
44

mals to Animats: Proceedings of the First International Conference on Simulation of Adaptive

Behavior (pp. 15-21). Cambridge, MA: MIT Press.

Wilson, S. W. (1994). ZCS: a zeroth order classifier system. Evolutionary Computation, 2, 1-18.

Wilson, S. W., and Goldberg, D. E. (1989). A critical review of classifier systems. Proceedings

of the Third International Conference on Genetic Algorithms (pp. 244-255). San Mateo, CA:

Morgan Kaufmann.

43

son’s ZCS. Unpublished Masters dissertation/thesis, University of Sussex.

Smith, R. E. (1991). Default Hierarchy Formation and Memory Expoitation in Learning Classifi-

er Systems. Ph. D. Dissertation, The University of Alabama, Tuscaloosa, Alabama.

Sutton, R. S. (1991). Reinforcement learning architectures for animats. In J.-A. Meyer & S. W.

Wilson (eds.), From Animals to Animats: Proceedings of the First International Conference

on Simulation of Adaptive Behavior (pp. 288-296). Cambridge, MA: MIT Press.

Twardowski, K. (1993). Credit assignment for pole balancing with learning classifier systems. In

S. Forrest, (ed.), Proceedings of the Fifth International Conference on Genetic Algorithms

(pp. 238-245). San Mateo, CA: Morgan Kaufmann.

Valenzuela-Rendón, M. (1991). The fuzzy classifier system: a classifier system for continuously

varying variables. Proceedings of the Fourth International Conference on Genetic Algorithms

(pp. 346-353). San Mateo, CA: Morgan Kaufmann.

Venturini, G. (1994). Apprentissage Adaptatif et Apprentissage Supervisé par Algorithme Géné-

tique. Thèse de Docteur en Science (Informatique), Université de Paris-Sud.

Watkins, C. (1989). Learning from Delayed Rewards. Ph.D. Dissertation, Cambridge University.

Watkins, C. and Dayan, P. (1992). Technical note: Q-Learning. Machine Learning, 8, 279-292.

Wilson, S. W. (1985). Knowledge growth in an artificial animal. Proceedings of the First Interna-

tional Conference on Genetic Algorithms and Their Applications (pp. 16-23). Hillsdale, New

Jersey: Lawrence Erlbaum Associates.

Wilson, S.W. (1987a). Classifier systems and the animat problem. Machine Learning, 2, 199-228.

Wilson, S. W. (1987b). Hierarchical credit allocation in a classifier system. Proceedings of the

Tenth International Joint Conference on Artificial Intelligence (pp. 217-220). Los Altos, CA:

Morgan Kaufmann.

Wilson, S. W. (1991). The animat path to AI. In J.-A. Meyer & S. W. Wilson (eds.), From Ani-

42

tems. Physica D, 41, 188-201.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., and Thagard, P. R. (1986). Induction: Processes of

Inference, Learning, and Discovery. Cambridge, MA: MIT Press.

Horn, J., Goldberg, D. E., and Deb, K. (1994). Implicit niching in a learning classifier system: na-

ture’s way. Evolutionary Computation, 2(1), 37-66.

Koza, J. R. (1992). Genetic Programming. Cambridge, MA: The MIT Press/Bradford Books.

Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks. Ph.D. Thesis,

School of Computer Science, Carnegie Mellon University.

Mahadevan, S. and Connell, J. (1992). Automatic programming of behavior-based robots using

reinforcement learning. Artificial Intelligence, 55, 311-365.

Parodi, A. and Bonelli, P. (1993). A new approach to fuzzy classifier systems. In S. Forrest, (ed.),

Proceedings of the Fifth International Conference on Genetic Algorithms (pp. 223-230). San

Mateo, CA: Morgan Kaufmann.

Poggio, T. & Edelman, S. (1990). A network that learns to recognize three-dimensional objects.

Nature, 343, 263-266.

Riolo, R. L. (1991). Lookahead planning and latent learning in a classifier system. In J.-A. Meyer

& S. W. Wilson (eds.), From Animals to Animats: Proceedings of the First International Con-

ference on Simulation of Adaptive Behavior (pp. 316-326). Cambridge, MA: MIT Press.

