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Handling missing values in population data:
consequences for maximum likelihood estimation
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Haplotype frequency estimation in population data is an important problem in genetics and different
methods including expectation maximisation (EM) methods have been proposed. The statistical properties
of EM methods have been extensively assessed for data sets with no missing values. When numerous
markers and/or individuals are tested, however, it is likely that some genotypes will be missing. Thus, it is
of interest to investigate the behaviour of the method in the presence of incomplete genotype
observations. We propose an extension of the EM method to handle missing genotypes, and we compare it
with commonly used methods (such as ignoring individuals with incomplete genotype information or
treating a missing allele as any other allele). Simulations were performed, starting from data sets of
haematopoietic stem cell donors genotyped at three HLA loci. We deleted some data to create incomplete
genotype observations in various proportions. We then compared the haplotype frequencies obtained on
these incomplete data sets using the different methods to those obtained on the complete data. We found
that the method proposed here provides better estimations, both qualitatively and quantitatively, but
increases the computation time required. We discuss the influence of missing values on the algorithm’s
efficiency and the advantages and disadvantages of deleting incomplete genotypes. We propose
guidelines for missing data handling in routine analysis.
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Introduction
The numerous polymorphic genetic markers throughout

the genome, the recent improvements in molecular

techniques and the new possibilities of automation1

allow the development of large genetic studies in

populations. HLA population genetics data were one of

the first applications of maximum likelihood (ML)

estimation of haplotypes 30 years ago.2 – 4 The genetic

structure of the HLA region (6p21.3) is of particular

interest, since it has numerous contiguous loci and a

high number of alleles at many loci, generating a

theoretical number of phenotypes and haplotypes greater

than the usual sample size (for example, HLA-DRB1

N¼330 alleles).5 Further, there is a high number of

low-frequency haplotypes. The occurrence of incomplete

genotypes has been reduced by the continuing improve-

ments in HLA typing techniques. Nevertheless, when

analysing large data sets such as volunteer potential

haematopoietic stem cell donor Registries, the influence

of missing values in haplotype frequency estimation must

be addressed. Thus, haplotype estimation in large dataReceived 27 June 2003; revised 29 April 2004; accepted 5 May 2004
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sets of contiguous loci becomes an important issue in

population-based molecular genetics.

To overcome the lack of phase information provided by

the techniques, likelihood-based calculations in the gen-

eral framework of the Expectation Maximisation algorithm

have been formalised and further developed by Dempster.6

Many of the properties of the EM algorithm for ML

estimation method have already been discussed.7,8 These

include the accuracy of the estimation of haplotype

frequency, departure from Hardy–Weinberg equilibrium,

the number of alleles, the number of loci, the type of

markers, linkage disequilibrium measure, the influence of

collapsing over a locus, computational properties and

genotyping error.9 – 12

The EM algorithm is primarily set to handle the missing

phase information, and it can be adapted to deal with

complete and incomplete genotypes at the same time (i.e.

missing phase information and missing values within a

genotype).6 We were interested in the influence of missing

values on haplotype frequency estimation. In practice,

missing values are usually handled in one of two ways:

individuals with incomplete data are ignored (as in the EH

software;13 further referred as MVDEL), or missing values

are coded as an additional allele (in the ARLEQUIN

software).14 This last ‘method’ is an acknowledged bug in

the ARLEQUIN implementation for the estimation of

haplotype frequencies. Several types of stand-alone soft-

ware15 – 21 propose to take into account incomplete geno-

types in their analyses, but they are suitable only for

specific kinds of data (biallelic markers), for specific kinds

of missing data (for example recessive data) or within the

framework of familial data.

Here we explore several possible solutions to this

problem of missing values and look at the consequences

on the estimation of haplotype frequencies by maximum

likelihood methods. We implemented them in software

named LOGINSERM_ESTIHAPLO.

Population and methods
Population data

The data were obtained from the French Registry of

volunteer unrelated potential haematopoietic stem cell

donors.22,23 In all, 30 independent data sets of 1000

individuals were obtained by randomly drawing indivi-

duals without replacement from the main database of

85 933 individuals typed for HLA-A, -B and -DR. For each of

these 30 data sets without missing values (referred to as

‘initial data sets’), HLA-A, B, DR haplotype frequencies

were estimated by EM and used as references to study the

impact of missing data on haplotype frequency estimation.

