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Abstract

Nearest neighbor (NN) classification assumes locally constant class conditional probabilities, and suffers from bias in high dimensions
with a small sample set. In this paper, we propose a novel cam weighted distance to ameliorate the curse of dimensionality. Different
from the existing neighborhood-based methods which only analyze a small space emanating from the query sample, the proposed nearest
neighbor classification using the cam weighted distance (CamNN) optimizes the distance measure based on the analysis of inter-prototype
relationship. Our motivation comes from the observation that the prototypes are not isolated. Prototypes with different surroundings should
have different effects in the classification. The proposed cam weighted distance is orientation and scale adaptive to take advantage of
the relevant information of inter-prototype relationship, so that a better classification performance can be achieved. Experiments show
that CamNN significantly outperforms one nearest neighbor classification (1-NN) and k-nearest neighbor classification (k-NN) in most
benchmarks, while its computational complexity is comparable with that of 1-NN classification.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In a classification problem, given C pattern classes and N
labeled training observations (prototypes), the nearest neigh-
bor (NN) classifier, a simple yet appealing approach, assigns
to a query pattern x0 the class label of its NN [1,2]. With the
sample size approaching infinity, the error rate of NN clas-
sifier converges asymptotically for all sample distributions,
to a value between L∗ and 2L∗(1 − L∗), where L∗ is the
Bayes risk [2–5].

The finite sample size of many real world problems poses
a new challenge. The statistics of x0 may no longer be the
same as that of its NN. Therefore, the estimate of risk varies
greatly, depending on the choice of the distance metric [6].
To improve the performance, many methods [7–10] have
been proposed to modify the distance metric (measure) such
that the finite sample risk will be closer to the asymptotic
risk.
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However, the existing methods tackle this problem only
from the aspect of the query point. These methods [7–10]
take advantage of the local information around the query
point. They analyze the measurement space emanating from
the query point, and study how the distance measure should
be changed or weighted. These approaches only examine a
small local region surrounding the query sample, so that the
most of the inter-prototype information is neglected.

The proposed CamNN classifier optimizes the distance
measure with respect to the analysis of the inter-prototype
relations. Our motivation comes from the understanding that
prototypes are not isolated instances. The nearby prototypes
actively affect the confidence level of the information pro-
vided by the prototype being considered. Not only should
the distance measure to one prototype vary with orientation,
the distance measure to each prototype should also be treated
discriminately according to its different surroundings.

As shown in Fig. 1, the equi-distance contour in an tra-
ditional NN classification is circular, since it assumes all
the samples to be isolated and homogeneous. When deflec-
tive cam contours are adopted for the prototypes, reflecting
the attraction and repulsion effects they receive from their
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Fig. 1. (a) shows a traditional 1-NN classification. (b) shows 1-NN
classifier with ideal cam contours. The dash lines are the equi-distance
contours around the prototypes. The black solid line in each figure is the
corresponding decision boundary. The cam contours of prototypes can
be deemed as a result of the attraction and repulsion effects from its
neighbors.

Fig. 2. S1 (containing S2) is the region of Class 2 by the traditional NN
classification. S2 is the region of Class 2 by a revised NN classification,
who considers the inter-prototype relations and compresses the distance
scale when measuring the distance to the solitary prototype of Class 2.

neighbors, the decision boundary becomes smoother and
more desirable. From the comparison, it can be seen that an
orientation adaptive distance measure can greatly improve
the classification performance.

Fig. 2 presents another common situation, where one pro-
totype of Class 2 falls into an area with many prototypes of
Class 1. The traditional NN classification treats all the proto-
types equally regardless of their surroundings, so that a large
region S1 will be decided to belong to Class 2. However,
the prototypes are not isolated instances, the inter-prototype
relationship should not be neglected. Because of the great
weakening effects the solitary prototype suffers from its op-
posite neighbors, the distance measure scale of this proto-
type is diminished and then the region belonging to Class

2 is compressed from S1 to the smaller S2. Such a com-
pressed region is usually more desirable. This comparison
shows that it could be more reasonable if each prototype is
granted a different but appropriate distance scale.

While the idea of optimizing the distance measure from
the aspect of prototypes and proposing an orientation and
scale adaptive distance measure may seem obvious, few pro-
posals along this line could be found in the literature. A
literature review is provided in Section 4. Compared with
the existing methods, our major contributions in this paper
include:

I. This paper introduces a novel direction for the distance
measure optimization for neighborhood-based classi-
fiers. That is to analyze the inter-prototype relationship,
and then utilize the relevant information to optimize the
distance measure.

