone and Bull, 2003; Llora et al, 2008). One of
these methods (Wilson, 1999) defines the intervals associated to each at-
tribute using two variables: one specifying the center of the interval and the
other (spread) specifying the size of the interval. The intervals defined using
this approach always remain semantically correct after any possible crossover

or mutation operation. The other methods (Corcoran and Sen, 1994; Stone
and Bull, 2003; Llora et al, 2008) define the intervals also using two variables:
a lower bound and an upper bound. In this case, crossover or mutation op-
erations may result in intervals where the variable associated to the lower
bound has higher value than the variable associated to the upper bound.
To overcome this potential ambiguity, several strategies have been proposed,
such as ignoring the attribute (thus, making it irrelevant) (Corcoran and Sen,
1994; Llora et al, 2008) or assuming that there is no fixed order to specify
the bounds: the lowest value is always the lower bound and the highest value
is always the upper bound (Stone and Bull, 2003).

Finally, there are some EL approaches that do not use rules as their
knowledge representation. Some examples of alternative knowledge represen-
tations are decision trees (either axis-parallel or oblique). These methods rely
on either generating a full tree by means of genetic programming operators
(Llora and Garrell, 2001), using an heuristic method to generate the tree
then and using a Genetic Algorithm and an Evolution Strategy to optimize
the test performed at each node (Cantu-Paz and Kamath, 2003). Another
alternative is the generation of a set of synthetic instances used as the core
of a k-NN classifier (Llora and Garrell, 2001).

In relation to methods to alleviate the run-time of EL methods, many
alternatives also exist. Some method apply various kinds of windowing tech-
niques (Bacardit et al, 2004). That is, they use only a subset of the training
examples to perform the fitness computations of the individuals. The strat-
egy to choose the training subset, the frequency of changing them, etc. define
each of them. (Freitas, 2002) contains a taxonomy of such methods. A dif-
ferent approach consists in “precomputing” the possible classifications of the
system (Girdldez et al, 2005). The authors exploit the fact that they deal
with either nominal or discretized attributes to generate tree structure to
efficiently know which examples belong to each value of each attribute (the
one corresponding to the rule being evaluated). Furthermore, the matches of
a given rule are the intersection of all these subsets of examples. Finally, a
recent efficiently enhancement approach is the use of SSE/Altivec/etc. vec-
torial instructions to perform the match operations (Llora and Sastry, 2006;
Llora et al, 2008), with the objective of performing various match operations
(at the attribute level) at the same time. In (Llora and Sastry, 2006) the use
of SSE operations allows to perform up to 64 attribute matches for binary
attributes at the same time, and in (Llora et al, 2008), four match operations
for continuous attributes are performed at the same time.

As we mentioned before, the maintenance of a relevant attribute list effec-
tively represents a feature selection (FS) strategy (FS) (Guyon and Elisseeft,
2003) strategy. There are various works on the use of evolutionary computa-
tion for FS (Vafaie and De Jong, 1992; Yang and Honavar, 1998; Ruiz, 2007).
Most of these works define a binary chromosome with one bit associated to
each attribute of the domain, which decides whether the feature is selected or
not. Fitness functions of these methods try to reduce the subset of selected
features while attempting to preserver a high accuracy. The approach in this
paper is slightly different for two reasons. (1) feature selection and learning
are performed in a concurrent and integrated manner, and (2) our feature

selection is performed at a rule-wise level. That is, different rules can use
different sets of relevant attributes. Standard F'S methods filter the dataset
keeping only the same subset of attributes for the whole solution (e.g. rule
set). Thus, we could say that our representation applies a fine-grained FS
process.

Another approach from which we draw some inspiration is the Evolu-
tionary Concept Learner (ECL) (Divina and Marchiori, 2005) that uses an
evolutionary approach to do inductive logic programming. In this case, rules
are Horn Clauses having a list of terms, each of them associated to an at-
tribute. Terms can be added or removed to/from the list using mutation
operators, which is similar to our approach. ECL, however, does not have a
crossover operator nor was designed to deal efficiently with very large scale
datasets.

3 Framework

In this section we describe the proposed framework. In particular we give de-
tails about BioHEL (Bacardit and Krasnogor, 2006a; Bacardit et al, 2007b;
Stout et al, 2008) and the performance boosting wrapper method based on
ensembles (Bacardit and Krasnogor, 2006b) that we have used. As we com-
pare our representation against NAX (Llora et al, 2008), we describe it in
some detail too.

3.1 The BioHEL system

BioHEL has recently been applied (Bacardit et al, 2007b; Stout et al, 2008)
to large-scale Bioinformatics datasets. For a full description of the system,
as well as the justification for its design issues, please see (Bacardit and
Krasnogor, 2006a). BioHEL (Bioinformatics-oriented Hierarchical Evolution-
ary Learning) follows the Iterative Rule Learning or Separate-and-Conquer
approach (Fiirnkranz, 1999), which was first used in EL by Venturini (Ven-
turini, 1993). BioHEL is strongly influenced by the GAssist (Bacardit, 2004)
Pittsburgh LCS. Several of BioHEL features have been inherited from GAs-
sist. The system applies an almost standard generational GA, which evolves
individuals that are classification rules.

The learning process creates a rule set by iteratively learning one rule at
a time using a GA. After each rule is obtained, the training examples that
are covered by this rule are removed from the training set, thus the GA is
forced to explore other areas of the search space to learn other rules. The
rules are inserted into a rule set with an explicit default rule that covers the
majority class of the domain. The evolved rules will cover all the other classes.
Therefore, the iterative search for new rules stops when it is impossible to find
any rule where the associated class is not the majority class of the matched
examples. When this happens, all remained examples are assigned to the
default rule.

Moreover, several repetitions of the GA with the same set of instances
(and different initial random seeds) are performed. Only the best rule from
all these repetitions will be inserted to the rule set and the examples covered
by this rule removed from the training set. Figure 1 contains the pseudo-code
of the general workflow of BioHEL.

Fig. 1 General workflow of BioHEL

Procedure BioHEL general workflow
Input : TrainingSet

RuleSet = 0
stop = false
Do

BestRule = null
For repetition=1 to NumRepetitionsRuleLearning
Candidate Rule = RunGA (T rainingSet)
If CandidateRule is better than BestRule
BestRule = CandidateRule
EndIf
EndFor
Matched = Examples from TrainingSet matched by BestRule
If class of BestRule is the majority class in Matched
Remove Matched from TrainingSet
Add BestRule to RuleSet
Else
stop = true
EndIf
‘While stop is false
Output : RuleSet

To reduce the run-time of the system, BioHEL uses a windowing scheme
called ILAS (incremental learning with alternating strata) (Bacardit et al,
2004). This mechanism divides the training set into several non-overlapping
subsets and chooses a different subset at each GA iteration for the fitness
computations of the individuals.