Missing values definition

We considered a genotype to present a ‘missing value’

when one or zero alleles is reported at a particular locus.

We assumed that the missing values were independent

from the nature of the other reported polymorphisms.

Missing values simulations

Simulations were used to generate missing values ranging

from 5 to 25%. In order that the missing values were

randomly distributed in the data, a uniform random

number was drawn for each allele in each data set. If this

number was smaller than the required percentage of

missing values, then the allele was deleted. Thus, one or

two alleles could be missing at each locus.

Missing values handling

Two methods were compared:

1. The MVDEL method (for Missing Values Deleted)

ignores any individual with missing data. If data are

missing at any locus, all information is deleted for that

individual. This is the method implemented in the

program EH.13

2. The MVSAS method (for Missing Values Statistically

Assessed) allows for the missing value to be any allele,

which is consistent with the incomplete genotype and

the haplotypes already observed in the sample. This

second method was inspired by Excoffier and Demp-

ster.6,24 However, not all the alleles at a locus were

possible. Only those already found associated with the

observed alleles at the other loci in the data set were

considered to substitute missing values. Indeed, the

contribution of incomplete observations to the haplo-

type estimation is weighted by the probability of

possible haplotypes in the same data set. All complete

or incomplete observations are used to identify the

allelic association resulting in the possible haplotype

diversity. For instance, consider an observed individual

with genotype (1,1) at one biallelic locus and genotype

(1,?) at a second biallelic locus. In the Dempster or

Excoffier approach, ‘?’ will be replaced by 1 or 2. In our

method, it will depend on the possible haplotypes that

have been deduced from individuals without missing

data. If haplotype 1,2 is never estimated to exist, then ‘?’

could only be replaced by 1. This procedure is extended

to all possible pattern of missing values.

EM algorithm

The estimation of haplotype frequencies by maximum

likelihood within the EM algorithm has been performed as

described elsewhere.7 The Expectation Step (E-step) gen-

erally computes the likelihood of the sample using

haplotype estimations of the previous iteration, or the

initial values at first step (which are chosen at random; no

multiple starting conditions are used). The counting

procedure is extended to the presence of missing values.
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The criteria to stop iteration are modified in order to

compare different models.

1. Maximisation step (M-step): In the M-step, haplotype

frequency estimation is inspired from a gene-counting

procedure.25,26 For each genotype, the presence of a

haplotype is counted through the probability of its

resulting phase. We extend this procedure to incomplete

genotypes in the example below, using notation for three

loci, indexed by i, j and k. This notation generalises to any

number of loci by extending the number of indices. The

implementation in our software works with up to seven

loci:

h
ðtþ1Þ
ijk ¼ 1

2N
�
XN
n¼1

P
ðtÞ
1 ðhijk=nÞ þ P

ðtÞ
2 ðhijk=nÞ

h i

where hijk is the estimation of haplotype i– j–k at iteration

tþ1; N is the number of genotypes observed; P1ðhijk=nÞ and

P2ðhijk=nÞ are the probabilities of observing the haplotype

i– j–k as first and second, respectively; P1(hijk/n) and P2(hijk/

n) could be calculated as functions of haplotype estima-

tions at iteration (t):

P1ðhijk=nÞ ¼

P
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where P1(hijk/n) is the probability of observing the i– j–k

haplotype for a given genotype n; hc
(t) is the complementary

haplotype or possible haplotypes to observe the i– j–k

haplotype in genotype n; h1
(t) and h2

(t) are the pseudo-

haplotype frequency estimations at iteration (t) for geno-

type n; (h1,h2) notation refers then to all possible pairs of

haplotypes which may result in the observation of the

genotype n, whereas hijk
(t) is the i– j–k haplotype frequency

estimated at iteration (t); dh1,h2 is the Kronecker delta

defined by: dh1 ;h2
¼ 0

1
for h1 6¼ h2

for h1 ¼ h2

�
h1 ¼ h2 , homozy-

gous genotype. Such M-step is performed for all hijk; that is,

all haplotype estimations are computed at each iteration.

