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A B S T R A C T

Linear discriminant analysis (LDA) is a commonly used classification method. It can provide important

weight information for constructing a classification model. However, real-world data sets generally have

many features, not all of which benefit the classification results. If a feature selection algorithm is not

employed, unsatisfactory classification will result, due to the high correlation between features and

noise. This study points out that the feature selection has influence on the LDA by showing an example.

The methods traditionally used for LDA to determine the beneficial feature subset are not easy or cannot

guarantee the best results when problems have larger number of features.

The particle swarm optimization (PSO) is a powerful meta-heuristic technique in the artificial

intelligence field; therefore, this study proposed a PSO-based approach, called PSOLDA, to specify the

beneficial features and to enhance the classification accuracy rate of LDA. To measure the performance of

PSOLDA, many public datasets are employed to measure the classification accuracy rate. Comparing the

optimal result obtained by the exhaustive enumeration, the PSOLDA approach can obtain the same

optimal result. Due to much time required for exhaustive enumeration when problems have larger

number of features, exhaustive enumeration cannot be applied. Therefore, many heuristic approaches,

such as forward feature selection, backward feature selection, and PCA-based feature selection are used.

This study showed that the classification accuracy rates of the PSOLDA were higher than those of these

approaches in many public data sets.

� 2009 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Applied Soft Computing

journal homepage: www.elsev ier .com/ locate /asoc
1. Introduction

Various methods have been adopted in classification problems.
Linear discriminant analysis (LDA) is a popular classification
method applied to a variety of fields. For example, diagnosis of
heart valve diseases [1], face recognition [40], classification of
adolescent psychotic disorders [26], identification of citrus disease
[30], electricity loads [25], digital image recognition [31], and
emotional speech recognition [7]. LDA is a supervised algorithm
that searches for a discriminative subspace, in which patterns
belonging to the same class are as grouped as tightly as possible,
while patterns belonging to the other classes are more widely
separated. The common purposes of LDA are as follows: (1) to
examine differences between groups; (2) to distinguish effectively
among groups; (3) to identify significant discriminating variables/
features; (4) to perform hypothesis testing on the differences
among the expected groupings, and (5) to classify new observa-
tions into pre-existing groups [10].
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Most pattern classification problems involving a large set of
potential features must identify a small subset for features to be
employed for classification, an act known as feature selection. The
data without feature selection may be redundant or noisy, and may
degrade the accuracy rate of classification. The main advantages of
feature selection are as follows: (1) lowering computational cost
and storage requirements, (2) minimizing the degradation of
classification accuracy rate because of the finite nature of training
sample sets, (3) decreasing training and prediction time and, (4)
facilitating understanding and visualization of data [23].

Finding an optimal subset of features in feature selection is
inherently combinatory, since the usefulness of each feature needs
to be determined. Hence, feature selection is an optimization
problem. An optimal approach is necessary to measure all possible
subsets. Many researchers have adopted traditional statistical
methods for feature selection over past decades, such as forward
feature selection, backward feature selection, PCA-based feature
selection. Principal component analysis (PCA) is the most widely
adopted traditional statistical method [6,8,22]. Features selected
using PCA are proved to be variable-independent but may not be
the most beneficial for a specific problem. This study proposes a
particle swarm optimization approach that identifies the beneficial
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subsets of features for different problems in order to maximize the
classification accuracy rate of LDA.

The remainder of this study is structured as follows. Section 2
reviews previous work on discriminant analysis, principal
component analysis, and feature selection. Section 3 elaborates
on the proposed PSOLDA approach to identify the beneficial subset
of features for LDA. Section 4 presents the experiment results.
Conclusions and suggestions for future research are discussed in
the final section.

2. Literature review

2.1. Linear discriminant analysis

Linear discriminant analysis is a multivariate statistical method
that is commonly utilized to construct a predictive/descriptive
group discrimination model according to observed predictor
variables. It is a technique for classifying a set of observations
into predefined classes. LDA employs multiple attributes/features
to distinguish each classification variable. LDA is different from
cluster analysis since it requires prior knowledge of the classes,
generally in the form of a sample from each class [2,9,10].

The model is constructed according to a set of observations for
which the classes are known in advance. This set of observations is
called the training set. A set of linear functions of the predictors,
known as discriminant functions, is built from the training set.
Eq. (1) depicts an example of such a linear function.

di ¼ wi1x1 þwi2x2 þ � � � þwi jx j þ bi i ¼ 1; . . . ; g (1)

In Eq. (1), wi j denotes discriminant coefficients, where xj

represents the input variables or features, bi indicates a constant
for discriminant function i. These discriminant functions are
utilized to predict the class of a new observation with unknown
class. g discriminant functions are constructed in a g-class
problem. All of the g discriminant functions are measured for
each new observation. The new observation is then assigned to the
class i with the highest-value discriminant function [2,9]. Detailed
procedures for constructing the discriminant functions can be
found in [17].