The explicit default rule mechanism of GAssist (Bacardit et al, 2007a)
has also been implemented in BioHEL. This mechanism selects one of the
classes of the domain as default class, and takes it out from the evolutionary
pool. Thus, the evolved rules will cover all the classes of the domain but the
default class. Many policies exist in GAssist to decide which class is used as
default class. From those, three policies haven been implemented: using the
majority class, using the minority class or having no explicit default rule.

The fitness function of BioHEL is based on the Minimum Description
Length (MDL) principle (Rissanen, 1978). The MDL principle is a metric
applied to a theory (a rule in our case) which balances its complexity and
accuracy. The fitness function is defined as follows:

Fitness=TL-W + EL (1)

where T'L stands for theory length (the complexity of the solution) and EL
stands for exceptions length (the accuracy of the solution). BioHEL seeks to
minimize it.

W is a weight that adjusts the relation between T'L and E'L. BioHEL uses
the automatic weight adjustment heuristic proposed for GAssist (Bacardit,
2004). The parameters of this heuristic are adjusted as follows: Initial TL ra-
tio: 0.25, weight relaxation factor: 0.90, max iterations without improvement:
10.

TL is defined as follows:

SN = Size(Ry)/Size(D,) o)
NA

TL(R) =

where R is a rule, NA is the number of attributes of the domain, Size(R;)
is the width of the interval associated to the attribute ¢ of R and Size(D;)
is the width of attribute i’s domain. T'L is normalized between 0 and 1. It
has been designed like this to simplify the tuning of W. T'L promotes rules
with as few expressed attributes as possible, and where the few expressed
attributes have a size as large as possible. Thus promoting, when possible,
general rules.

The design of EL has to take into account a suitable trade off between
accuracy and coverage thus covering as many examples as possible without
sacrificing accuracy. To this end, our proposed coverage measure is initially
biased towards covering a certain minimum of examples (named Coverage
Breakpoint - CB) and once this CB has been reached the bias is reduced.
EL is defined as follows:

EL(R) =2 — ACC(R) — COV(R) (3)
ACC(R) = n% (4)

covV = {CR ; (10_%}%3 Re-cB 1 RO S O (5)
Re matii}ed(R) ©

COV is the adjusted coverage metric that promotes the coverage of (at
least) a minimum number of examples, while RC is the raw class-wise cov-
erage metric: the percentage of examples from the class predicted by this
rule that is actually matched by the rule. ACC' is the accuracy of the rule,
corr(R) is the number of examples correctly classified by R, matched(R) is
the number of examples matched by R, CR (Coverage Ratio) is the weight
given in the coverage formula to achieving the minimum coverage, CB is the
coverage breakpoint and |T| is the total number of training examples.

3.2 The rule representation of the NAX system

The NAX system (Llora et al, 2008), as described in the related work section,
uses rules that encode an hyperrectangle. The hyperrectangle is defined by
specifying an interval within the domain of each attribute of the problem.
Formally, a rule encodes a predicate such as:

Iflh <a; <uiAly <as <usA...Al, < ay, < u, then predict class ¢l (7)

Where [; and u; are, respectively, the lower and upper bounds of the interval
for attribute 4, a; is the value of attribute 4 for the instance being predicted
and cl is the class of the domain that this rule is predicting.

Encoded in each rule predicate in the NAX system are two vectors whose
size is the number of attributes in the domain. One vector stores all the lower
bounds for each attribute and the other vector stores the upper bounds.
Within a given rule, if u; < [; implies that attribute ¢ has been deemed to
be irrelevant.

Match operations in NAX are boosted by using SSE2 vectorial instruc-
tions. These instructions are able to perform four attribute match operations
in parallel. Implementation details are reported in (Llora et al, 2008).

The initialization of a new rule in NAX works as follows (Llora, 2008):
a parameter specifies the expected value of expressed attributes in a rule.
Given this parameter and the number of attributes of the domain a proba-
bility of expressing attributes is computed and then, for each attribute in a
rule, this probability is used to decide whether the attribute is expressed or
not. Afterwards, the lower and upper bounds of the expressed attributes are
initialized.

Finally, NAX uses one-point crossover and a mutation operator based on
generating new random boundary elements.

3.3 Simple ensemble for consensus prediction

As to improve accuracy and leveraging the fact that BioHEL is a stochastic
algorithm we generate several rules sets by running it multiple times with
different random seeds. We then join these rule-sets by considering them as an
ensemble based on a simple majority vote, thus combining their predictions.
This approach, similar to Bagging (Breiman, 1996), has shown to be able to
improve system performance for the GAssist (Bacardit, 2004) LCS across a
broad range of datasets (Bacardit and Krasnogor, 2006b). In the rest of the
paper, all reported accuracy measures will be the result of a such an ensemble
prediction.

4 Boosting the efficiency of match operations: the attribute list
knowledge representation

This section contains a detailed explanation of the proposed rule representa-
tion designed to deal with large scale continuous problems. This description
includes a definition of the representation, initialization strategy, exploration
operators and, finally, match process.

4.1 Representation definition

Each rule will be represented by four elements, as shown in the example in
figure 2: (1) an integer containing the number of expressed attributes, (2) a
vector specifying which attributes are expressed, (3) a vector specifying, for
each expressed attribute, the lower and upper bound of its associated interval
and (4) the class associated to the rule.

4.2 Initialization strategy

The initialization of the rules in any kind of EL system is crucial for a proper
learning process, and it becomes critical when dealing with problem domains
that contain hundreds of attributes. During initialization, two factors have
to be balanced: on the one hand, rules have to be sufficiently general as to be
able to match some examples. On the other hand, rules cannot be overgeneral

#EXpr. Atts. 4

Expr. Atts. 1(3(4]|7

Intervals L1|Uy|L3|Us|La|Usg|L7|U7
Class C1

Fig. 2 Example of a rule in the attribute list knowledge representation with four
expressed attributes: 1, 3, 4, and 7. l,, = lower bound of attribute n, u,= upper
bound of attribute n, c1=Class 1 of the domain

as this will decrease the accuracy of the classifier and slow down the learning
process. This issue has been studied in depth for Michigan LCS (Butz, 2006).