This probability is the ratio of the probability of the

haplotype combination and the probability of observing

such a genotype n. Although notation hijk describes the set

of three locus (i, j, k) haplotypes as parameters in the three-

locus HLA data used here, generalisation of indexes ‘i, j, k’

to any number of loci is possible; hijk would refer then to

the appropriate set of pseudo-haplotypes (set of haplotype

compatible with given genotype). Asymptotic properties of

the EM algorithm are not modified.6

2. Iterations of EM: The method usually assumes that if

likelihood does not vary from more than a given very small

value (say for instance 10e�4) between two iterations,

estimations of haplotype frequencies are stable. Here, since

we compare estimations obtained under different like-

lihood models, we use a direct measure of the whole

stability of estimations by considering the sum of absolute

errors (SAE) that is defined as follows:

SAE ¼
XH
i¼1

h
ðtþ1Þ
i � h

ðtÞ
i

��� ���
where H is the total number of haplotypes estimated and

hi
(tþ1) and hi

(t) are the estimations of haplotype number i at

iterations t and tþ1, respectively. No multiple starting

conditions were used routinely, but convergence was

assessed separately. Iterations of the algorithm were

stopped when SAE reached 10e-4.

The modified EM algorithm described above for the

integration of missing genotype data has been implemen-

ted in a C-written program called ‘LOGINSERM_ESTIHA-

PLO’ (available on request).

Method for comparison

A comparison of the accuracy of haplotype estimations was

made using the ‘IH’ measure (for Identification of Haplo-

types). IH takes the value of 1 if the set of estimated

haplotypes is identical to the reference set of haplotypes.7

It can be applied for all parameters estimated (all haplotype

frequencies estimated) or for estimation of frequencies,

which are estimated above 1/2N, where N is the sample

size. 1/2N is the threshold of estimated existence of a

haplotype in the sample.

IH ¼ 2� Kref � Kmissedð Þ
Kref þ Kest

where Kref is the number of parameters (frequency

estimations) in the reference, Kmissed is the number of

parameters that are absent in the estimated frequencies

and Kest is the number of parameters estimated in the

haplotype estimations compared to the reference.

Haplotype inference methods on complete data can

generate errors as compared to population (‘true’) frequen-

cies, due to sampling errors.16 To compare the haplotype

estimation obtained on the complete data to those

obtained in the presence of missing values, and to evaluate

specifically the impact on the missing values on haplotype

inference, we computed the difference between haplotype

estimations using three classical indexes:

1. The Mean Square Error (MSE) defined as:

MSE ¼ 1

H
�
XH
i¼1

ðhðrefÞ
i � h

ðestÞ
i Þ2

The Mean Absolute Error (MAE) defined as:

MAE ¼ 1

H
�
XH
i¼1

h
ðrefÞ
i � h

ðestÞ
i

��� ���
where H is the number of parameters shared by the

reference and the compared estimations. hi
(ref) and hi

(est)

are the estimations of haplotype i frequency in the initial

data set and in data with missing values, respectively.
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2. The similarity index ‘If’7,12 used to measure the estima-

tion accuracy:

If ¼
XKshared

i¼1

min ðhðrefÞ
i ; h

ðestÞ
i Þ

,
If ¼1 � 1

2
�
XKshared

i¼1

jhðrefÞ
i � h

ðestÞ
i j; Kshared40

If ¼0; Kshared ¼ 0

8>><
>>:

We also introduced another measure of the accuracy

through a normalised similarity index ‘Ifn’. ‘Ifn’ con-

siders both the number of shared haplotype estimations

and the absolute error on frequencies:

Ifn ¼ 1 � 1

2
�
XKshared

i¼1

jhðrefÞ
i � h

ðestÞ
i j

 !
�Kshared

Ktrue

where Kshared is the number of parameters (haplotype

frequency estimations) shared by the initial data set;

and Ktrue is the number of parameters (haplotype

frequency estimated) in the initial data set.