II. A novel cam weighted distance, which is orientation
sensitive and scale variant, is proposed to describe and
make use of the relevant information of inter-prototype
relationship. Experiments show that, this distance
weighting method, while fairly simple and with small
computational complexity, has greatly improved the
performance of the NN classifier.

2. Cam weighted distance

In a classification problem, each prototype can be regarded
as the center of a probability distribution and the similarity
to the prototype can be expressed by the corresponding con-
ditional probability. In the traditional NN method, with the
assumption that samples are isolated, the distribution can be
a standard normal distribution so that the Euclidean distance
is equivalent to the class-conditional probability. However,
because of the attraction, repulsion, strengthening effect and
weakening effect each prototype receives from its neigh-
bors, the standard normal distributions have been greatly de-
formed. Obviously, neglecting such a deformation and still
using the Euclidean distance to measure the similarity will
lead to performance decline.

We construct a simple yet effective transformation X =
(a + b ·Y ′�/‖Y‖) ·Y to simulate such a deformation, where
Y denotes the original distribution and � is a normalized
vector denoting the deformation orientation. We call the de-
formed distribution cam distribution, if Y subjects to a stan-
dard normal distribution. For each prototype representing a
cam distribution, its k-nearest neighbor prototypes are fur-
ther assumed to be the samples of this cam distribution.
Then, these samples can be used to estimate the correspond-
ing distribution parameters a, b, and �. When a, b, and �
are obtained, an inverse transformation can be performed,
Y =X/(a+b ·Y ′�/‖Y‖), to eliminate the deformation. Such
an inverse transformation will lead to our cam weighted
distance.
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2.1. Cam distribution

Definition 1 (Cam distribution). Consider a p-dimensional
random vector Y = (Y1, Y2, . . . , Yp)′ that takes a standard
p-dimensional normal distribution N(0, I ), that is, it has a
probability density function

f (y) = 1

(2�)p/2 · e−1/2·y′y . (1)

Let a random vector X be defined by the transformation

X =
(

a + b · Y ′�
‖Y‖

)
· Y (2)

or

X = (a + b · cos �) · Y , (3)

where a > b�0, � is a normalized vector, ‖Y‖=√
Y ′Y , and �

is the included angle of vectors Y and �. Then the distribution
of X is called the cam distribution with parameters a and b
in the direction �, denoted as X ∼ Camp(a, b, �).

Theorem 1. If a random vector X has a cam distribution
Camp(a, b, �), then the probability density function of X is
as follows, for x ∈ Rp

p(x) = 1

(2�)p/2(a + b(x′�/‖x‖))p

· exp

[
−1

2

( ‖x‖
a + b(x′�/‖x‖)

)2
]

(4)

or

p(x) = 1

(2�)p/2(a + b · cos �)p

· exp

[
−1

2

( ‖x‖
a + b · cos �

)2
]

, (5)

where � is the included angle of vectors x and � (see
Appendix A for a proof).

Theorem 2. If a random vector X ∼ Camp(a, b, �), then

E(X) = c1 · b · � (6)

and

E(‖X‖) = c2 · a, (7)

where c1 and c2 are constants

c1 = 21/2 · �((p + 1)/2)

�(p/2)

/
p

c2 = 21/2 · �((p + 1)/2)

�(p/2)
,

(8)

�(·) denoting the Gamma function �(k) = ∫∞
0 tk−1 e−t dt

(k > 0) (see Appendix B for a proof).

The role of each parameter in the transformation is shown
clearly in this theorem. The parameter a is the determinant
of the overall scale of the distribution; the parameter b deter-
mines the extent to which the peak deviates from the origin,
and the parameter � decides the orientation of the deviation.

2.2. Cam weighted distance

As mentioned above, the cam distribution is an eccen-
tric distribution that biases towards a given direction. It
is obtained from a standard normal distribution by the
transformation X = Y · (a + b cos �). In this model, the
Euclidean distance is not suitable to describe the similarity
directly, since the assumed normal distribution has been
deformed. Instead, we firstly restore the deformation by
an inverse transformation Y = X/(a + b cos �), and then
measure the distance. Thus, we obtain a cam weighted
distance. This weighted distance redresses the deformation
and should be more suitable to describe the similarity.