For continuous problems, a rule representation for continuous attributes
would need to take into account two specific issues: (1) how many and which
attributes would be relevant within a rule and (2) how would intervals be
defined for the relevant attributes. As suggested by the NAX representation
we address the first issue by having a parameter that specifies the expected
value of the number of relevant attributes in a rule. The expected value is
transformed into a probability and then, using this probability, the relevant
attributes are chosen. The answer for the second question means having to
decide the size of the interval and its position within the domain of the
attribute. The size of the interval is randomly initialized with uniform dis-
tribution to be between 25% and 75% of the domain size. Moreover, we use
a covering mechanism similar to (Wilson, 1999), that picks a random train-
ing example and initializes the interval to be centered at the value of that
instance for the attribute being initialized. In case the interval would overlap
with lower or upper bound of the domain, it is shifted to place it fully within
the attribute domain. The policy used to pick the training examples for the
rule initialization is the class-wise sampling without replacement policy from
(Bacardit, 2005).

4.3 Exploration operators

The operators used to explore the search space of this representation are
divided in two parts: (1) the traditional crossover and mutation operators
that edit the intervals for the expressed attributes and (2) the operators that
edit the list of expressed attributes.

The crossover operator that we have designed for this representation could
be defined as a “virtual one point crossover”. In a standard hyperrectangle
representation, a one point crossover operator would randomly select a cut
point within the chromosome laying in the same position (attribute) for both
parents and exchange all the genes after the cut point between parents. In
our representation we do the following (exemplified in figure 3):

— We take the first parent and we randomly choose one of its expressed
attributes

10

Cut point attribute expressed in both parents

Cut point attribute .
and cut point placed between lower and upper bounds

b

Parent 1 ‘ L ‘U] ‘L_z ‘U3 ‘L4 ‘U4 ‘L7 ‘U7‘ ‘ L ‘Ul ‘L3 Offspring 1
=

ISl [, U, L, U, L3 U3 Ls Us LU L, Uy L3 Offspring 2

Cut point attribute

Cut point attribute Cut point attribute only expressed for first parent
\i/ Complete intervals are exchanged between parents

Parent 1 ‘ L ‘U] ‘L_z ‘U} ‘L4 ‘U4 ‘L7 ‘U7‘ ‘ L ‘Ul ‘L_@ ‘U3 Offspring 1
—

ISl [, U L, U, L4 Us Ls Us LU L, Uy U7 Offspring 2

Next expressed attribute

Fig. 3 Example of the crossover operator of the attribute list knowledge represen-
tation for two cases: when the cut point attribute is expressed in both parents or
only in the first parent

— We check if such attribute is expressed for the other parent
— If the attribute is expressed for both parents then
— We select a cut point either before the lower bound, between the
two bounds or after the upper bound, and we exchange the genes
accordingly between the parents
— We exchange between parents the intervals for the rest of attributes
in the list
— If the attribute is not expressed in the second parent then
— We find the next attribute (in the order in which the attributes are
defined in the dataset) that is expressed in the second parent
— We exchange between parents the complete intervals (without mixing
bounds) after the cut point: Parent 1 gives all the intervals after the
cut point attribute and parent 2 gives the intervals starting at the
next expressed attribute after the cut point attribute
— One offspring randomly picks the class value from one parent and the
other offspring from the other parent.

The mutation operator selects one bound with uniform probability and
adds or subtracts a randomly generated offset to the bound, of size (picked
with uniform distribution) between 0 and 50% of the attribute domain. If the
mutation affects the class value of the rule, a different class value is assigned
to the rule, picked at random.

Both crossover and mutation operators can create intervals where the
lower bound is higher than the upper bound. In this case we “repair” the
rules by swapping the bounds.

To add or remove attributes to/from the list of expressed attributes we
have two operators, called specializing and generalizing respectively. These
operators are applied to the offspring population after mutation given a cer-

11

tain individual-wise probability. When the generalizing operator is applied
to an individual, we randomly selects with uniform probability one of the
expressed attributes and we remove it and its interval from the rule. When
the specializing operator is applied, one of the attributes from the domain
not expressed in the rule is randomly selected and it is added to the list.
An interval for the attribute is randomly initialized using the same policy
explained above for the initialization stage.

4.4 Match process

The match process of a rule with this representation is simple:

— For each attribute in the list of expressed attributes:
— Check if the instance’s value for the attribute lays between the bounds
— If not, the match process returns false, if true, continue with the next
attribute
— If all of the instance’s values were within the bounds of the rule intervals
for each attribute, match returns true

5 Experimental design

This section contains the description of the experimental design of the results
reported in this paper. The motivation for these experiments is two-fold: first
to study its behavior and verify if this representation can learn, at least, as
well as the state-of-the-art in EL research and second to test the represen-
tation in large datasets with hundreds of attributes to show all of its power.
The designed experiments and datasets will cover both objectives.

5.1 Experiments

In order for this representation to be able to learn properly it has to achieve
two objectives: (1) that the relevant attributes are identified and (2) that
the correct intervals for these attributes are generated. The first issue is the
most critical one. If the representation is not able to identify which attributes
should be included in the list, the search through the intervals space is futile.
Thus the application of the generalizing and specializing operators has to be
performed at the appropriate rate. If the probability of application of these
operators is too low, the representation will learn slower than it should, and
potentially converging towards a local optima. If the probability is too high
we may destroy good solutions. To analyze how sensitive is the representa-
tion to these parameters we have tested several values of them: 0.05, 0.10,
0.15, 0.20 and 0.25. That is, a probability of adding and removing attributes
ranging from 5% to 25% of the individuals in the offspring population. The
representation will be compared against the rule representation of the NAX
system, described in section 2.

5.2 Datasets

Two kinds of datasets have been used in the paper. First, we have used a
variety of real-world datasets from the well-known UCI repository (Blake
et al, 1998). Afterwards, we tested the representation in a couple of large
scale bioinformatics datasets with high number of attributes and instances.

12

5.2.1 UCI datasets

In order to determine whether this representation can learn properly, a test
suite with diverse characteristics in terms of number of attributes, number
of instances, classes, etc. is needed. To this end, we have selected 16 UCI
datasets (summarized in table 1). For simplicity, we have selected datasets
that only have continuous attributes, as this initial version of the represen-
tation is designed for this kind of features.