Results
The different ways of handling missing values may affect

the estimation of haplotype frequencies at different levels:

qualitative (identification of possible haplotypes) and

quantitative (their frequencies). These two levels can be

considered for all possible haplotypes, or for those

expected to be present in the sample. The results presented

correspond to the haplotypes present in the sample. (All

comparisons are available on request.)

Identification of haplotypes expected to be present in
the sample according to the reference estimation

Tables 1 and 2 are built on the comparison of frequency

estimates above 1/2N,where N is the analysed sample size.

The ‘MVDEL’ method reduces the number of haplotypes

shared with the reference, in the presence of missing values

(Table 1; column ‘Kept’ and ‘Lost’, rows ‘MVDEL’). Deleting

incomplete observations results in a decrease in the

haplotypic diversity in the population, with some

haplotypes being lost. The number of lost haplotypes is

greater with MVDEL (Table 1; column ‘Lost’, rows

‘MVDEL’) than with MVSAS (Table 1; lumn ‘Lost’).

Interestingly, in the two methods, while analysing estima-

tion above 1/2N frequency threshold only, no haplotype

estimations were added compared to the reference (not

shown). In this case, added haplotype estimation number

is not forced to zero. The value of IH that summarises the

conservation of haplotype estimations vs the reference

without missing values is greater for the algorithm

developed here (Table 1; Figure 1). MVSAS is therefore

qualitatively better than the MVDEL method. Following

the qualitative analysis of the nature of haplotypes

generated through the algorithms, it is necessary to analyse

the influence of handling missing values on the frequency

estimation.

Frequency estimation of haplotypes

The haplotype frequencies estimated by the different

methods using incomplete data are similar to those

obtained on the initial sample with no missing data.

Several global measures of the accuracy of these methods

are presented in Table 2. This shows that the accuracy of

the method developed (MVSAS) is at least as good as that

of the MVDEL method. The question of the global

Table 1 Comparison of the average number of different haplotypes with frequency estimation above 1/2000, obtained
according to two different ways of handling missing values

MV handling MV % Kept Lost IH

MVSAS 5 495.4[489.6; 501.1] 3.5[2.7; 4.3] 0.996[0.996; 0.997]
MVSAS 10 476.1[471.8; 480.4] 6.9[6.2; 7.7] 0.993[0.992; 0.994]
MVSAS 15 462.9[457.8; 468.1] 11.3[9.6; 13.1] 0.988[0.986; 0.990]
MVSAS 20 450.5[444.6; 456.4] 16.2[14.8; 17.6] 0.982[0.981; 0.984]
MVSAS 25 440.4[434.5; 446.4] 19.6[17.7; 21.5] 0.978[0.976; 0.980]
MVDEL 5 493.0[487.8; 498.2] 6.2[5.1; 7.3] 0.994[0.993; 0.995]
MVDEL 10 475.4[470.3; 480.5] 12.3[11.2; 13.3] 0.987[0.986; 0.988]
MVDEL 15 460.7[455.9; 465.4] 19.1[16.9; 21.4] 0.980[0.977; 0.982]
MVDEL 20 450.0[445.0; 454.9] 27.3[25.2; 29.3] 0.971[0.968; 0.973]
MVDEL 25 439.9[434.0; 445.9] 34.3[31.9; 36.7] 0.962[0.960; 0.965]

The figures represent the average number of different haplotypes for frequency estimations above 1/2000 and over 30 simulations. For each
simulation, the reference is the number of haplotypes obtained by maximum likelihood estimation from a sample of 1000 genotypes randomly
generated with no missing value (initial data sets). The average number of haplotypes estimated in the references depends on the percentage of
missing values. ‘MV%’ is the percentage of missing values simulated in the data; ‘Kept’ is the number of haplotypes shared with the reference; ‘Lost’ is
the number of haplotypes lost due to the presence of missing values. ‘IH’ is the identification index of possible haplotypes in presence of missing values
in the data as regards reference (as defined in the ‘Method’ part); 95% Confidence intervals are given between brackets. ‘MVDEL’ (Missing Values
DELeted) stands for the method where incomplete genotypes are deleted. ‘MVSAS’ (Missing Values Statistically ASsessed) stands for the method
developed to handle statistically phase information in the presence of missing values through the EM algorithm.
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accuracy of haplotype estimation was addressed in several