In order to illustrate the above concept, an example shown in
Table 1 is used. This demonstrative example has 12 instances, and
four variables, x1, x2, x3 and x4, can be used to classify its class.
There are three classes, labeled 1, 2, and 3.

If all of four variables (feature selection is not applied) are used
to build the classification model, three discriminant functions can
be obtained as follows:

d1: 13.884323x1 + 2.317973x2 + 11.975050x3 + 6.546200x4 �
12.282051
Table 1
Data values of example.

Instance x1 x2 x3 x4 Class label

1 0.904762 0.666667 0.142857 1.000000 1

2 0.095238 0.714286 0.214286 0.000000 3

3 0.523810 0.000000 0.071429 0.000000 2

4 0.000000 1.000000 0.214286 1.000000 2

5 0.714286 0.952381 0.214286 1.000000 1

6 0.809524 0.619048 0.642857 1.000000 1

7 0.285714 0.190476 0.071429 0.000000 3

8 0.476190 0.904762 0.214286 1.000000 3

9 1.000000 0.809524 0.285714 0.000000 3

10 0.238095 0.904762 0.000000 1.000000 2

11 1.000000 0.809524 1.000000 0.000000 1

12 0.095238 0.666667 0.357143 0.000000 2
d2: 4.375346x1 + 5.463215x2 + 1.957248x3 + 0.028840x4 �
2.639310
d3: 7.727297x1 + 7.652076x2 � 0.052000x3 � 0.633000x4 �
4.214748

According to these discriminant functions, the classification
accuracy rate is 66.67% (8/12). Detailed results of the classification
process are shown in Table 2.

If certain feature selection method is performed, only three
variables, x1, x3 and x4, are necessary to construct the classification
model. Then three discriminant functions can be obtained as
follows:

d1: 13.716540x1 + 13.522430x3 + 7.650988x4 � 12.128247
d2: 3.979899x1 + 5.604261x3 + 3.632706x4 � 1.784938
d3: 7.173414x1 + 5.056205x3 + 3.014117x4 � 2.538613

Using these discriminant functions, the classification accuracy
rate is 83.33% (10/12). Detailed results of the classification process
are shown in Table 3.

In addition we test all possible combinations of the selected
features (in this case the number of possibilities is 24 � 1 = 15). The
results of this test are displayed in Table 4.

This example shows that feature selection can help increase the
classification accuracy rate for LDA. Clearly, the number of possible
solutions is 2D � 1, where D is the number of total features in a
given dataset. For example, if the number of features for a dataset is
20, the number of possible solutions is 220 � 1 = 1,048,575.
Obtaining the optimal subset of features for problems with a
larger number features by the exhaustive enumeration requires
greater computational costs. That is, trying all possible combina-
tions and choosing the best one is not a realistic possibility if the
number of features is large.

LDA often suffers from the small sample size problem when the
number of dimensions of the data is much greater than the number
of data points. A number of effective approaches to this problem
have been proposed, including regularized LDA, PCA + LDA [27],
pseudo-inverse LDA, orthogonal LDA [18], LDA/GSVD [24], and
LDA/QR [19]. The PCA + LDA method [27], one of the most popular
methods, applies PCA to reduce the number of dimensions of the
data before performing LDA. Li et al. [38] showed that discriminant
analysis is well-known approach to learn the discriminative
feature transformations in the statistical pattern recognition
literature, providing a fast, efficient solution. Liang et al. [41]
pointed out that the two-dimensional linear discriminant analyses
(2DLDA) have advantages in handling the singularity problem and
in the computational costs. It has been empirically shown that
2DLDA is not stronger than LDA under the same dimensionality
[41]. On the other hand, they found the matrix-based methods are
not always better than vector-based methods for small sample size
problems.

2.2. Principal component analysis

Principal component analysis (PCA) [12] is a well-known data
processing and dimension reduction method (feature selection)
for re-expressing multivariate data. It is a statistical method that
is primarily used to transform the input space into a new lower
dimensional space. When the size of the data set is unwieldy,
principal components may be useful in reducing its dimension-
ality [13]. It permits researchers to reorient the data so that the
first few dimensions account for as much of the information as
possible. If substantial redundancy exists in the data set, then it
can be possible to represent most of the original data set with a
relatively small number of dimensions [35]. PCA has the
advantage that each component is uncorrelated with any others



Table 2
Classification result of example using four features to construct classification model.

Instance Discriminant function 1 Discriminant function 2 Discriminant function 3 Predict class Real class Correct?