Definition 2 (Cam weighted distance). Assume x0 ∈ Rp

is the center of a cam distribution Camp(a, b, �). The cam
weighted distance from a point x ∈ Rp to x0 is defined to be

CamDist(x0, x) = ‖x − x0‖
/(

a + b · (x − x0)
′�

‖x − x0‖
)

(9)

or

CamDist(x0, x) = ‖x − x0‖/(a + b cos �), (10)

where � is the included angle of vectors x − x0 and �.
Especially, 1/(a + b cos �) is called the cam weight of the
distance from x to x0.

Three cam distributions Cam2(1, 0, [0.8, 0.6]), Cam2(1,

0.4, [0.8, 0.6]), and Cam2(1, 0.8, [0.8, 0.6]) are shown up in
Fig. 3, respectively, from the left to the right. The solid line in
each figure is an equi-distance contour according to the cam
weighted distance. By examining the equi-distance contour
CamDist(x0, x)=d0 and the distance weight, 1/(a+b cos �),
we can find that the parameter a reflects the overall scale of
the distance measure and b reflects the extent of orientation
in distance measure. When b=0, the contour is circular. As b
increases, it looks more like a cam curve. When b approaches
to a, the contour becomes a heart curve. In most cases, b
is a medium value with respect to a, which indicates a cam
curve. That is why we call it cam weighted distance. For a set
of points with the same Euclidean distance to the origin, the
one in the direction � has the nearest cam weighted distance
to the origin, while the one in the direction −� is the farthest.

We should point out that cam weighted distance mea-
sure is just a weighted distance, but not a metric, since
CamDist(x0, x) may not equal to CamDist(x, x0), even
CamDist(x, x0) is not defined.
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Fig. 3. Three cam distributions Cam2(1, 0, [0.8, 0.6]), Cam2(1, 0.4, [0.8, 0.6]), Cam2(1, 0.8, [0.8, 0.6]) are shown up, respectively, from the left to the
right, each one with one hundred samples. The samples are marked by black dots. The black dash line in each figure is an equi-distance contour according
to the cam weighted distance.

2.3. Parameter estimation

The properties presented in Theorem 2 have considerably
facilitated parameter estimation. For an arbitrary prototype
xi ∈ D, we assume that it represents a cam distribution and
is the origin of this cam distribution, and that the prototypes
nearby subject to this distribution. Then, we use its k-nearest
neighbors Xi ={xi1, xi2, . . . , xik} to estimate the parameters
of the cam distribution, including ai, bi and �i .

First, we convert Xi to a set of vectors Vi ={vi1, vi2, . . . ,

vik}, where vij = xij − xi , j = 1, 2, . . . , k. Then, we use

Ĝi and L̂i , which are the center of mass and the averaged
vector length of Vi .

Ĝi =∑k
j=1vij /k,

L̂i =∑k
j=1‖vij‖/k

(11)

to estimate E(�) and E(‖�‖), respectively. According to
Theorem 2, we get an estimation to ai , bi , and �i :

âi = L̂i/c2,

b̂i = ‖Ĝi‖/c1,

�̂i = Ĝi/‖Ĝi‖.
(12)

It can be easily proved that it is an unbiased estimation.

2.4. More details of parameter estimation

It should be noted that the above estimation focuses on a
single class situation and assumes all k-nearest neighbors of
xi have the same class label as xi . However, in a two-class
or multiple-class classification problem, for an arbitrary pro-
totype xi , its k-nearest neighbors Xi = {xi1, xi2, . . . , xik}
may come from other opposite classes, so we should not use

these neighbor prototypes directly for parameter estimation.
A simple skill is employed in our implementation to solve
this problem. Assume yi0 is the label of xi and yij is the
label of the neighbors xij , j = 0, 1, . . . , k. We convert Vi in
Eq. (11) to Wi , according to

wij =
{

vij if yij = yi0,

− 1
2 · vij if yij �= yi0,

(13)

where j = 1, 2, . . . , k. Then, Eq. (11) is revised to be

Ĝi =∑k
j=1wij /k,

L̂i =∑k
j=1‖wij‖/k.

(14)

Such a simple transformation not only reserves most of
the sample scatter information, but also reflects the relative
position of the current class to the nearby opposite classes,
so that the orientation information can be reserved.

3. CamNN classification

3.1. The CamNN algorithm

The proposed cam weighted distance can be more suit-
able to measure the similarity than the Euclidean distance
in many cases, since it makes use of the relevant infor-
mation of the inter-prototype relationship. Accordingly, we
propose a novel classification method CamNN which uses
cam weighted distance to improve the neighborhood-based
classifier.