Roberts, G. R. (1993). Dynamic planning for classifier systems. In S. Forrest, (ed.), Proceedings

of the Fifth International Conference on Genetic Algorithms (pp. 231-237). San Mateo, CA:

Morgan Kaufmann.

Robertson, G. G. and Riolo, R. L. (1988). A tale of two classifier systems. Machine Learning, 3,

139-159.

Ross, S. (1994). Accurate Reaction or Reflective Action? Experiments in adding memory to Wil-

41

Cambridge, MA: MIT Press/Bradford Books.

Drescher, G. L. (1991). Made-Up Minds: A Constructivist Approach to Artificial Intelligence.

Cambridge, MA: MIT Press.

Frey, P. W. and Slate, D. J. (1991). Letter recognition using Holland-style adaptive classifiers.

Machine Learning, 6, 161-182.

Goldberg, D. E. (1988). Probability matching, the magnitude of reinforcement, and classifier sys-

tem bidding (Technical Report TCGA-88002). Tuscaloosa, AL: University of Alabama, De-

partment of Engineering Mechanics. (Also Machine Learning, 5, 407-425.)

Grefenstette, J. J. (1988). Credit assignment in rule discovery systems based on genetic algo-

rithms. Machine Learning, 3, 225-245.

Grefenstette, J. J. (1991). Lamarckian learning in multi-agent environments. Proceedings of the

Fourth International Conference on Genetic Algorithms (pp. 303-310). San Mateo, CA: Mor-

gan Kaufmann.

Grefenstette, J. J., Ramsey, C. L., & Schultz, A.C. (1990). Learning sequential decision rules us-

ing simulation models and competition. Machine Learning, 5, 355-381.

Holland, J. H. (1976). Adaptation. In R. Rosen & F. M. Snell (Eds.), Progress in theoretical biol-

ogy, 4. New York: Plenum.

Holland, J. H. & Reitman, J. S. (1978). Cognitive systems based on adaptive algorithms. In D. A.

Waterman & F. Hayes-Roth (Eds.), Pattern-directed inference systems. New York: Academic

Press.

Holland, J. H. (1986). Escaping brittleness: the possibilities of general-purpose learning algo-

rithms applied to parallel rule-based systems. In R. S. Michalski, J. G. Carbonell & T. M.

Mitchell (Eds.), Machine learning, an artificial intelligence approach. Volume II. Los Altos,

California: Morgan Kaufmann.

Holland, J. H. (1990). Concerning the emergence of tag-mediated lookahead in classifier sys-

40

quality of learning need not be high. However, as research moves on to tackle more complex en-

vironments, increased examination of other concepts of classifier fitness is surely in order.

Acknowledgements

I am grateful to Peter M. Todd for his interest and suggestions during the course of this work, to

John Holland for his long-term inspiration and breadth of view, and to The Rowland Institute for

Science for continued support. The paper benefited from the comments of three anonymous re-

viewers.

References

Albus, J. S. (1975). A new approach to manipulator control: the cerebellar model articulation

controller (CMAC). Journal of Dynamic Systems, Measurement, and Control, Trans. ASME,

Series G, 97(3).

Bonarini, A. (1994). Evolutionary learning of general fuzzy rules with biased evaluation func-

tions: competition and cooperation. Proceedings of the First IEEE Conference on Evolution-

ary Computation (pp. 51-56). Piscataway, NJ: IEEE Press.

Booker, L. B., (1982). Intelligent behavior as an adaptation to the task environment, Ph.D. Dis-

sertation (Computer and Communication Sciences). The University of Michigan.

Booker, L. B. (1989). Triggered rule discovery in classifier systems. In J. D. Schaffer (ed.), Pro-

ceedings of the Third International Conference on Genetic Algorithms (pp. 265-274). San

Mateo, CA: Morgan Kaufmann.