Table 1 Features of the datasets used in this paper. #Inst. = Number of Instances,
#Attr. = Number of attributes, #Cla. = Number of classes, Dev.cla. = Deviation
of class distribution

Dataset Properties
Code #Inst. #Attr. #Cla. Dev.cla.

bal 625 4 3 18.03%
bpa 345 6 2 7.97%
gls 214 9 6 12.69%
h-s 270 13 2 5.56%
ion 351 34 2 14.10%
irs 150 4 3 —
pen 10992 16 10 0.43%
sat 6435 36 6 6.78%
seg 2310 19 7 0.25%
son 208 60 2 3.37%
thy 215 5 3 25.78%
wav 5000 40 3 0.48%
whbed 699 9 2 15.52%
wdbc 569 30 2 12.74%
wine 178 13 3 5.28%
wpbc 198 33 2 26.26%

For all these datasets BioHEL used its standard configuration (Bacardit
et al, 2007b), summarized in table 2. We applied a stratified ten fold cross-
validation to partition these datasets into training and test sets. The process
was repeated three times. Therefore all the accuracies reported later in the
paper for these datasets is the average of the accuracy obtained in the 30
test sets. Moreover, these training and test partitions are the same that
were used in (Bacardit, 2004), so the results obtained in this paper can be
directly compared to all the machine learning methods that were tested in
that previous work. The expected value of number of expressed attributes
in the initialization of both the NAX and our representation has been set to
15 (or the number of attributes in the domain, in case of domains with less
than 15 attributes) for all the experiments in this paper. This parameter was
tuned with some previous experiments (not reported).

5.2.2 Bioinformatics datasets

The two bioinformatics datasets are part of our research in protein struc-
ture prediction (PSP). Proteins are heteropolymer molecules constructed as
a chain of residues or amino acids of 20 different types. This string of amino
acids is known as the primary sequence. In its native state, the chain folds

13

Table 2 Parameters of BioHEL for the experiments with the UCI repository
datasets

Parameter Value
General parameters
Crossover prob. 0.6
Selection algorithm tournament
Tournament size 4
Population size 500
Individual-wise mutation prob. 0.6
Default class policy disabled
Iterations 100
Number of strata of ILAS 2
Repetitions of rule learning process 2
Expected value of #expressed att. in init. 15
Rule sets per ensemble 10
MDL-based fitness function
Tteration of activation 10
Initial theory length ratio 0.01
Weight relax factor 0.90
Coverage breakpoint 0.10
Coverage ratio 0.90

to create a 3D structure. It is thought that this folding process has several
steps. The first step, called secondary structure, consists of local structures
such as alpha helix or beta sheets. These local structures can group in sev-
eral conformations or domains forming a tertiary structure. Secondary and
tertiary structure may form concomitantly. The final 3D structure of a pro-
tein consists of one or more domains. All this process is represented in figure
4. Tt is very costly to empirically determine this complex 3D structure and,
therefore, it needs to be predicted. Even after many decades of research PSP
is still an open problem, with many different ways to address it. One of the
possible solutions is to concentrate in predicting some structural features of
the amino acids in a protein, and use these predictions, among other aims,
to constrain the search space of the 3D PSP problem.

The two datasets we use in this paper predict two of these structural fea-
tures. The first of them is the secondary structure (SS) of the protein residues.
That is, the local structural motif that a protein residue can be part of. These
local motifs are here categorized in three classes: alpha, beta and coil. We
have used a protein dataset called CB513 (Cuff and Barton, 1999) of 513
proteins and 83823 residues (instances). Each instance is characterized with
300 continuous attributes that collects statistical information derived from
position-specific scoring matrices (PSSM) (Wood and Hirst, 2005) computed
from the target residue (the one for which we are predicting the secondary
structure) and its nearest neighbours in the chain.

The next dataset predicts the coordination number (CN) of protein
residues. In the native state each residue will have a set of spatial near-
est neighbours. The number of nearest neighbours within a certain distance
of a given residue is its coordination number. We have used the coordination
number definition and dataset from (Bacardit et al, 2006). The dataset con-
tains 257560 instances and 180 continuous attributes, again using the PSSM

14

Fig. 4 Graphical representation of protein folding. Top: residues in the unfolded
chain are represented by a chain of circles. Next, residues begin to form contacts.
Short range contacts lead to formation of helical and pleated sheet structures.
Finally the overall folded structure is formed. (Illustration Courtesy of National
Human Genome Research Institute)

Primary protein structure
is sequence of a chain of amino acids

Pleated sheet Alpha helix

occurs when the sequence of amino acids
are linked by hydrogen bonds

A

Secondary protein structure
A
A

Pleated sheet
Tertiary protein structure
occurs when certain attractions are present
between alpha helices and pleated sheets.

Alpha helix

v

representation. This specific dataset predicts whether the coordination num-
ber of a residue is higher or lower than the mid-point of the CN domain.
Thus, it is a dataset with two classes.

Both datasets were partitioned into training and test sets using the strat-
ified ten-fold cross-validation procedure. The same configuration of BioHEL
detailed in the previous subsection has been used except for the following
three parameters: default class policy set to major; number of strata of the
ILAS windowing scheme set to 20; coverage breakpoint is 0.0025 for the SS
dataset and 0.001 for the CN one.

6 Results
6.1 UCI datasets

Table 3 shows the accuracy results of BioHEL using both the NAX represen-
tation and the attribute list knowledge representation. We used a Friedman
statistical test for multiple comparisons as suggested in (Demsar, 2006) to

&

Quaternary protein structure
is a protein consisting of more than one
amino acid chain.

15

test whether the differences showed by the different compared methods (NAX
vs attribute list with various parameter sets) was significant or not. The re-
sult of the test was that the performance differences between the compared
methods were not significant. That is, our proposed representation is able to
achieve, for at least the 16 UCI datasets, a similar performance to that of
the state of the art, namely NAX.