The simplicity of the parameter estimation of cam
weighted distance makes the CamNN straightforward. The
whole process consists of two phases. In the first training
phase, for each prototype xi in the training set D, CamNN
firstly finds its k-nearest prototypes by the Euclidean
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Table 1
The CamNN algorithm

Phase 1: Training
Given a prototype set D = {xi }, the corresponding class labels C = {yi } and a parameter k, for each prototype xi ∈ D:

(1) Find its k-nearest neighbors Xi = {xi1, xi2, . . . , xik}, Xi ⊂ D.
(2) Obtain Vi from Xi by vij = xij − xi , j = 1, . . . , k.
(3) Obtain Wi from Vi according to Eq. (13).
(4) Calculate Ĝi and L̂i with Wi , according to Eq. (14).
(5) Estimate ai , bi , �i by using Ĝi and L̂i , according to Eq. (12).
(6) Save ai , bi , �i to Ai .

Phase 2: Classification
For an arbitrary query q ∈ Rp ,
(7) Calculate the cam weighted distance from q to each prototype xi according to Eq. (10):

CamDist(xi , q) = ‖q − xi‖/(ai + bi cos �i ),

where �i is the included angle of vectors q − xi and �i .
(8) Find the nearest neighbor x∗ ∈ D, which satisfies

CamDist(x∗, q) = min
xi∈D

CamDist(xi , q).

(9) Return the label y∗, where y∗ is the class label of x∗.
∗By modifying the classification phase, we can also combine cam weighted distance with k-NN or some other classification methods.

distance, and then uses these k-nearest prototype to estimate
the three cam weighting parameters ai , bi and �i , according
to Eqs. (13), (14) and (12). After this phase, a parameter
matrix A is obtained: Ai = [ai, bi, �i], i = 1, 2, . . . , |D|, so
that we will be able to calculate the cam weighted distance
CamDist(xi, q) from any query point q ∈ Rp to an arbitrary
prototype xi ∈ D, according to Eq. (10).

In the following classification phase, many neighborhood-
based classifiers can be applied, including 1-NN classifier,
k-NN classifier, or some other methods [8–10], and the pro-
posed cam weighted distance can be used to improve their
classification performance. To simplify the problem, we only
apply cam weighted distance on the traditional 1-NN clas-
sification in our implementation. That is, for any query q ∈
Rp, we find the prototype with the shortest cam weighted
distance and assign to q the label of this prototype. The de-
tailed steps of this proposed method CamNN are listed in
Table 1.

3.2. The computational complexity

It is remarkable that CamNN is computationally compet-
itive with the traditional 1-NN classification, while CamNN
has significantly outperformed the k-NN classification (see
Section 5). Given a classification problem with M prototypes
and N queries, the computational complexity of CamNN in
the training phase is O(k ∗ M). In the classification phase,
similar with 1-NN, CamNN only needs to find one nearest
neighbor. In each cam weighted distance computation, ac-
cording to Eq. (9), there are two inner product operations.
So, CamNN’s computational complexity in the classification
phase is O(2 ∗ M ∗ N), close to that of 1-NN O(M ∗ N).

Compared with k-NN whose complexity is O(k ∗ M ∗ N)

or with many other adaptive NN methods, which will be
much more complicated, such as [7–10], CamNN has obvi-
ous computational advantage.

4. Literature review

Hastie [10] introduces discriminate adaptive NN classifi-
cation (DANN) metric which combines the advantage of lin-
ear discriminant (LDA) classifier and NN classifier to ame-
liorate the curse of dimensionality. For each query, DANN
iteratively adjusts its metric while searching for the k-nearest
neighbors. DANN elongates the distance along the linear
discriminate boundary, which is believed to have contributed
to the improvement of the performance of k-NN.

Short [7] uses the k-nearest neighbors of the query point
to construct a direction vector, defines the distance as the
multiplication of a vector with this direction vector and then
selects the nearest one from k-nearest neighbors to classify
the query x0.

Friedman [9] integrates tree-structured recursive partition-
ing techniques and regular k-NN methods, to estimate the
local relevance of each query point, and then uses this in-
formation to customize the metric measure centered at the
query.

Similar to [7,9,10], Domeniconi [8] proposes another
method to take advantage of the local relevance around
the query point. This method employs a Chi-squared
distance to iteratively compute a flexible metric for pro-
ducing neighborhoods that are highly adaptive to query
locations.