Dorigo, M. and Bersini, H. (1994). A comparison of Q-learning and classifier systems. In D. Cliff,

P. Husbands, J.-A. Meyer, and S. W. Wilson (eds.), From Animals to Animats 3: Proceedings

of the Third International Conference on Simulation of Adaptive Behavior (pp. 248-255).

39

complicated systems, though basing fitness on accuracy of prediction instead of the prediction it-

self seems intuitively sounder in systems that are increasingly more cognitive than reactive.

Finally, a fourth and related direction for future research concerns classifier systems that learn

predictive models of the environment. XCS models its environment only in the sense of learning

payoffs, that is, the X x A => P map. It does not learn what input sensation will follow a given ac-

tion. That is, it does not learn an X x A => Y map, where Y is the following sensation. However,

Riolo (1991) and Holland (1990) (see also Sutton, 1991 and Drescher, 1991) developed classifier

systems in which each classifier has a condition, an action, and a prediction of the resulting sensa-

tion (which, echoing the use of “taxon” for condition, we could call an “expecton”). The expec-

tons permitted forward chaining of classifier conditions and consequences, so these systems could

look ahead and plan. However, fitness in both systems was still implicitly based on payoff (the

experiments reported did not involve the discovery component). Clearly, the concept of fitness

based on accuracy of prediction could be extended to classifiers with expectons. Besides rating

how well a classifier predicted payoff, the fitness might also, or separately, represent the accuracy

of the expecton in predicting the next sensation. The latter fitness could cause the GA to evolve

classifiers that model “what follows what” in the world.

5.3 Conclusion

Much work remains to understand how to make XCS’s mapping and generalization fully effi-

cient, and to extend the system’s principles to more challenging problems and environments. But

the results in this paper demonstrate that accuracy-based fitness and a niche GA can evolve—per-

haps for the first time seen in classifier systems— complete payoff maps containing accurate max-

imally general classifiers. The results point to the conclusion that accuracy-based fitness and a

niche GA form a promising foundation for future classifier system research, and underline classi-

fier systems’ relevance to the broader field of reinforcement learning. Further, it is perhaps not

premature to suggest that the use of strength as the dominant component of fitness in classifier

systems is fundamentally inadequate. Strength is sufficient for simple problems, or where the

38

approach to achieving generalization—the lack of which may well offset whatever is gained

through pragmatics—and the solutions converged upon are often suboptimal. Nevertheless, in

many problems large regions of the X x A => P map will be relatively unremunerative, and tech-

niques for reducing exploration there need to be developed.

A second major direction for future research is development of systems that learn function ap-

proximations. In contrast to traditional classifier systems, XCS emphasizes the formation of a

well-defined prediction prior to taking an action or generating a message. In effect, improving the

prediction means learning a better and better approximation to a function f(x,a) of the system’s in-

puts and actions. Furthermore, there is no essential reason why the inputs x need to be binary.

They could be continuous, with the classifier condition being a conjunct of “receptive fields” hav-

ing adaptive centers and widths corresponding to each input variable, or, indeed, the condition

could be an s-expression.

From this perspective, XCS could be used to learn approximations to functions f(x), where x is

a vector of input variables, by providing f(x) as the value to be “predicted” and defining just one

(dummy) action. There are already, of course, well-developed approaches to such problems (Al-

bus 1975, Poggio & Edelman 1990), and classifier systems have been combined with fuzzy logic

to a similar end (Valenzuela-Rendón, 1991; Parodi & Bonelli, 1993; Bonarini, 1994). Generally

missing, however, have been mechanisms that automatically adapt the approximation’s structures

to the function’s curvature, so that fewer resources (basis functions, classifiers) are employed

where the function is changing slowly. XCS’s generalization ability may be able to contribute

significantly in this respect.