1 10.082193 6.269929 7.237576 1 1 Y

2 �6.737954 2.099098 1.975812 2 3 N

3 �4.153937 �0.207656 �0.170827 3 2 N

4 �0.851792 4.272156 2.793185 2 2 Y

5 8.955206 7.137252 7.948302 1 1 Y

6 14.637024 6.571702 6.111259 1 1 Y

7 �7.018221 �0.208797 �0.553129 2 3 N

8 5.539025 5.835347 5.744079 2 3 N

9 6.900167 6.717853 9.692231 3 3 Y

10 �0.332849 4.374188 3.915390 2 2 Y

11 15.453777 8.115889 9.655089 1 1 Y

12 �5.137614 2.118552 1.603999 2 2 Y

Table 3
Classification result of example using four variables to construct classification model.

Instance Discriminant function 1 Discriminant function 2 Discriminant function 3 Predict class Real class Correct?

1 9.864719 6.249238 7.688051 1 1 Y

2 �7.924243 �0.204985 �0.771957 2 3 N

3 �3.977491 0.700081 1.580053 3 2 N

4 �1.579592 3.048683 1.558978 2 2 Y

5 8.217941 5.891470 6.682847 1 1 Y

6 15.319598 8.672332 9.532971 1 1 Y

7 �7.243345 �0.247518 �0.127908 3 3 Y

8 4.952088 4.943871 4.974886 3 3 Y

9 5.451841 3.796178 6.079430 3 3 Y

10 �1.211419 2.795363 2.183458 2 2 Y

11 15.110724 7.799224 9.691006 1 1 Y

12 �5.992469 0.595623 �0.049643 2 2 Y
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component, eliminating multicollinearity when using the results
in an analysis of dependence (e.g., discriminant analysis) [17].

In the general principal components problem, the objective is
to obtain a linear combination of the original variables [X = x1,
x2, . . ., xp] with maximum variance. If we assume that X is
standardized (i.e., each variable is normalized to zero mean and
unit variance), then the linear combination can be denoted by
the vector (u = u1, u2, . . ., up)0, and the goal is to choose u to
maximize the variance of the elements of z = Xu, which may be
written as follows: varðzÞ ¼ ð1=n� 1Þu0X0 Xu; where n is the
number of the data. Due to X being standardized, the term (1/
n � 1)X0X is identical to the sample correlation matrix R. The
variance of the elements of z can be written as: var(z) = u0Ru.
Because we can choose the components of u (the length of the
vector) to be arbitrarily large, a constraint of unit length on the
vector is imposed, u0u = 1. The constrained optimization problem
can be solved by forming the Lagrangian, taking the first-
derivative, setting it equal to zero, and solving. The Lagrangian is
given by L = u0Ru � l(u0u � 1) where l is called the Lagrange
multiplier. The l can be chosen so as to penalize the objective
function if the equality constraint (u0u = 1) is not met. The
Table 4
Classification result for all possible combination of selected features for example

with four features.

Used

features

Classification

accuracy rate

Used

features

Classification

accuracy rate

X1 66.67% X2, X4 50.00%

X2 25.00% X3, X4 58.33%

X3 58.33% X1, X2, X3 66.67%

X4 50.00% X1, X2, X4 58.33%

X1, X2 66.67% X1, X3, X4 83.33%

X1, X3 58.33% X2, X3, X4 66.67%

X1, X4 66.67% X1, X2, X3, X4 66.67%

X2, X3 58.33%
derivative of L with respect to the elements of u yields @L/
@u = 2Ru � 2lu. Setting @L/@u equal to zero, and solving,
Ru = lu. The vector u is called an eigenvector and the scalar l
is called an eigenvalue. Provided the matrix R is of full rank, then
the solution will consist of p positive eigenvalues and associated
eigenvectors.

The principal components (PCs) are ordered in descending
order of variance, with PC1 showing the highest variance, and
PCp showing the lowest variance In other words, var(PC1) �
var(PC2) � var(PC3) � . . . � var(PCp), where var(PCi) represents the
variance of PCi in the data set. The eigenvalues of most of the PCs in
PCA should ideally be low enough to be virtually negligible. In this
case, the variation in the data set can be adequately described
using those PCs whose eigenvalues are not negligible. Accordingly,
some degree of economy is achieved, because the variation in the
original number of variables (X variables) can be described by a
smaller number of new variables (PCs) [4].

To apply the PCA researcher must decide how many principal
components to retain for subsequent analysis, trading off
simplicity (i.e., a small number of dimensions is easier to manage)
against completeness. One possible solution is Bartlett’s test. If
sphericity is rejected, then the largest principal component is
extracted and then the residual correction matrix is tested to see if
its determinant is different from zero. Iteratively continue
extracting components until the residual matrix is not statistically
significant. There are other three common methods to determine
how many components should be retained: scree plot, Kaiser’s
rule, and Horrn’s procedure [17]. Though the above methods
provide different ways to determine how many principal
components (features) should be retained, it remains a critical
issue. If too few components are retained, the model will not obtain
all of the information in the data, leading to a poor result. On the
other hand, if too many components are chosen, then the model
will include noise [34]. This type of trial-and-error method may not
provide the optimal result [33].