6 C.Y. Zhou, Y.Q. Chen / Pattern Recognition 39 (2006) 635–645

Also, there are some other methods like [11,12], which
estimate some global information and use them to im-
prove the performance of the NN classification. Fukunaga
[11] presents a global quadratic metric dA0(X, Y ) = [(X −
Y )TA0(X − Y )]1/2 to minimizes the mean-squared error
between the NN asymptotic risk and the finite sample risk.
In [12], a class-dependent weighted (CDW) dissimilar-
ity measure in vector spaces is proposed to improve the
performance of the NN classifier.

From the view point of information retrieval, all of these
methods are very different from our proposed CamNN.
Methods [7–10] and many other methods like [13,14] take
advantage of the local information around the input point.
They analyze the measurement space emanating from
the input point, and study how the neighbors should be
weighted according to their relations with the input point.
And methods [11,12] only use some global information to
improve the performance. In contrast, the proposed CamNN
analyzes and takes advantage of the inter-prototype relation-
ship. In many cases, the information of the inter-prototype
relationship is very important, but is difficult to be obtained
either from the aspect of the query point or from the global
aspect.

5. Experimental evaluation

We have performed three sets of experiments to evaluate
the effect of the cam weighted distance on the performance
of the NN classification. The proposed CamNN is also fur-
ther compared with the k-NN classifier in the experiments.
The performance of k-NN is highly dependent on the choice
of the parameter k, so the selection of the parameter k is cru-
cial to the k-NN classifier. To make the comparison fair and
objective, we always choose the best parameter k for k-NN
in each experiment.

5.1. Experiments on two artificial problems

In this set of experiments, we examine whether CamNN
performs up to our motivation explained in the Introduction.
The first experiment in this set is performed on the prob-
lem shown in Fig. 1, and the results of 1-NN, 5-NN and
our proposed CamNN are shown in Fig. 4. In the second
experiment, we apply 1-NN, 5-NN and CamNN to clas-
sify two classes which follow independent standard bidi-
mensional normal distribution N(0, I ), centered at (−1, 0)

and (1, 0), respectively. The classification results are shown
in Fig. 5.

As can be seen in Figs. 4 and 5 that, the decision bound-
ary of CamNN is smoother and closer to the Bayesian deci-
sion boundary than those of 1-NN and 5-NN. By comparing
Fig. 4 with Fig. 1, it is noted that the orientation adaptivity
has been well realized in our proposed method; by compar-
ing Fig. 5 with Fig. 2, we can see that the proposed CamNN
has also achieved another objective—scale adaptivity.

5.2. Experiments on Elena artificial database

The Elena artificial database is a famous set of bench-
marks for classification, including Concentric, Clouds and
Gaussian datasets (ftp://ftp.dice.ucl.ac.be/pub/neural-nets/
ELENA/databases). For each dataset, we randomly select
half of the entries as training set, and test using the other
half. To obtain a reliable result, we repeat each experiment
for 20 times independently, and the average cross-validation
error rates are reported in Table 2.

All the ‘Gaussian’ datasets correspond to the same prob-
lem, but with dimensionality ranging from 2 to 8. Each
‘Gaussian’ dataset consists of two classes, one class repre-
sented by a multivariate normal distribution with zero mean
and standard deviation equal to 1 in all dimensions, and
another class represented by a normal distribution with zero
mean and standard deviation equal to 2 in all dimensions.
This allows the study of the classifier behavior for different
dimensionalities of the input vectors, for heavy overlapped
distributions and for nonlinear separability [15]. From
Table 2, it can be seen that CamNN outperforms 1-NN
significantly for all Elena artificial datasets, and can soon
preponderates over the k-NN classifier as the dimensional-
ity increases. CamNN has been by far the best performer
in Gaussian-6, Gaussian-7 and Gaussian-8, though CamNN
is inferior to the k-NN classifier in several low-dimensional
datasets. The results on Gaussian datasets show that, the pro-
posed CamNN can better handle the dimensionality increase
than k-NN.

The dataset ‘Concentric’ with bidimensional uniform con-
centric circular distributions may be used to study the linear
separability of the classifier when some classes are nested in
other without overlapping. Despite of the large sample and
low-dimension, CamNN still shows a large advantage over
the k-NN classifier on the dataset ‘Concentric’. CamNN’s
outstanding result on ‘Concentric’ shows its great linear sep-
arability.

Further experiments are performed to evaluate CamNN
with respect to the sample size. Table 2 has shown that
when the training set is large (M = 5000 ∗ 1

2 ) CamNN
only slightly outperforms k-NN on the dataset Gaussian-
4. Now, we are going to examine how the comparison re-
sults will change when the size of the training set M is set
to 3200, 1600, 800, 400, 200, 100 and 50. For each setting,
the training samples are randomly selected from the whole
5000 samples and the rest is used as test samples. Again,
each experiment is repeated 20 times for a reliable result,
and the averaged cross-validation error rates are illustrated
in Fig. 6.