A third major research direction concerns the problem of classifier systems with temporary

memory, i.e., systems that either post messages to an internal message list (Holland, 1986; Robert-

son & Riolo, 1988; Smith, 1991) or set register bits that can be matched on the next time-step

(Ross, 1994; Wilson, 1994). Broad success with temporary memory would open the way to sys-

tems with variable event-granularity (e.g., getting a coffee, getting a degree) and hierarchical be-

havior (Wilson, 1987b). At this point it is still not clear how best to organize these more

37

needed to achieve such control successfully in learning systems represent a large and relatively

unexplored research area. We are not speaking here of finding the “right” fixed explore/exploit

regime, but instead of dynamic control of the explore/exploit regime throughout learning. In fact,

experiments were done with the multiplexers using annealing of the percentage of explore trials

from 100% at the start down to 0%, and a switched regime in which 100% explore was conducted

up to a certain trial after which the system changed to 100% exploit. The total number of explore

trials required for a given performance was found to be comparable in both these and the 50-50

regime of Section 4.2. Thus XCS would appear suitable for a variety of explore/exploit regimes.

What is more difficult, however, is to find ways of controlling exploration adaptively, where ex-

ploration includes both exploratory actions and search via the GA. Initial experiments indicate

that XCS’s error measures may be useful in this regard, somewhat in the spirit of Goldberg’s

(1988) variance-sensitive-bidding.

Another approach to increased efficiency would be through changes in input representation

that would more concisely capture the regularities of the environment. This is the potential bene-

fit of s-classifiers (Wilson, 1994), i.e., classifiers whose conditions are expressed in the language

of Lisp s-expressions (the system’s discovery component would employ a version of genetic pro-

gramming (Koza, 1992)). As a simple example, Boolean OR could be represented in a single clas-

sifier condition, permitting a single classifier to express a generalization that required OR. In

contrast, traditional classifier syntax can only represent the AND of variables and their negations,

so that a generalization involving OR requires at least two classifiers. If s-classifiers were extend-

ed to calculate their prediction (instead of merely asserting a statistic) single classifiers might be

evolved that were capable of predicting correct values in an even wider variety of situations.

Adherents of payoff-based fitness might suggest that the efficiency issue arises because accu-

racy-based fitness, as demonstrated, results in relatively complete maps of the payoff landscape,

whereas traditional classifier systems “go for the best” (-paying classifiers) and ignore the rest.

They might say that the latter pragmatic approach is the only practical one in large problems (Hol-

land et al, 1986). Against this one can note that the traditional classifier system has no principled

36

XCS through use of accuracy-based fitness and a niche GA. However, the case for these changes

is not quite closed, because the two systems employed different action-selection regimes. ZCS

employed roulette-wheel action selection. A tax on classifiers not selected increased the probabil-

ity of choosing the highest strength action, but also tended to cause convergence on suboptimal

classifiers. Had ZCS used some form of pure explore/pure exploit regime as in XCS, the results

might have been better. This is an experimental question and should be investigated. We predict

that ZCS’s inability to suppress overgenerals, together with the distribution of the prediction over

multiple classifiers would still result in a performance and accuracy shortfall versus XCS.

5.2 Future research directions

An important objective in future XCS research is to increase the efficiency with which the X x A

=> P map is represented. One point of attack would be to reduce the number of accurate, general

classifiers that nevertheless contain “optional” specific bits. This can perhaps be accomplished

through a modified fitness function that favors formal generality (i.e. more #s) when ε is below a

low threshold (initial experiments indicate that this technique is effective). A second approach

would be development of methods of “condensing” the population to remove classifiers unneces-

sary to the generalization cover. For example, the first classifier shown in Section 4.3.3 renders

redundant all other classifiers with action 1; eliminating them would substantially shrink the pop-

ulation. Informally, we have been able to reduce the population without loss of performance by

running the GA with mutation and crossover turned off. That is, classifiers were selected, repro-

duced, and deleted without the formation of any new macroclassifiers. Large (e.g., 75%) reduc-

tions in population size were obtained before a needed classifier was finally deleted and system

performance decreased. Similarly, in regular experiments, we have noticed a rather strong depen-

dence of ultimate population size on the mutation and crossover, i.e., search, rates. So it would

appear important to investigate techniques that adaptively control the search rate.