ways. Using squared errors, there was no apparent

difference in error range in the two methods (Table 2;

column MSE). Similarly, using absolute error as an

evaluation of the differences between estimations, no

significant global modifications were seen (Table 2;

column MAE). The frequencies obtained with MVSAS

seem to be closer to the reference estimations than those

obtained with MVDEL. Analysis of vectorial error (not

shown) shows a tendency to overestimate the haplotype

frequencies, which may be due to several reasons. For

example, for MVSAS, the weight of lost haplotypes is

distributed over other possible haplotypes. For MVDEL, the

decrease in the sample size due to deletion of observations

leads to an overestimation of the frequency of the

remaining ones. The Ifn global measure of the accuracy

of estimations is consistent with the computed MAE

(Table 2; column ‘Ifn’) and confirms the slight improve-

ment of the estimations provided.

Calculation time

Obviously, the calculation cost of the MVSAS method

is greater than that required when there are no

missing values. This depends both on the percentage

and the distribution of the missing values. From the

simulations performed using Quadri Xeon 700 Mhz

(cache 1 Mo; random access memory 4 Go; Operating

system : Linux Red hat 7.3), the additional computa-

tion time costs approximately 1 min for 1% of missing

values. On these data, the observed relationship is

linear.

Discussion
Even though other methods are available (Parsimony,27

Pseudo Bayesian28 and Partition-Ligation Bayesian),29 EM

remains the most widely used algorithm for the estimation

of haplotype frequencies. Thus, we focus only on the

Table 2 Comparison of the accuracy of haplotype frequency estimations in the presence of missing values in the data set,
restricted to estimations above 1/2000

MV handling MV % MSE MAE Ifn

MVSAS 5 2.62E�07 [2.33E�07; 2.91E�07] 2.50E�04 [2.38E�04; 2.63E�04] 0.744 [0.734; 0.755]
MVSAS 10 3.65E�07 [3.21E�07; 4.09E-07] 3.05E�04 [2.91E�04; 3.19E�04] 0.707 [0.699; 0.715]
MVSAS 15 4.49E�07 [4.06E�07; 4.92E�07] 3.49E�04 [3.36E�04; 3.62E�04] 0.682 [0.672; 0.691]
MVSAS 20 4.90E�07 [4.57E�07; 5.23E�07] 3.85E�04 [3.74E�04; 3.97E�04] 0.659 [0.650; 0.667]
MVSAS 25 5.83E�07 [5.16E�07; 6.50E�07] 4.22E�04 [4.01E�04; 4.43E�04] 0.640 [0.630; 0.651]
MVDEL 5 2.71E�07 [2.34E�07; 3.08E�07] 2.60E�04 [2.45E�04; 2.75E�04] 0.739 [0.729; 0.750]
MVDEL 10 3.78E�07 [3.38E�07; 4.18E�07] 3.21E�04 [3.08E�04; 3.34E�04] 0.703 [0.695; 0.712]
MVDEL 15 4.31E�07 [3.95E�07; 4.67E�07] 3.60E�04 [3.46E�04; 3.75E�04] 0.677 [0.667; 0.686]
MVDEL 20 5.31E�07 [4.91E�07; 5.71E�07] 4.06E�04 [3.94E�04; 4.19E�04] 0.655 [0.647; 0.663]
MVDEL 25 5.86E�07 [5.24E�07; 6.48E�07] 4.42E�04 [4.24E�04; 4.59E�04] 0.636 [0.626; 0.646]

The figures represent several average measures of the accuracy of the haplotype frequencies estimated above 1/2000 (1/2N) in the presence of missing
values independently simulated over 30 data sets. Estimations are compared to reference estimations obtained using the data set with no missing
values and estimated above 1/2000. The threshold 1/2000 is the minimum frequency to reach for a haplotype to be truly present in the data set of
1000 genotypes. ‘MV%’ is the percentage of missing values simulated in the data. ‘MSE’ is the Mean Square Error; ‘MAE’ is the Mean Absolute Error,
‘Ifn’ is the normalised accuracy index of haplotype estimations compared to the reference as defined in the ‘Population and methods’ part; 95%
confidence intervals are given between brackets. ‘MVDEL’ (Missing Values DELeted) stands for the method where incomplete genotypes are deleted.
‘MVSAS’ (Missing Values Statistically ASsessed) stands for the method developed to handle statistically phase information in the presence of missing
values through the EM algorithm.