It is shown clearly in Fig. 6 that with the sample size
decreasing, CamNN’s advantage over k-NN becomes more
and more obvious. When the training set is very large, the
performance of k-NN and CamNN is very close. How-
ever, when the performance of k-NN declines quickly with
the training set size decreasing, CamNN still can keep a
relative low error rate. This trend indicates that CamNN

ftp://ftp.dice.ucl.ac.be/pub/neural-nets/ELENA/databases
ftp://ftp.dice.ucl.ac.be/pub/neural-nets/ELENA/databases


C.Y. Zhou, Y.Q. Chen / Pattern Recognition 39 (2006) 635–645 7

Fig. 4. The results of 1-NN, 5-NN and CamNN (K = 5) are shown up, respectively, from the left to the right. Any points in the left grayed area will be
classified to Class 1. It can be seen that the decision boundary of CamNN is more desirable.

Fig. 5. The marked points are training data coming from two independent standard normal distributions which are centered at O1 and O2 (‖O1 −O2‖=2),
respectively. The central dash line in each figure is the Bayes decision line. The classification results of 1-NN, 5-NN and CamNN (K = 5) are shown
up from the left to the right, respectively. Any points in the grayed area will be classified to Class 1.

Table 2
Comparison results on Elena datasets

Dataset #C #Dim #Samples 1-NN k-NN CamNN

Error rate (%) Error rate (%) K Error rate (%) K

1 Gaussian-2 2 2 5000 35.4 ± 0.7 27.7 ± 0.5 21 34.2 ± 0.4 16
2 Gaussian-3 2 3 5000 32.0 ± 0.7 23.4 ± 0.6 23 26.8 ± 0.6 5
3 Gaussian-4 2 4 5000 27.5 ± 0.7 21.3 ± 0.6 19 21.2 ± 0.5 6
4 Gaussian-5 2 5 5000 24.6 ± 0.5 19.5 ± 0.4 13 18.5 ± 0.4 6
5 Gaussian-6 2 6 5000 22.0 ± 0.7 18.3 ± 0.5 9 15.6 ± 0.4 6
6 Gaussian-7 2 7 5000 20.6 ± 0.6 17.9 ± 0.6 5 14.2 ± 0.4 6
7 Gaussian-8 2 8 5000 20.3 ± 0.7 18.6 ± 0.5 3 12.8 ± 0.3 6
8 Clouds 2 2 5000 15.3 ± 0.3 11.9 ± 0.3 23 12.8 ± 0.4 45
9 Concentric 2 2 2500 1.9 ± 0.2 1.8 ± 0.3 9 1.1 ± 0.2 11

The best performer for each dataset is bolded.
Best k is selected for k-NN classification in each experiment.
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Fig. 6. 1-NN, k-NN and CamNN are compared on the dataset Gaussian-4
with respect to the decreasing sample size.

can be a promising method to resolve some small sample
problems.

5.3. Experiments on UCI machine learning database

Though comparative studies on real world data tend to be
less informative than those based on artificial data because of
the unknown underlying structure and limited sample size,
comparisons on real world data is still very useful for sev-
eral reasons. First, the real world data is produced without
favoring any particular algorithm, so that the comparison re-
sults will be more objective. Second, it is always suspected
that the results on the artificial data cannot be generalized
to the problems in the real world. So, our experiments are
also performed on some real data to evaluate the proposed
CamNN method.

Ten different real world datasets are taken from
the well-known UCI Machine Learning database at http://

Table 3
Comparison results on UCI datasets

Dataset #C #Dim #Samples 1-NN k-NN CamNN

Error rate (%) Error rate (%) K Error rate (%) K

1 Auto-MPG 3 7 392 26.7 26.5 7 24.2 8
2 Balance-Scale 3 4 625 19.7 9.8 7 8.4 5
3 Bcw 2 9 699 4.9 3.3 7 3.3 9
4 Wdbc 2 30 569 4.9 3.2 9 3.5 5
5 Glass 6 9 214 29.9 27.6 3 27.6 11
6 Ionosphere 2 33 351 13.4 13.4 1 6.8 60
7 Iris 3 4 150 5.3 4 7 3.3 6
8 Liver-disorder 2 6 345 36.8 34.5 3 35.3 11
9 Pima 2 8 768 29.3 25.8 5 24.7 4
10 Wine 3 10 178 6.7 4.5 3 2.8 7

The best performer for each dataset is bolded.
The best k is selected for k-NN classification in each experiment.

www.ics.uci.edu/∼mlearn/MLRepository.html. For each
dataset, the features are firstly normalized to have zero
mean and unit variance and then leave-one-out [16] cross-
validation is performed to measure the performance. The
comparison results of 1-NN, k-NN and CamNN on UCI
database are given in Table 3.