Table 3 Accuracy of BioHEL using the NAX and the attribute list knowledge
representation on the UCI datasets

Prob. of Generalize and Specialize in Att. List KR]

’ Dataset H NAX H 005 [010 [015 [020 [02 |
Dal 880132 || 87.4L3.0 | 88.053.6 | 88.753.4 | 87.7E44 | 88.2%41
bpa 68.0E7.2 || 60.5L7.5 | 70.0£7.2 | 60.716.3 | 68.6£8.4 | 60.3L7.0
als 74.0E10.4 || 75.018.2 | 74.4E8.5 | 75.4%0.4 | 76.2E7.0 | 7T.8E75
hos 78.0E8.7 || 785164 | 79.350.1 | 79.0L8.7 | 77.0E7.0 | 77.0E7.4
fon 93.1%4.7 || 93.013.8 | 92.7545 | 02.514.2 | 92.0543 | 91.614.0
s 94.4F4.6 || 93.6T4.7 | 93.155.0 | 03.6T4.7 | 03.8%4.5 | 94.054.7
pen 9520508 || 94.8T1.0 | 94.8E1.0 | 04.610.0 | 94.0F1.1 | 94.0L1.2
at R85E13 || 885112 | 88.2E1.0 | 885512 | 88.5E1.0 | 88.4E1.1
sog 971508 || 97.0£1.0 | 97.050.8 | 97.0£0.0 | 97.2£0.8 | 97.1£038
son 813105 || 82.319.0 | 82.750.2 | SLAL11.6 | 82.07.2 | 83.7£73
thy 94.3%5.3 || 03.0%46 | 04142 | 932551 | 93.054.2 | 93.5%5.2
wav R1.3E1.7 || 847114 | 84.6515 | 85.1L1.6 | 84.651.6 | BA.7E1.7
whed 95.312.6 || 95.512.3 | 95.452.6 | 955121 | 95.552.4 | 95.4125
wdbe 95.0F2.7 || 95.812.6 | 96.4E2.0 | 06225 | 96.1£2.0 | 96.0L2.5
wine 93.0565 || 92.356.5 | 92.456.8 | 015155 | 92.356.3 | 92.46.0
Wpbe 785175 || 784E78 | 78.5E81 | 773465 | 77.4E70 | 78.4L75

Table 3 also provides some insight on the dependence of the proposed
representation to the generalizing/specializing probabilities. Our aim in test-
ing various values for these probabilities is to check how sensitive was the
representation to these parameters, and to determine if a value too high
would be harmful. The accuracy results reported in table 3 suggest that a
high probability of specializing and generalizing is not harmful, as all tested
configurations obtained statistically similar results.

Thus, we turn next to evaluate the run-time differences among the studied
representations/parameter values, in order to determine how efficient is the
new representation. Table 4 shows the average run-time of the BioHEL runs
for each dataset and tested configuration. All experiments reported in the
paper were performed using Opteron processors running at 2.2GHz, Linux
operating system and the C++ implementation of BioHEL. A batch version
of BioHEL has been used, without any form of parallelism.

We can observe some interesting results. First of all, for most datasets
an increasing probability of generalizing and specializing the attribute list
manages to reduce the run-time of BioHEL. To evaluate rigorously these
run-time differences we have applied again the Friedman test for multiple
comparisons. The test indicated that there are significant performance dif-
ferences between the tested BioHEL configurations with a p-value of 2.7e75.
the Holm post-hoc test (Demsar, 2006) (with 95% confidence level) indicated
two different groups of methods in relation to run-time. The two configura-
tions of the attribute list knowledge representation with a probability of 0.20

16

and 0.25 obtained similar performance, and both of them were significantly
better than all the other configurations of our representation as well as the
NAX representation.

Even if our representation (with high probability of generalizing & spe-
cializing) is significantly better than NAX in general, in some datasets (the
ones with low number of attributes) NAX is faster than our representation.
On the other hand, in datasets with high number of attributes (such as sat
or son) the proposed representation is substantially faster than the NAX
representation.

Table 4 Average run-time of BioHEL’s training process (in seconds) using the
NAX and the attribute list knowledge representation on the UCI datasets

[Prob. of Generalize and Specialize in Att. List KR]
Dataset) NAX H 005 [010 [015 [020 | 025]
bal 9.4£0.5 12.5+£0.6 | 12.4+0.7 | 12.440.6 | 11.9£0.6 | 11.9£0.6
bpa 6.0£0.3 7.3£0.4 7.4+0.4 7.4+0.4 7.3+0.4 7.4+0.4
gls 4.54+0.3 5.54+0.4 5.440.4 5.440.4 5.240.3 5.34+0.3

h-s 4.4£0.3 5.0+0.4 4.8£0.3 4.7£0.3 4.5£0.3 4.5+£0.3

ion 3.7£0.5 2.5+0.3 2.5+0.3 2.440.3 2.440.3 2.4+0.3

irs 1.3+0.2 1.6+0.2 1.6+0.2 1.6+0.2 1.6+0.2 1.6+0.2

pen 174.0+13.7(|179.24+15.0{167.1+13.6(160.4+13.5[152.04£12.3{146.4+11.8
sat 110.3+6.1 || 81.3£3.9 | 79.6+3.6 | 78.94+3.5 | 75.4+3.5 | 76.2+3.4
seg 24.94+1.5 20.44+1.3 | 19.0£1.2 | 18.0£1.1 | 17.3+1.0 | 16.9£+1.0
son 4.4£0.3 2.5+0.2 2.5+0.2 2.4+0.2 2.4+0.2 2.4+0.2

thy 1.64+0.2 2.0+0.2 1.940.2 2.0+0.2 1.940.2 2.0+0.2

wav 105.1+1.5 || 80.1£1.3 | 80.4+1.3 | 80.4+1.3 | 79.6£1.3 | 78.9£1.3
wbcd 3.6£0.4 3.840.5 3.4£0.5 3.1£0.4 3.0+0.4 2.940.4
wdbc 4.940.3 3.4+0.3 3.3£0.3 3.3+0.3 3.240.2 3.240.3

wine 1.240.1 1.34+0.1 1.240.1 1.240.1 1.240.1 1.240.1
wpbc 3.7£0.3 3.0+0.3 3.0£0.3 2.940.3 2.840.3 2.9+0.3

6.2 Bioinformatics datasets

We turn now to the second stage of our evaluation process. For which we rely
on much larger and harder (as shown in our previous work (Bacardit et al,
2006)) datasets. Here we aim at showing the full power of the representation,
in what pertains to both increased performance (accuracy), and reduced
run-time (efficiency). Table 5 shows, for each of the two tested datasets,
the obtained accuracy, average rule-set size, average number of expressed
attributes per rule and run-time (reported in hours). In the introduction sec-
tion we said that this representation could potentially help explore better
the search space because it only needs to recombine relevant attributes. In
these datasets, specially in the secondary structure dataset, we can see that
this is, indeed, the case. The attribute list knowledge representation manages
to obtain an accuracy 1% higher than the NAX representation. In the co-
ordination number dataset our representation also obtains higher accuracy,
although the difference is minor.