Figure 1 Comparison of the average number of possible
different haplotypes through haplotype identification index
(IH) according to two different ways of handling missing
values and restricted to haplotypes, with estimations above
1/2N. The figures represent the average IH calculated with
the haplotypes with frequency above 1/2000 (1/2N)
obtained over 30 independent simulations of missing
values. ‘IH’ is the identification index of possible haplotypes
where there are missing values in the reference (as defined
in ‘Population and methods’). For each simulation, the
reference for comparison is the haplotype estimations
above 1/2000 obtained with the data set without missing
values. The threshold 1/2000 is the minimum frequency to
reach for a haplotype to be truly present in the data set of
1000 genotypes. The percentage of missing values (%MV)
ranges from 0 to 25%; 95% confidence intervals are given
by a vertical bar. ‘MVDEL’ (Missing Values DELeted, filled
square) stands for the option where incomplete genotypes
are deleted. ‘MVSAS’ (Missing Values Statistically Assessed,
filled circle) stands for the method developed for the
statistical handling of phase information where there are
missing values, through the EM algorithm.
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modification of the ML estimations provided by the EM

method in the presence of missing values. We do not

discuss the general properties of the estimations provided

by this method as these have been discussed previously in

the literature.

Although the ideal situation is to have no missing values,

this is rarely the case. The use of unrelated individuals does

not allow deduction of the missing values or genotyping

errors. Missing values are sometimes nonrandom as they

can be related to typing difficulties or to particular

combinations of alleles. Such cases are addressed at the

technical level as part of the quality control procedure. In

the statistical handling, the assumption is made that the

missing values are independent from the identity of the

missing allele at the locus being considered and indepen-

dent from the alleles at the other loci. This is the case, for

example, for a nongenotyped locus. The importance of

data validation for large data sets has been underlined,30 as

along with the consequences of genotyping error.10

Consequences related to the presence of missing
values

The incidence of missing values in the data set modifies

the information deduced on the phase information, for

at least three reasons. First, computational algorithms

cannot replace experimental data, thus missing informa-

tion is handled in the framework of the theoretical

model but remains unsolved. Secondly, it modifies the

likelihood model because the parameters (ie the number

of haplotypes) are different, and because the sample

itself is modified. If one ignores the actual implementa-

tion of missing values handling by the software, the

influence of the incomplete observations cannot be

anticipated. Having incomplete observations influences

the distribution of an observation over its possible

phases. In ARLEQUIN,14 missing values are considered

as an additional allele at each locus. Consequently, the

algorithm creates artificial haplotypes. This results in a

systematic bias surrounding haplotype frequencies. In

the MVDEL method, lost haplotypes may arise for two

reasons: either from the missing values themselves

(MVSAS method; Table 1; Column ‘lost’), or from the

initial decision to delete all the information about

individuals with missing values. Lost (or added) esti-

mates are expected to influence the accuracy of the

estimations.

Criteria of choice for handling incomplete genotypes

The adaptation of ML estimation of haplotype frequencies

to incorporate missing values slightly increases the accu-

racy of the estimations obtained. The MVSAS method is

particularly relevant when the main interest of the study is

focused on rare haplotypes. We have shown that the two

methods presented here for handling missing genotypes

(MVDEL and MVSAS) have different consequences on the

haplotype estimates. Depending on the aim of the study

and on whether one is interested in the most frequent

haplotypes, a rare haplotype (disease or candidate haplo-

type) or the whole set of estimations for global population

analysis and gametic disequilibrium measurement, one or

the other methods may be best. If one is interested in

common haplotypes then MVDEL may be used, since, even

though haplotypes may be lost with this method, this will

mainly concern rare haplotypes. If the sample size is

sufficiently large, therefore, haplotype diversity is usually

not affected. If, however, one is interested in rare

haplotypes, then MVSAS should be used. Estimation of

rare haplotype distribution remains a difficult issue. In fact,

MVSAS can be adapted to any situation and it works well

even if missing values are concentrated over data at a given

locus. The price to pay, however, is the computation time.