Again, CamNN significantly outperforms 1-NN and
k-NN, and is the best performer for eight of the 10 datasets.
For the remaining two dataset, CamNN is only slightly in-
ferior to the k-NN classifier. Particularly, it can be observed
that on ‘balance-scale’, ‘ionosphere’ and ‘wine’, CamNN
is by far the best performer. It is remarkable that in our
implementation, CamNN is essentially an adaptive 1-NN
classifier using cam weighted distance instead of Euclidean
distance. So, CamNN outperforming 1-NN and k-NN in
these experiments shows the effectiveness of cam weighted
distance in measuring the similarity.

6. Summary and conclusions

This paper presents a novel way to optimize the distance
measure for the neighborhood-based classifiers. Our motiva-
tion is that the prototypes are not isolated and by analyzing
the inter-prototype relationship, we are able to obtain useful
information to optimize the distance measure.

We have proposed a method CamNN to analyze and
take advantage of the inter-prototype relationship. The cam
weighted distance, the core of CamNN, has two essential
characteristics, orientation and scale adaptivity, which en-
able it to reflect the inter-prototype relationship effectively,
so that a better classification performance is achieved. The
efficacy of our method is validated by the experiments using
both artificial and real data.

Remarkably, CamNN is computationally competitive with
1-NN while its performance has significantly outperformed
k-NN in most datasets. Furthermore, CamNN confines the

http://www.ics.uci.edu/mlearn/MLRepository.html
http://www.ics.uci.edu/mlearn/MLRepository.html
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analysis to the training phase, so that its classification phase
is fairly straightforward and fast.
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Appendix A. Proof of the Theorem 1

Theorem 1. If a random vector X has a cam distribution
Camp(a, b, �), then the probability density function of X is
as follows, for x ∈ Rp

p(x) = 1

(2�)p/2(a + b(x′�/‖x‖))p

· exp

[
−1

2

( ‖x‖
a + b(x′�/‖x‖)

)2
]

(15)

or

p(x) = 1

(2�)p/2(a + b · cos �)p

· exp

[
−1

2

( ‖x‖
a + b · cos �

)2
]

, (16)

where ‖x‖ = √
x′x, and � is the included angle of vectors x

and �.

Proof. According to Definition 1, there exists a transforma-
tion X = (a + b · Y ′ · �/‖Y‖) · Y from a standard normal
random vector Y ∼ N(0, Ip) to a cam random vector X ∼
(Campa, b, �). This is a one-to-one transformation, so we
can write

x =
(

a + b · y′ · �

‖y‖
)

· y. (17)

Thus, the density of X is then given by

p(x) = f (y(x)) · |J (y → x)|, (18)

where f (·) is the probability density function of Y and
J (y → x) is the Jacobian of the transformation y = y(x).

(i) By Eq. (17), we get

x′� =
(

a + b · y′ · �

‖y‖
)

· y′�,

x′x =
(

a + b · y′ · �

‖y‖
)2

· y′y,

y′ · �

‖y‖ = x′ · �

‖x‖ . (19)

Hence,

y =
(

a + b
x′�
‖x‖

)−1

x. (20)

(ii) From Eq. (17), we have

dx = d

(
a + b

y′�
‖y‖

)
· y +

(
a + b

y′�
‖y‖

)
dy

= b

(
dy′�
‖y‖ − y′�

(‖y‖)3 · y′ dy

)
y+

(
a+b

y′�
‖y‖

)
dy

= b

‖y‖3 · y · (y′y�−y′�y′) · dy+
(

a+b
y′�
‖y‖

)
dy,

so that

dx

dy
= b

‖y‖3 · y · (y′y� − y′�y′)+ c · Ip, c = b
y′�
‖y‖ .