Fig. 1. Search concept of particle swarm optimization.
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2.3. Feature selection

The purpose of feature selection is to identify a transformation
from the original high-dimensional space to a low-dimensional
space, which retains as much information as possible that is
valuable for classification accuracy. Feature selection approaches
can be categorized into two models, filter models and wrapper
models [11]. Statistical techniques, including principal component
analysis, factor analysis, and independent component analysis can
be applied in filter-based feature selection approaches to
investigate indirect performance measures, which are mostly
based on distance and information. Even though the filter model is
fast, the resulting feature subset may not be optimal [11].

PCA-based analysis methods have been applied to perform
selection without loss of accuracy. Some such methods even
improve classification accuracy. Ravi et al. [39] presented pattern
classification with principal component analysis feature selection,
combined with the fuzzy rule technique, to extract features. Rocchi
et al. [22] proposed a feature selection process based on principal
component analysis to discover distinct features of postural’s way
in Parkinson’s disease. Garcia-Cuesta et al. [8] proposed a ground-
based remote sensing temperature retrieval system based on
principal component analysis feature selection, using the multi-
layer perceptron technique to extract features.

The wrapper model [29] employs the classifier accuracy rate as
the performance measure. Some studies have concluded that if the
objective of the model is to minimize the classifier error rate, and
the measurement cost for all the features is equal, then the
predictive accuracy of the classifier is the most important factor. In
other words, the classifier should be constructed to maximize the
classification accuracy rate. The features selected by the classifier
are then chosen as the optimal features. The wrapper model
generally applies meta-heuristic approaches to help search for the
best feature subset. Although meta-heuristic approaches are slow,
they may obtain the (near) best feature subset. For example, Lin
et al. [37] proposed an SA-based approach for parameter
determination of support vector machine and feature selection,
and showed that the classification accuracy rate is improved by
feature selection at the expense of computational time.

Chiang and Pell [21] presented genetic algorithms combined
with discriminant analysis to identify key variables. Their
analytical results demonstrate that key variables can be identified
correctly. Pacheco et al. [16] proposed several meta-heuristics,
including tabu search and variable neighborhood search, to choose
variables that are subsequently adopted in discriminant analysis.
Their approaches achieved a high success rate with small samples.
However, since their approaches were only adopted in specific
non-public datasets, further comparison cannot be performed.

3. The proposed approach

Particle swarm optimization [5,15] is an emerging population-
based meta-heuristic that simulates social behaviors, including
birds flocking to a promising position, in order to accomplish
precise goals in a multidimensional space. Like evolutionary
algorithms, PSO performs searches using a population (called a
swarm) of individuals (called particles) that are updated between
iterations. To determine the optimal solution, each particle
modifies its search direction based on two factors, its own best
previous experience and the best experience of all other members.
Shi and Eberhart [28] term the former the cognition component,
and the later the social component.

Each particle represents a candidate position (i.e., solution). A
particle i is treated as a point in a D-dimension space, and its status
is characterized according to its position xid and velocity vid. Fig. 1
illustrates the above concept of modulation of searching points
when attempting to find a solution for maximizing a function
f(z) = cos(x) sin(y), where 0 � x � 2p and 0 � y � 2p.

Let pt
i ¼ fpt

i1; pt
i2; . . . ; pt

iDg denote the best solution that particle
i has identified at iteration t, and pt

g ¼ f pt
g1; pt

g2; . . . ; pt
gDg represent

the best solution obtained from pt
i in the population at iteration t.

To search for the optimal solution, each particle modifies its
velocity according to the cognition and social components as
follows:

Vtþ1
id ¼ wVt

id þ c1 � rand1 � ð pt
id � xt

idÞ þ c2 � rand2�
ð pt

gd � xt
idÞ d ¼ 1;2; . . . ;D (2)

where c1 represents the cognition learning factor; c2 denotes the
social learning factor, w is inertial weight, rand1 and rand2 indicate
random numbers (one value for one dimension) uniformly
distributed in U(0,1). Each particle then moves to a new potential
solution according to the following equation:

Xtþ1
id ¼ Xt

id þ Vtþ1
id d ¼ 1;2; . . . ;D (3)

It is possible to clamp the velocity vectors by specifying upper
and lower bounds on vmax to prevent the particles in the search
space from moving too rapidly.

The basic process of the PSO algorithm can be presented as
follows.

Step 1: (Initialization) Randomly create initial particles.
Step 2: (Fitness) Measure the fitness of each particle in the
population.
Step 3: (Update) Calculate the velocity of each particle using
Eq. (2).
Step 4: (Construction) For each particle, move to the next
position according to Eq. (3).
Step 5: (Termination) Stop the algorithm if the termination
criterion is satisfied; return to Step 2 otherwise.

This study applies PSO to LDA, denoted as PSOLDA, for feature
selection in LDA. The following subsections discuss the solution
representation, the flowchart and system architecture of PSOLDA.