In principle, search should be vigorous when little is known or the system is in trouble; once a

problem is solved, search is unnecessary. Of course, the information and decision procedures

35

strength as the payoff estimate minus the variance. Action selection is based probabilistically on

strength, so that the selection is biased toward classifiers with high payoff and low variance. This

technique was used as part of Grefenstette’s SAMUEL system, in which the genetic algorithm op-

erates on classifier sets, not individual classifiers, so that the concept of the fitness of individual

classifiers does not apply. Later, however, Grefenstette (1991) extended the use in SAMUEL of

the above kind of strength to affect the probabilities of deletion and the application of certain mu-

tation operators, so that payoff variance had an influence on the survival and modification of indi-

vidual rules.

Separately, mention should be made of Grefenstette’s (1988) study of classifier system credit

assignment. He exhibits circumstances in which strength, as traditionally defined and employed

in the bucket-brigade algorithm, does not correctly predict external payoff. The problem arises

when two different environmental states are matched by a single classifier and the external pay-

offs resulting from that classifier’s action are different. As a result, earlier classifiers in the corre-

sponding chains acquire strengths reflecting a mixture of the two payoffs. In effect, the problem

occurs because the matching classifier is not sufficiently specific to distinguish the two states, yet

it (presumably) survives because its fitness is based on payoff instead of accuracy. From the

present perspective, this is a good example of the problem noted under (4) in Section 2: overgen-

eral classifiers can survive under payoff-based fitness. With XCS, overgeneral classifiers do not,

in general, survive, and we would not expect to observe the situation Grefenstette presents.

Finally, the present work is related to Wilson (1994) in that XCS deliberately changes the fit-

ness measure and GA method of ZCS, but retains many elements of the earlier system. The two

systems can be experimentally compared because ZCS learned in Woods1, a simple version of

Woods2. In Woods1, ZCS’s performance never reached the optimum, which, as in Woods2, was

1.7 steps. Instead, ZCS did not do better than about 3.2 steps (see Fig. 3 of Wilson (1994)). In ad-

dition, the X x A => P map was incomplete in that the match sets contained classifiers for only

one or two of the possible actions (compare Fig. 4 of Wilson (1994) with the present Fig. 7). Fi-

nally, no significant accurate generalizations were found. These deficiencies were overcome in

34

system, a classifier’s action was a letter name. When it matched an input, the classifier would as-

sert the letter name. The accuracy was the cumulative fraction of the assertions that were in fact

correct. The performance component used it as the classifier’s “bid”, with the the system’s deci-

sion being the letter asserted by the highest bidding member of the match set. Accuracy was also

used as the fitness measure when the discovery component employed a (panmictic) GA— the au-

thors also experimented with exemplar-based and random generation of rules. Apparently be-

cause accuracy alone tended to produce rules that were too specific in a population of a given size,

the authors added a second measure, “utility”. This was “the number of correct winning bids di-

vided by the [total] number of stimulus items presented [to the system] during the lifetime of the

rule”, so that utility measured the frequency with which the rule successfully controlled the sys-

tem. Classifiers whose utilities fell below a threshold were deleted, which pushed the population

towards accurate but also more useful (more frequently matching and correctly bidding) rules.

Although Frey & Slate’s system predicted a category instead of a payoff quantity, it anticipat-

ed XCS’s emphasis on accuracy. Frey & Slate’s use of the “utility” measure evidently resulted in

greater generalization than would otherwise have occurred, though they do not show any classifi-

ers. They note that their system is not directly applicable to reinforcement learning problems but

might be so adapted.

The idea of keeping track of the variance of a classifier’s payoff occurs in Goldberg (1988).

Goldberg discusses an action-selection method in which, for each matching classifier, a weighted

sum of its strength and a Gaussian based on its payoff variance is calculated. Then the action of

the classifier with the largest sum is selected. The method, termed variance-sensitive bidding,

causes action selection to become increasingly deterministic as classifiers’ payoff estimates be-

come increasingly reliable. The variance calculation is similar to the error estimate in XCS, but

the Goldberg paper does not consider including a function of the variance in the fitness calcula-

tion.