Thus,

J (x → y) = det

[
dx

dy

]
(21)

= |cp| ·
∣∣∣∣ 1

‖y‖2y′�
y
(
y′y�′ − y′�y′)+ Ip

∣∣∣∣ . (22)

Since

|Ip + Ap×qBq×p| = |Iq + Bq×pAp×q |, (23)

we have

J (x → y)

= |cp| ·
(

1 + 1

‖y‖2y′�
· (y′y�′y − y′�y′y

))
(24)

= |cp| (25)

=
∣∣∣∣a + b

y′�
‖y‖

∣∣∣∣p. (26)

Thus, we obtain the Jacobian as follows

J (y → x) = 1

J (x → y)
=
∣∣∣∣a + b

y′�
‖y‖

∣∣∣∣−p

.

According to Eq. (19), we have

J (y → x) =
∣∣∣∣a + b

x′�
‖x‖

∣∣∣∣−p

. (27)



10 C.Y. Zhou, Y.Q. Chen / Pattern Recognition 39 (2006) 635–645

(iii) By Eqs. (20) and (27), the p.d.f of X is

p(x) = f [y(x)] · J (y → x)

= (2�)−p/2 · exp
[− 1

2y′y
] · J (y → x)

= (2�)−p/2 · exp

[
−1

2

(
a + b

x′�
‖x‖

)−2

x′x
]

·
(

a + b
x′�
‖x‖

)−p

= 1

(2�)p/2(a + b (x′�/‖x‖) )p

· exp

[
−1

2

( ‖x‖
a + b(x′�/‖x‖)

)2
]

.

Since cos � = x′�/‖x‖, we also have

p(x) = 1

(2�)p/2(a + b · cos �)p

· exp

[
−1

2

( ‖x‖
a + b · cos �

)2
]

. �

Appendix B. Proof of the Theorem 2

Theorem 2. If a random vector X ∼ Camp(a, b, �), then

E(X) = c1 · b · � (28)

and

E(‖X‖) = c2 · a, (29)

where c1 and c2 are constants with

c1 = 21/2 · �((p + 1)/2)

�(p/2)

/
p

c2 = 21/2 · �((p + 1)/2)

�(p/2)
,

(30)

�(·) denoting the Gamma function �(k) = ∫∞
0 tk−1 e−t dt

(k > 0).

Proof. (i) E(X)=E((a+b·Y ′�/‖Y‖)Y )=b·E((Y ′�/‖Y‖)Y ).
Construct an orthogonal matrix A that satisfies � =
A · (1, 0, . . . , 0)′, and then let Z = A′Y . Obviously, Z
still follows standard p-dimension normal distribution,

Z ∼ N(0, Ip). Then,

E(X) = b · E

(
Y ′A · (1, 0, . . . , 0)′

‖Y‖ Y

)

= b · E

(
Z′ · (1, 0, . . . , 0)′

‖Z‖ AZ

)

= b · A · E

(
Z1

‖Z‖Z

)

= b · A · E

(
Z1Z1

‖Z‖ ,
Z1Z2

‖Z‖ , . . . ,
Z1Zp

‖Z‖
)′

.

For the antisymmetry of ZiZj/‖Z‖, we know
E(ZiZj/‖Z‖) = 0 for i �= j . Thus

E(X) = b · A ·
(

E
Z2

1

‖Z‖ , 0, . . . , 0

)′

= b · A · (1, 0, . . . , 0)′ · E
Z2

1

‖Z‖

= b · � · 1

p
· E

(∑
Z2

i

‖Z‖

)

= 1

p
· E(‖Z‖) · b · �.

Let W = ‖Z‖2, then W has a Chi-Squared distribution
�2
p, whose p.d.f is

g(w) = 1

2p/2�(p/2)
· e−p/2 · w(p/2)−1, w > 0.

Then, we have

E(
√

W) =
∫ ∞

0
w1/2 1

2p/2�(p/2)
e−w/2 · x(p/2)−1 dw

= 21/2 · �((p + 1)/2)

�(p/2)
, (31)

so that,

E(X) = b · 1

p
· E(‖Z‖) · �

= 21/2 · 1

p
· �((p + 1)/2)

�(p/2)
· b · �. (32)
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(ii)

E‖X‖ = E

∥∥∥∥(a + b
Y ′�
‖Y‖

)
Y

∥∥∥∥
= E

∥∥∥∥(a + b
Z′(1, 0, . . . , 0)′

‖Z‖
)

AZ

∥∥∥∥
= E

∥∥∥∥(a + b
Z1

‖Z‖
)

Z

∥∥∥∥
= E

(
a + b

Z1

‖Z‖
)

‖Z‖

= aE‖Z‖

= 21/2 · �((p + 1)/2)

�(p/2)
· a. �
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