3.1. Solution representation

The solution representation is shown in Fig. 2. If the data set
involves D features, then D variables must be adopted. Each
variable is in the range from 0 to 1. That is, the location vectors are
limited between a lower bound and an upper bound. If the value of
a variable is less than or equal to 0.5, then its corresponding feature



Fig. 2. Solution representation of PSOLDA.
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is not selected. Conversely, if the value of a variable is greater than
0.5, then its corresponding feature is selected.

3.2. Flowchart of PSOLDA

Fig. 3 displays a flowchart of PSOLDA. The population of
particles is initialized, each particle having a random position
within the D-dimensional space and a random velocity for each
dimension, where D represents the number of features. Each
particle’s fitness for the LDA is then evaluated. The higher the
classification accuracy rate it is, the higher the fitness that particle
has. If the fitness of the ith particle is better than the particle’s best
fitness, then the position vector is saved for the particle best (pi). If
one of the particle’s fitness is better than the global best fitness,
then the position vector is saved for the global best (pg). Finally, the
particle’s velocity and position are updated until the termination
condition is satisfied.

Two termination conditions are used in this study. If the number
of iterations reaches the pre-determined maximum number of
iterations Imax, or pg is not improved during a maximum allowable
number of iterations Inon-improving, then PSOLDA is terminated.

In this study, the classification accuracy rates for the datasets
were measured by comparing the predicted class and the actual
class. For example, in the classification problem with two-classes,
positive and negative, a single prediction has four different
possible. The true positive (TP) and true negative (TN) are correct
classifications. A false positive (FP) occurs when the outcome is
incorrectly predicted as positive when it is actually negative. A
false negative (FN) occurs when the outcome is incorrectly
predicted as negative when it is actually positive. The overall
classification accuracy rate is the number of correct classifications
divided by the total number of classifications, computed as
(TP + TN)/(TP + TN + FP + FN).

In a multi-class prediction, the result on a test set is often
displayed as a two-dimensional confusion matrix with a row and
column for each class. Each matrix element shows the number of
test cases for which the actual class is the row and the predicted
class is the column.
Fig. 3. The flowchart of PSOLDA.
3.3. Demonstration of PSOLDA procedure

To demonstrate the procedures of PSOLDA, the example in
Table 1 is used. In the demonstration, w, c1, and c2, are set to 0.9, 0.8,
and 1.2, respectively. At iteration t � 1, the location of the global best
is supposed to be (0.92, 0.86, 0.55, 0.65), which means all of four
features are selected because the corresponding values of the
variables are all greater than 0.5. The location of the particle’s best of
particle i is (0.23, 0.64, 0.87, 0.98), which means features 2, 3, and 4
are used. The current position of particle i is (0.05, 0.40, 0.70, 0.45),
which means only the third feature is selected. The current velocity
vector of particle i is assumed to (0.45, �0.37, 0.23, �0.20).

The velocity vector for the particle is updated using Eq. (2) as
follows.

Vt
i ¼ Vt

i ¼
Vt

i1
Vt

i2
Vt

i3
Vt

i4

2
664

3
775

¼ w

Vt�1
i1

Vt�1
i2

Vt�1
i3

Vt�1
i4

2
6664

3
7775þ c1 � rand1 �

px1

px2

px3

px4

2
664

3
775�

xt�1
i1

xt�1
i2

xt�1
i3

xt�1
i4

2
6664

3
7775

0
BBB@

1
CCCAþ c2 � rand2

�

gx1

gx2

gx3

gx4

2
664

3
775�

xt�1
i1

xt�1
i2

xt�1
i3

xt�1
i4

2
6664

3
7775

0
BBB@

1
CCCA

¼ 0:9 �

0:45
�0:37
0:23
�0:20

2
664

3
775þ 0:8 �

0:61
0:51
0:32
0:54

2
664

3
775

T

�

0:23
0:64
0:87
0:98

2
664

3
775�

0:05
0:40
0:70
0:45

2
664

3
775

0
BB@

1
CCAþ 1:2

�

0:24
0:17
0:93
0:42

2
664

3
775

T

�

0:92
0:86
0:55
0:65

2
664

3
775�

0:05
0:40
0:70
0:45

2
664

3
775

0
BB@

1
CCA

¼

0:74
�0:14
0:08
0:15

2
664

3
775

Then applying these new velocities to a new particle using
Eq. (3), the new location of particle i can be obtained as follows.

xt ¼
xt

i1
xt

i2
xt

i3
xt

i4

2
664

3
775 ¼

xt�1
i1

xt�1
i2

xt�1
i3

xt�1
i4

2
6664

3
7775þ

Vt
i1

Vt
i2

Vt
i3

Vt
i4

2
664

3
775 ¼

0:05
0:40
0:70
0:45

2
664

3
775þ

0:74
�0:14
0:08
0:15

2
664

3
775 ¼

0:79
0:26
0:78
0:60

2
664

3
775

Now the location of the particle is moved to (0.79, 0.26, 0.78,
0.60), meaning that the first, the third and fourth features are
selected. The discriminant model is thus constructed using the
training data, and the testing data is used to calculated the
classification accuracy rates, which is the fitness value of particle i.
In each iteration, the same procedure is applied for all particles. If
the fitness of the ith particle is better than that particle’s best
fitness, then the position vector is saved for the particle best (pi). If
one of the particle’s fitness is better than the global best fitness,
then the position vector is saved for the global best (pg). The
procedure is iterated until termination conditions are met.