We can clearly see the difference in the learning capacity of both repre-
sentations in figure 5. This figure plots how the training accuracy of BioHEL
for the SS dataset increases with each new rule being learned, considering
that all examples not matched by the learned rules will be classified using

17

Table 5 Results of the experiments on the bioinformatics datasets

Prob. of Generalize and Specialize in Att. List KR |

Dataset| Result H NAX H 0.05 [010 [010 | 020 [025 |
Acc. 72.421.0 || 73.320.8 | 73.420.0 | 73.320.8 | 73.340.8 | 73.220.7

a8 Frules |[268.7£13.6][290.0£10.4|281.6£10.3[271.4110.3| 263.457.8 | 253.3L0.1

#exp. att. 13.1£3.0 14.6£3.2 | 14.4+3.2 | 14.1£3.2 | 13.7£3.2 | 13.4£3.2
run-time (h)[] 16.1£0.9 6.4+0.4 6.0£0.6 5.9£0.6 5.7+0.4 5.6+0.4

Acc. 80.940.4 81.1+0.4 | 81.1+0.4 | 81.1£0.4 | 81.0+£0.4 | 81.0+0.4

F#rules 263.2+12.6([284.7£12.5]275.1£13.3]265.5+13.4[255.5+11.2[245.1£11.8
#exp. att. 14.3£2.9 16.3+£3.0 | 16.1+£3.1 | 15.7£3.1 | 15.2£3.1 | 14.8£3.1
run-time (h)[| 45.7£2.5 30.9£2.1 | 29.8£2.3 | 28.9£2.3 | 28.1+1.8 | 26.7£2.0

CN

the domain majority class. In the figure we can see how the performance
difference between the NAX and our representation increases with every rule
being learned, being our representation able to learn better. We would like
to remind the reader that what we have reported in table 5 is the accuracy
obtained by an ensemble of rule sets. This is the reason that the test accuracy
is higher than the training accuracy showed in figure 5.

0.75 T

NAX KR
Attribute List KR -------

Training accuracy

0.4 I I I I I
0 50 100 150 200 250 300

Number of rules in the rule set

Fig. 5 Evolution of the training accuracy of BioHEL for the SS dataset when
adding new rules to the rule set

Higher probabilities of generalizing and specializing show the same be-
havior observed in the experiments with the UCI datasets: Higher run-time
reduction and, in this case, also generation of more compact solutions, with
smaller rule sets and expressed attributes per rule. The obtained run-time
reductions are quite important. In the SS dataset we have managed to re-
duce the average run-time from more than 16 hours to less than 6 hours. Our
representation is almost three times faster than NAX. On the CN dataset
our representation is up to 1.7 times faster than NAX. The run time of our
representation is up to 19 hours shorter.

18

6.3 Comparison to other machine learning techniques

In order to place in a wider context the performance levels of our represen-
tation, we have picked up a couple of standard machine learning technique
such: the well-known C4.5 (Quinlan, 1993), a rule induction system and Naive
Bayes (NB) (John and Langley, 1995), a Bayesian learning algorithm and
trained them on all the datasets used in the paper. We have used the imple-
mentations of both systems included in the Weka (Witten and Frank, 2000)
machine learning package using the default parameters. Table 6 contains the
test accuracy of both C4.5 and NB and includes also for comparison the per-
formance of our representation using a probability of generalize and specialize
of 0.25 (the best configuration so far).

The results of this comparison indicate that BioHEL using the new repre-
sentation was the best method 11 times. Naive Bayes was the best method in
6 datasets and C4.5 was the best method only two times. 9 of the 11 datasets
where BioHEL was the best method are precisely the 9 datasets with larger
number of attributes, the ones for which the attribute list rule representation
has been designed to tackle. Moreover, the performance difference is specially
large in the two bioinformatics datasets. The results in table 6 were again
analyzed using the Friedman test for multiple comparisons, that determined
that the performance differences between the methods was significant with a
p-value of 0.03795. The post-hoc Holm test revealed that the control method
(BioHEL) was significantly better than both C4.5 and Naive Bayes with a
confidence level of 95%.

Table 6 Accuracy of C4.5, Naive Bayes and BioHEL using the attribute list knowl-
edge representation all the tested datasets. Best method for each dataset is marked
in bold

[Dataset “ C4.5 [NB [BioHEL]
bal 77.7£2.9 90.3+1.7 88.2+4.1
bpa 65.7£7.9 55.71+8.8 69.3+7.9
gls 68.8+£9.6 48.949.7 77.8+7.5
h-s 79.8£6.5 84.0+8.0 77.9+£7.4
ion 89.0£5.9 83.248.1 91.6+4.0
irs 94.2+5.4 95.8+5.3 94.0+4.7
pen 96.5+0.7 85.8+1.2 94.0+1.2
sat 86.5+1.4 79.6£1.5 88.4+1.1
seg 97.1+1.1 80.3+1.8 97.1+0.8
son 73.2+8.6 68.8+10.8 | 83.7+7.3
thy 92.7+5.9 97.0+3.9 93.5+5.2
wav 75.1£1.5 80.0+1.8 84.7+1.7
wbed 94.3+2.8 96.0+2.4 95.44+2.5
wdbc 93.3+3.3 93.3+3.0 96.0+2.5
wine 92.2+6.4 96.6+4.1 92.44+6.9
wpbc 71.1£8.6 68.249.3 78.4+7.5

[SS “ 55.1£0.7 [67.7£0.7 [73.2+0.7]

[CN H 73.1£0.4 [75.7£0.6 [81.0+0.4 \

6.4 Modelling the efficiency of the representation

As we have seen in the results presented earlier in this section, our represen-
tation is faster than the NAX representation in many datasets, specially in

19

the ones with larger number of attributes, but it is also slower than NAX
sometimes. Thus, we would like to investigate further into the relative effi-
ciency gains between the two systems to determine if we can model this gain,
by determining in which circumstances the proposed representation is faster
or slower than NAX.

The answer to the first question is straightforward: Our representation
is faster than NAX in the match process, where it can exploit the fact that
it only holds information from the relevant attributes of the domain. The
complexity of the match process for NAX is O(N) where N is the number
of attributes in the domain', while our representation has a complexity of
O(E), where FE is the number of expressed attributes in the domain. The
performance advantage of our representation depends on how large is the
difference between N and F.