Indeed, the calculation cost may be prohibitive when the

number of missing values, the sample size and the number

of loci increase.

The main difference between MVDEL and MVSAS is

attributable to missing values distribution over the sample.

As underlined by Fallin and Schork,9 the ML estimations

are sensitive to sampling error. This is particularly true for

the missing values sampling. Using the MVDEL method,

the decrease of the sample size makes sampling errors more

frequent than in the other methods and therefore results in

less accurate estimations.

Ambiguities, nomenclature in the data set

Techniques sometimes give results as ‘ambiguities’, and

from the molecular observation some of the known alleles

can be discarded (for example, when the results provide a

list of possible alleles and a list of absent alleles). These are

not missing values but partial information, and could

easily be handled using the same statistics as those

presented for missing values. Depending on the complex-

ity of ambiguities in nomenclatures (see Marsh5 for HLA),

it turns out that this theoretically simple process becomes

complicated to implement. Such ambiguities might be

taken into account to set the initial nature of the

haplotypes (preliminary step of EM).

The methods presented here for HLA are of general

relevance and can be applied to microsatellite and SNP

haplotype estimation. Regarding the general properties of

the method, it is all the more efficient, as the gametic

disequilibrium is strong in the region.11 Thus, the genetic

structure of the region influences the statistical reassess-

ment of missing values. It means that the gametic

disequilibrium allows the deduction of a polymorphism,

based on knowledge of the contiguous one in the MVSAS

method. In the MVDEL method, it suggests that enough

global information for phase information reconstruction

remains after deleting some observations. Similarly, for

polymorphic markers, missing values are expected to affect

low-frequency haplotypes qualitatively, whereas high-
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frequency ones are affected quantitatively. In this sense, it

is consistent with the general differential confidence

inherent to the method on rare vs frequent haplotype

frequencies estimation (i.e. the more frequent the haplo-

type, the more reliable its estimation). If missing values

affect bi-allelic markers, the estimation of haplotype

frequencies may essentially be quantitative, with a higher

impact on low frequency and low gametic disequilibrium

haplotypes. In such cases, the PLEM strategy may be an

alternative method for dealing with missing values;

keeping multiple outputting of possible haplotypes should

be recommended, as reported.15

Convergence velocity and stopping criteria

We did not choose the classical likelihood stability criteria

to stop iteration. Indeed, the likelihood not only depends

on the values of the parameters estimated (haplotype

frequencies), but also on the number of the parameters, the

likelihood model and the data set retained for the analysis,

which are different because of the way missing values are

handled. Similar considerations were made in SNPHAP

software (available at David Clayton’s web site): the

skimming procedure used to speed up computations

modifies the likelihood model while iterating. Thus, the

stability of estimators was measured directly, using the

estimations by the sum of absolute variation (SAE) on

the estimations from one iteration to the next.

Another choice we made here may differ from the

classical ones: we only used haplotypes that have been

estimated to exist in complete observations, thereby

reducing the number of parameters. The alternative

– inclusion of all the possible alleles – does not change

the result, but increases the running time.

The M-step is the limiting one, together with the number

of estimation of haplotype frequencies. Other calculations

may solve the problem or may allow multi-point haplotype

frequency to be computed. Although trimming proce-

dures31,32 have been proposed to reduce the number of

parameters while iterating, the final likelihood cannot be

used in log likelihood-based tests.

The evolution of the possibilities in large-scale genotyp-

ing requires the statistical treatment of the data and

motivated our investigation on handling missing values

for ML estimation. The statistical handling of missing

values increases the quality of the haplotype frequencies

provided. Deleting the incomplete observations is accep-

table when using large data sets or when the estimation is

computer intensive. These conclusions contribute to the

enhancement of the use of haplotype estimation and allow

better analysis of the data. The structure of the data

influences the effectiveness of the method and puts the

methodological consideration on this haplotype estima-

tion into perspective. Indeed, the kind of polymorphism,

the number of loci, the sample size, or the population may

require different computational implementations.
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