3.4. System architecture of PSOLDA

The PSOLDA feature selection system is constructed through
the following steps:

(1) Data preprocessing: Normalization is applied to prevent feature
values in greater numeric ranges from dominating those in



Table 5
Dataset from the UCI repository.

Dataset Number of

classes

Number of

instances

Number of

features

Australian 2 653 15

Bioinformatics 3 391 20

Boston housing 2 1012 13

Breast cancer 2 683 10

Bupa live 2 345 6

Car Evaluation 4 1428 6

Cleveland heart 2 296 13

Dermatology 6 358 34

Ecoli 8 336 7

German 2 1000 30

Glass 6 214 9

Ionosphere structure 2 351 34

Iris 3 150 4

Page 5 5473 10

Pima Indians diabetes 2 768 8

Segment 7 1848 18

Sonar 2 208 60

Teaching Assistant Evaluation 3 151 5

Vehicle 4 846 18

Vowel 11 528 10

Waveform (version 1) 3 5000 21

Wine 3 175 13

Yeast 10 1484 8
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smaller numeric ranges, as well as to prevent numerical
difficulties during calculation. The range of each feature value
can generally be linearly scaled to the range [0,1] using Eq. (4),
where a0i denotes the scaled value; where ai is the actual value
of attribute i, max(ai) represents the maximum value of the
feature i in the dataset, and min(ai) denotes the minimum value
of the feature i in the dataset. If an instance lacks the values of
some features (i.e., an instance with a missing value), then it
was removed [6].

a0i ¼
ai �minðaiÞ

maxðaiÞ �minðaiÞ

� �
(4)

(2) Feature subset selection: Each particle in the PSO algorithm
represents a solution, which denotes the selected subset of
features. The selected features and the training dataset are used
in building the LDA classifier model.

(3) Fitness evaluation: After applying the training dataset to train
the discriminant functions, the testing dataset is used to
compute the classification accuracy rate. Each particle’s fitness
is compared with the particle’s best fitness and the global best
fitness when the classification accuracy rate is obtained. If the
ith particle’s fitness is better than its best previous experience,
its best previous experience is updated accordingly. Further-
more, if the particle’s fitness is better than the global best
fitness, the global best fitness is also updated.

(4) Termination criteria: If the termination criteria are satisfied,
then the process ends; otherwise, the next iteration is run.
There are two commonly used termination criteria, the
maximal number of iterations Imax, and allowable number of
iterations Inon-improving where the global best is not improved
during the PSO procedure. Thus, if the number of iterations
reaches Imax or the global best is not improved in Inon-improving

successive iterations, the procedure terminates.
(5) PSO process: In this step, the system obtains other solutions for

particles and then goes to Step (2).

4. Experiment results

The proposed PSOLDA approach was implemented in C language
and run on a Windows XP operating system, on a PC equipped with a
Pentium IV-3.0 GHz CPU and 512 MB RAM. The proposed PSOLDA
approach was evaluated using 23 datasets in the UCI Machine
Learning Repository [32]. Table 5 lists the numbers of features,
instances, and classes for each UCI dataset used in this study.

The k-fold cross-validation approach proposed by Salzberg [36]
was employed in the experiments, with k = 10. The dataset was
thus split into 10 portions, with each part of the data sharing the
same proportion of each class of data. Nine data portions were used
in the training process, while the remaining part was used in the
testing process [14]. The proposed PSOLDA approach was run 10
times to allow each slice of data to take a turn as the testing data.
The classification accuracy rate is calculated by summing the
individual accuracy rates for each run of testing, and then dividing
the total by 10. Because the numbers of data in each class were not
multiples of 10, the dataset could not be partitioned fairly.
However, the ratio of the number of data in the training set to the
number of data in the testing set was maintained as closely as
possible to 9:1.

In order to obtain better parameter values for the PSOLDA, the
initial experiment was performed as follows. All datasets are used
to test various combinations of parameters. At the beginning, the
maximum number of solutions evaluated is set to 50,000 (a large
value), while w, c1, c2, and psize are set to 0.8, 1.0, 1.0, and 8,
respectively. That is, the number of generations is 2500 (50,000/
20 = 2500). After several runs, we found that the classification
accuracy rates converged at 400 iterations.
After determining the maximum number of generations, the
following combinations of parameters were tested.

c1 = 0.5, 0.8, 1.0, 1.2, 1.5;
c2 = 0.5, 0.8, 1.0, 1.2, 1.5;
psize = 8, 10, 12, 15, 20;
w ¼ 0:7, 0.8, 0.9, 1.0;
Inon-improving = 100, 150, 200.