The brief answer to the second question is that our representation has
more overhead than NAX in all tasks related to managing the list of ex-
pressed attributes. This task is performed by three operators: crossover, gen-
eralizing and specializing. These three operators have a complexity of O(FE).
The crossover operator has to look through the list of attributes of the second
parent to identify the appropriate cut point, as explained in section 4. The
generalizing and specializing operators have to compact or expand the lists
held by of the representation (attributes and intervals) when an expressed
attributes has been selected to be removed or a non expressed attribute has
been selected to be expressed. Thus, we can say that the higher the number
of expressed attributes, the higher the overhead of the representation.

From the simple analysis we made of gain and overhead of our representa-
tion we can see that a model of the relative performance of our representation
against NAX should only take into account two variables: the number of at-
tributes and the number of expressed attributes of each domain. We created
a simple model, specified in equation 8, and fitted it? using run-time data
that we collected from the experiments reported in previous sections. For each
dataset, the speedup is computed as the run-time of NAX divided by the run-
time of our representation using a probability of generalizing/specializing of
0.25, as this setting was in average the fastest setting of our representation.
E is extracted from the rule sets resulting of each run of BioHEL, again
from the setting that uses a probability of generalizing/specializing of 0.25,
and averaged across all runs. The p-value of applying an F-statistic to the
fitting of this model was less than 2.2¢ !¢ (a = 0.55282, b = —0.06518). We
can observe in the fitted value for a and b a reflection of the analysis we
made previously in this section: the gain of our representation increases with
the number of attributes in the domain and decreases with the number of
expressed attributes. Figure 6 plots the fitted model overlapped to the em-
pirical data. We also fitted models to compare the speedup of NAX and the
other tested probabilities of the generalizing and specializing operators. The
parameters of these other models were very similar to the ones for the 0.25

1 Although NAX can deem some attributes irrelevant, it still need to check if
these are relevant or not during the match process

2 We have used the Im function of R to fit the model

20

probability. We will not plot these models as they overlap quite substantially
with the one shown in figure 6.

Speedup =a- VN +b-E (8)

Fig. 6 Speedup between the NAX and the attribute list knowledge representation
in relation to the total number of attributes and the number of expressed attributes
of each domain

7 Conclusions and further work

In this paper we introduce a new representation intended to improve the
efficiency of Evolutionary Learning (EL) methods on problems with high
number of continuous attributes. The representation keeps a list of relevant
attributes, and only evolve intervals to cover them, ignoring irrelevant ones.
In this way the representation is much faster as it does not need to perform
match operations on irrelevant attributes. Moreover, the exploration takes
place only on the attributes that have shown to be relevant to the problem,
potentially leading to a much better learning process.

We tested the representation integrated in BioHEL, a recent EL method
applying the Iterative Rule Learning approach, and we compared its per-
formance against the knowledge representation of the NAX system, also de-
signed for efficiency purposes. Our test suite included many standard datasets

21

from the UCI repository, to verify if the representation was able to learn
properly, and also two large-scale bioinformatics datasets with high number
of attributes.

Our results show that the representation has competent performance
when compared to NAX (even learning better in some datasets) and also
manages to substantially reduce the run-time of the system. In the large
datasets this reduction is very considerable, having run-times many hours
shorter than the NAX representation. These characteristics of the represen-
tation will allow us to tackle much larger datasets that before we could not
afford to solve using EL techniques. The comparison against two standard
machine learning techniques revealed that our system significantly performed
them, specially in datasets with a high number of attributes.

In future work, we would test this representation integrated within both
Michigan and Pittsburgh approaches of LCS. We hope to investigate whether
further tuning of the representation, by e.g. testing other settings of its pa-
rameters, leads to better and faster learning process. It would also be inter-
esting to study alternative initialization policies, alternative policies of appli-
cation of the specialize and generalize operators as e.g. local search methods,
as well as evaluating the interactions between this representation and other
efficiency enhancement techniques. Finally, we would like to study how can
we extend the representation to also deal with nominal attributes, specially
having in mind the GABIL (De Jong and Spears, 1991) representation, used
previously in bioinformatics datasets (Bacardit et al, 2006, 2007b; Stout et al,
2008).

Acknowledgments

We would like to thank Michael Stout and Jonathan D. Hirst for their collab-
oration. We are grateful for the use of the University of Nottingham’s High
Performance Computer. This work was supported by the UK Engineering and
Physical Sciences Research Council (EPSRC) under grants GR/T07534/01
and EP/E017215/1.

References

Bacardit J (2004) Pittsburgh genetics-based machine learning in the data mining era: Rep-
resentations, generalization, and run-time. PhD thesis, Ramon Llull University, Barcelona,
Spain

Bacardit J (2005) Analysis of the initialization stage of a pittsburgh approach learning clas-
sifier system. In: GECCO 2005: Proceedings of the Genetic and Evolutionary Computation
Conference, ACM Press, vol 2, pp 1843-1850

Bacardit J, Butz MV (2007) Data mining in learning classifier systems: Comparing xcs with
gassist. In: Advances at the frontier of Learning Classifier Systems, Springer-Verlag, pp 282—
290, DOI http://dx.doi.org/10.1007/978-3-540-71231-2_19

Bacardit J, Krasnogor N (2006a) Biohel: Bioinformatics-oriented hierarchical evolutionary learn-
ing. Nottingham eprints, University of Nottingham

Bacardit J, Krasnogor N (2006b) Empirical evaluation of ensemble techniques for a pittsburgh
learning classifier system. In: Ninth International Workshop on Learning Classifier Systems
(IWLCS 2006), Springer, Lecture Notes in Artificial Intelligenge, URL http://www.asap.cs.
nott.ac.uk/publications/pdf/iwlcs2006.pdf, to appear

Bacardit J, Goldberg D, Butz M, Llora X, Garrell JM (2004) Speeding-up pittsburgh learning
classifier systems: Modeling time and accuracy. In: Parallel Problem Solving from Nature -
PPSN 2004, Springer-Verlag, LNCS 3242, pp 1021-1031

Bacardit J, Stout M, Krasnogor N, Hirst JD, Blazewicz J (2006) Coordination number pre-
diction using learning classifier systems: performance and interpretability. In: GECCO ’06:

22

Proceedings of the 8th annual conference on Genetic and evolutionary computation, ACM
Press, pp 247-254