Setting c1 = 0.8, c2 = 1.2, w ¼ 0:9, psize = 15, Inon-improving = 150,
and Imax = 400 seemed to give better results; therefore they were
used for further computational study. Since the proposed PSOLDA
approach is non-deterministic, different runs with the same data
may not produce the same solution. Therefore, the proposed
PSOLDA approach was executed five times for 10-fold cross-
validation in each dataset to calculate the classification accuracy
rate.

To verify the proposed approach, the best result obtained by the
PSOLDA approach among the five runs is compared with those
obtained by LDA without feature selection, LDA with forward
feature selection, LDA with backward feature selection, LDA with
PCA-based feature selection, and LDA with feature selection by the
exhaustive enumeration. As shown in Table 6, the proposed
PSOLDA approach performs well in all datasets and the computa-
tional time is within an acceptable range. Comparison of the
PSOLDA approach and the LDA with feature selection by
exhaustive enumeration (which can obtain the optimal solution
by selecting the best solution among all solutions) shows that the
results obtained by the former are all equal to those of the latter.
That is, the proposed PSOLDA approach can obtain the optimal
solution when the number of features in the dataset is small.
However, because the exhaustive enumeration is time consuming,
it is not easily applied to datasets with larger numbers of features.
Furthermore, the proposed PSOLDA approach outperforms the LDA
without feature selection, LDA with forward feature selection, LDA
with backward feature selection, and LDA with PCA-based feature
selection for the most of datasets.

Moreover, the results yielded by the proposed PSOLDA
approach were compared with LDA and those of Breiman [3,20]
who adopted several datasets from UCI [32]. Breiman tested



Table 6
Classification accuracy rates obtained by LDA without feature selection, LDA with forward feature selection, LDA with backward feature selection, LDA with PCA-based feature

selection, LDA feature selection by exhaustive enumeration and PSOLDA.

Dataset LDA without

feature selection

LDA with forward

feature selection

LDA with backward

feature selection

LDA with PCA-based

feature selection

LDA with feature selection

by exhaustive enumeration

PSOLDA Time (s)

Australian 83.0% 80.4% 84.2% 82.1% 84.5% 84.5% 19.09

Bioinformatics 80.4% 79.3% 81.6% 80.4% – 84.4% 18.23

Boston housing 83.8% 82.8% 84.3% 83.8% 85.2% 85.2% 20.10

Breast cancer 96.1% 95.4% 95.8% 91.7% 96.5% 96.5% 10.04

Bupa live 63.5% 61.1% 64.3% 60.5% 65.2% 65.2% 3.48

Car evaluation 79.3% 71.2% 78.0% 81.8% 78.1% 78.1% 29.00

Cleveland heart 74.2% 78.9% 83.3% 77.6% 84.7% 84.7% 7.29

Dermatology 81.6% 96.5% 97.0% 93.3% – 98.4% 37.09

Ecoli 42.5% 79.7% 79.7% 72.3% 80.1% 80.1% 6.00

German 74.0% 68.7% 74.2% 73.2% – 75.6% 78.54

Glass 57.8% 57.8% 62.0% 61.0% 64.8% 64.8% 4.82

Ionosphere structure 86.5% 85.3% 90.9% 86.9% – 92.2% 27.37

Iris 98.0% 96.3% 93.7% 90.0% 97.0% 97.0% 1.37

Page 85.2% 91.3% 91.6% 80.3% – 91.8% 251.74

Pima Indians diabetes 76.4% 74.8% 76.5% 75.9% 76.7% 76.7% 10.42

Segment 88.6% 85.6% 89.0% 87.1% – 89.2% 140.91

Sonar 72.5% 76.1% 85.5% 58.7% – 90.5% 36.51

Teaching assistant evaluation 52.1% 51.4% 52.1% 51.6% 52.5% 52.5% 1.60

Vehicle 77.5% 75.0% 79.0% 77.3% – 79.4% 45.35

Vowel 63.1% 56.2% 64.2% 49.6% 65.1% 65.1% 22.90

Waveform (version 1) 84.9% 85.7% 80.1% 71.2% – 86.1% 468.06

Wine 98.8% 96.6% 99.9% 97.2% 100.0% 100.0% 5.61

Yeast 51.1% 35.0% 51.5% 44.6% 51.9% 51.9% 56.67

–, the computation time is over 600 s.

Table 7
Classification accuracy rates obtained by LDA, BG-DA, AB-DA, and PSOLDA

approaches.

Dataset LDA BG-DA AB-DA PSOLDA

Breast cancer 96.1% 96.1% 96.2% 96.5%

Cleveland heart 74.2% 74.2% 73.4% 84.7%

Glass 57.8% 58.5% 59.4% 64.8%

Pima Indians diabetes 76.4% 76.5% 76.1% 76.7%
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datasets using Bagging and Adaboost without feature selection.
Table 7 offers a comparison of Breiman’s results with those of
PSOLDA. Four of the average accuracy rates of the proposed
PSOLDA approach exceeded those obtained by Breiman. That is, the
proposed PSOLDA approach achieved the highest classification
accuracy rate across different datasets.

The number of the features selected by forward feature
selection, backward feature selection, PCA-based feature selection,
and PSOLDA are shown in Table 8. Compared with the LDA with
forward feature selection, LDA with backward feature selection,
and LDA with PCA-based feature selection, the number of selected
features obtained by PSOLDA is more appropriate (based on the
classification accuracy rates) than those of other feature selection
methods. Thus, the PSOLDA approach found the better beneficial
Table 8
Number of the selected features obtained by LDA with forward feature selection, LDA w

Dataset No. of original

features

LDA with forward

feature selection

Australian 15 5.6

Bioinformatics 20 9.5

Boston housing 13 5.1

Breast cancer 10 6.0

Bupa live 6 3.6

Car evaluation 6 4.9

Cleveland heart 13 6.1

Dermatology 34 17.7

Ecoli 7 5.5

German 30 2.2

Glass 9 5.5

Ionosphere structure 34 4.8

Iris 4 2.3

Page 10 6.0

Pima Indians diabetes 8 3.9

Segment 18 7.3

Sonar 60 10.7

Teaching assistant evaluation 5 4.0

Vehicle 18 11.5

Vowel 10 6.7

Waveform (version 1) 21 14.2

Wine 13 7.1

Yeast 8 1.5
subset of features. Analytical results demonstrate that the feature
selection did not select all features for use in the LDA classification
model. Furthermore, feature selection increased the classification
accuracy rates for LDA.
ith backward feature selection, LDA with PCA-based feature selection and PSOLDA.

LDA with backward

feature selection

LDA with PCA-based

feature selection

PSOLDA

13.0 13.2 11.4

18.2 19.5 15.7

9.9 13.9 7.7

6.7 9.7 6.6

4.7 5.6 4.6

5.6 5.3 5.4

11.7 12.7 9.5

26.9 28.4 22.3

5.6 6.2 5.6

27.3 26.5 22.4

7.5 8.1 6.8

30.4 30.3 21.7

3.9 3.3 3.6

7.1 9.8 6.6

5.9 8.8 5.3

15.9 18.6 14.1

56.4 58.9 38.1

3.9 5.1 4.1

16.5 18.8 15.5

8.9 10.7 8.4

18.3 19.8 17.8

12.8 13.8 12.3

7.0 7.9 7.0
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5. Conclusions and future research

Linear discriminant analysis is a conventionally adopted
classification method. However, data without feature selection
may be redundant or noisy, and may degrade the classification
accuracy rate. This study proposes a particle swarm optimization-
based approach that can search for a subset of beneficial features.
This optimal subset of features is then applied in the dataset to
obtain the optimal classification outcomes. Comparison of the
obtained results with those of other approaches demonstrates that
the proposed PSOLDA approach has higher classification accuracy
rates than other tested approaches. That is, the PSOLDA approach
can be applied to remove unnecessary or insignificant features in
LDA, further enhancing the overall classification results. The main
contributions of this study include:

(1) This study points out that the feature selection has influence on
the LDA by showing an example.

(2) The statistic methods traditionally used for LDA to determine
the beneficial feature subset are not easy or cannot guarantee
the best results. The proposed PSOLDA approach can be used to
perform feature selection for the LDA to archive higher
classification accuracy rates.

(3) Comparing the optimal result obtained by the exhaustive
enumeration for dataset with small number of features, the
PSOLDA approach can obtain the same optimal result. This
study showed that the classification accuracy rates of the
PSOLDA were higher than those of forward feature selection,
backward feature selection, PCA-based feature selection,
bagging, and AdaBoost approaches in many public data sets.

Several directions for future studies are suggested. First, the
proposed PSO-based meta-heuristic is sensitive to parameter
settings. Thus, a more comprehensive study on alternative
parameter tuning policies and customization the algorithm for
this kind of feature selection problem by developing new
parameters should be more deeply investigated. Second, the
proposed approach was tested using linear discriminant analysis.
However, non-linear discriminant analysis can also be optimized
using the same approach. Third, experiments were performed
using UCI datasets, but other public datasets and real-world
problems should be tested in the future to verify and extend the
proposed approach. Fourth, since the proposed PSO-based meta-
heuristic is quite versatile, it would be worthwhile to explore the
potential of this approach to other classification methods. This is
currently being investigated by the authors of this paper.
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