Bacardit J, Goldberg DE, Butz MV (2007a) Improving the performance of a pittsburgh learning
classifier system using a default rule. In: Learning Classifier Systems, Revised Selected Papers
of the International Workshop on Learning Classifier Systems 2003-2005, Springer-Verlag,
LNCS 4399, pp 291-307

Bacardit J, Stout M, Hirst JD, Sastry K, Llorda X, Krasnogor N (2007b) Automated alphabet
reduction method with evolutionary algorithms for protein structure prediction. In: GECCO
’07: Proceedings of the 9th annual conference on Genetic and evolutionary computation, ACM
Press, New York, NY, USA, pp 346-353, DOI http://doi.acm.org/10.1145/1276958.1277033

Bernadé E, Llora X, Garrell JM (2001) XCS and GALE: a comparative study of two learn-
ing classifier systems with six other learning algorithms on classification tasks. In: Fourth
International Workshop on Learning Classifier Systems - IWLCS-2001, pp 337-341

Blake C, Keogh E, Merz C (1998) UCI repository of machine learning databases.
(www.ics.uci.edu/mlearn/MLRepository.html)

Breiman L (1996) Bagging predictors. Machine Learning 24(2):123-140

Butz MV (2006) Rule-Based Evolutionary Online Learning Systems: A Principled Approach to
LCS Analysis and Design, Studies in Fuzziness and Soft Computing, vol 109. Springer

Cantu-Paz E, Kamath C (2003) Inducing oblique decision trees with evolutionary algorithms.
IEEE Transactions on Evolutionary Computation 7(1):54-68

Corcoran AL, Sen S (1994) Using real-valued genetic algorithms to evolve rule sets for classifi-
cation. In: Proceedings of the IEEE Conference on Evolutionary Computation, IEEE Press,
pp 120-124, URL citeseer.nj.nec.com/corcoran94using.html

Cordén O, Herrera F, Hoffmann F, Magdalena L (2001) Genetic Fuzzy Systems. Evolutionary
tuning and learning of fuzzy knowledge bases. World Scientific

Cuff JA, Barton GJ (1999) Evaluation and improvement of multiple sequence methods for pro-
tein secondary structure prediction. Proteins 34:508-519

De Jong KA, Spears WM (1991) Learning concept classification rules using genetic algorithms.
In: Proceedings of the International Joint Conference on Artificial Intelligence, Morgan Kauf-
mann, pp 651-656

Demsar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res
7:1-30

Divina F, Marchiori E (2005) Handling continuous attributes in an evolutionary inductive
learner. IEEE Transactions on Evolutionary Computation 9(1):31-43

Divina F, Keijzer M, Marchiori E (2003) A method for handling numerical attributes in GA-
based inductive concept learners. In: GECCO 2003: Proceedings of the Genetic and Evolu-
tionary Computation Conference, Springer-Verlag, pp 898-908

Freitas AA (2002) Data Mining and Knowledge Discovery with Evolutionary Algorithms.
Springer-Verlag

Fiirnkranz J (1999) Separate-and-conquer rule learning. Artificial Intelligence Review 13(1):3—
54, URL citeseer.ist.psu.edu/26490.html

Giraldez R, Aguilar-Ruiz J, Riquelme J (2003) Natural coding: A more efficient representation
for evolutionary learning. In: GECCO 2003: Proceedings of the Genetic and Evolutionary
Computation Conference, Springer-Verlag, pp 979-990

Giraldez R, Aguilar-Ruiz JS, Santos JCR (2005) Knowledge-based fast evaluation for evolution-
ary learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C 35(2):254-261

Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res
3:1157-1182, URL http://portal.acm.org/citation.cfm?id=944968

John GH, Langley P (1995) Estimating continuous distributions in Bayesian classifiers. In: Pro-
ceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Morgan Kauf-
mann Publishers, San Mateo, pp 338-345, URL citeseer.ist.psu.edu/john95estimating.html

Llora X (2008) Personal communication

Llora X, Garrell JM (2001) Knowledge-independent data mining with fine-grained parallel evo-
lutionary algorithms. In: Proceedings of the Third Genetic and Evolutionary Computation
Conference, Morgan Kaufmann, pp 461-468

Llora X, Sastry K (2006) Fast rule matching for learning classifier systems via vector in-
structions. In: GECCO ’06: Proceedings of the 8th annual conference on Genetic and
evolutionary computation, ACM Press, New York, NY, USA, pp 1513-1520, DOI http:
//doi.acm.org/10.1145/1143997.1144244

Llora X, Priya A, Bhargava R (2008) Observer-invariant histopathology using genetics-based
machine learning. Natural Computing, Special issue on Learning Classifier Systems p in press

23

Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan Kaufmann

Rissanen J (1978) Modeling by shortest data description. Automatica vol. 14:465-471

Ruiz R (2007) New heuristics in feature selection for high dimensional data. AT Commun
20(2):129-131

Stone C, Bull L (2003) For real! XCS with continuous-valued inputs. Evolutionary Computation
Journal 11(3):298-336

Stout M, Bacardit J, Hirst JD, Krasnogor N (2008) Prediction of recursive convex hull class
assignments for protein residues. Bioinformatics 24(7):916-923

Vafaie H, De Jong KA (1992) Genetic algorithms as a tool for feature selection in machine learn-
ing. In: Proceeding of the 4th International Conference on Tools with Artificial Intelligence,
pp 200203

Venturini G (1993) Sia: A supervised inductive algorithm with genetic search for learning at-
tributes based concepts. In: Brazdil PB (ed) Machine Learning: ECML-93 - Proc. of the
European Conference on Machine Learning, Springer-Verlag, Berlin, Heidelberg, pp 280-296

Wilson SW (1995) Classifier fitness based on accuracy. Evolutionary Computation 3(2):149-175

Wilson SW (1999) Get real! XCS with continuous-valued inputs. In: Booker L, Forrest S, Mitchell
M, Riolo RL (eds) Festschrift in Honor of John H. Holland, Center for the Study of Complex
Systems, pp 111-121, URL citeseer.nj.nec.com/233869.html

Witten IH, Frank E (2000) Data Mining: practical machine learning tools and techniques with
java implementations. Morgan Kaufmann

Wood MJ, Hirst JD (2005) Protein secondary structure prediction with dihedral angles. Proteins
59:476 — 481

Yang J, Honavar VG (1998) Feature subset selection using a genetic algorithm. IEEE Intelligent
Systems 13(2):44-49, DOI http://dx.doi.org/10.1109/5254.671091