Grefenstette, Ramsey & Schultz (1990) also calculate the variance but redefine classifier

33

specificity. Effectiveness is thus a quantity that combines the perspectives of payoff and accuracy.

Second, the system employed a deletion method proportional to match set size, which tended to

equalize the resources (classifiers) devoted to each niche of the environment; as noted in Section

3, XCS uses basically the same technique.

Booker presented results of tests on a 6-multiplexer problem in which the payoff landscape

had reward 1000 for the right answer and 0 for the wrong answer. Using a deterministic measure

of performance, GOFER-1’s performance exceeded “the 97% level after 2500 input strings”

(2500 explore trials using a form of roulette-wheel selection). This is similar to XCS’s perfor-

mance on the 16-reward-level 6-multiplexer (Figure 3). Since the latter would appear to be a

more difficult problem, it would be interesting to know GOFER-1’s performance on it. Booker

also tested his system on the state space search problem of Grefenstette (1988) with good results.

GOFER-1 anticipates XCS in the niche GA and in the use of at least some accuracy informa-

tion in the fitness measure. Booker states that the system’s goal is to “build a useful internal mod-

el of the environment, not merely to optimize the strength of rewarded stimulus-response pairs”.

This also anticipates XCS, but it is not clear from the article just what the internal model looks

like, or whether any generalization—accurate or inaccurate—is occurring. No classifiers are ex-

hibited. In addition, the system appears to have more mechanisms and parameters than XCS.

Nevertheless, Booker’s approach is a very important line of classifier system research from

which, obviously, much can be learned.

Frey & Slate (1991) presented a classifier system in which predictive accuracy rather than

payoff-based strength was the central quantity. They investigated a letter-recognition task in

which the system was first trained on a large number of exemplars, then tested on additional ex-

emplars. Initial experiments were done with a strength-based system, but the authors found they

could get as good results, with less concern for precise parameter settings, by shifting to the accu-

racy approach. In more detail, a classifier kept a record of its “accuracy”, defined as the “cumula-

tive ratio of the number of [its] correct bids to the total number of [its] bids”. In Frey & Slate’s

32

Due to the generalization ability, the number of classifiers required to solve the multiplexer prob-

lem grows much more slowly than the size of the input space. The results in the multi-step envi-

ronment Woods2 are less certain in this respect, though still promising. A further aspect of XCS

is that, in some contrast with earlier classifier system architectures, the role of the GA is more nat-

ural and constructive. Rather than pitting classifiers against each other for their payoff-getting

ability—with the side-effects discussed in Section 2—in XCS they compete based on the accura-

cy and generality of their knowledge of the environment. This kind of competition does not inter-

fere with their ability to cooperate.

5.1 Related Work

The first paper on classifier systems (Holland, 1976) proposed that classifier fitness be based not

only on predicted payoff, but also on the consistency of the prediction, among other measures of

worth. The idea was implemented in Holland & Reitman (1978). Later, however, Holland fo-

cussed on payoff-based fitness in connection with the bucket-brigade algorithm (e.g., Holland,

1986).

As noted earlier, Booker (1982) introduced the idea of conducting the genetic algorithm in the

“niches” defined by classifier match sets. His reasoning was that the classifiers in a match set were

relevant to the same or similar problems, so crossovers among them (a form of “restricted mat-

ing”) were likely to be more fruitful than a panmictic regime that crossed classifiers drawn from

the general population, that is, from probably quite unrelated niches. Booker built on the niche

GA idea in several subsequent papers, culminating in Booker (1989), in which he presented GOF-

ER-1, a classifier system that, via operators triggered in various circumstances, used non-payoff

as well as payoff information in its discovery component. Two aspects of this sophisticated sys-

tem seem most important here. First “effectiveness”, Booker’s measure of classifier worth or,

simplifying somewhat, fitness, was the product of three factors: π (“impact”), essentially a predic-

tion of local (i.e., bucket-brigade-like) payoff; σ (“consistency”), proportional to one minus nor-

malized mean-squared prediction error; and µ (“match score”), a measure of the classifier’s

31

Holds along the top of the block.

0## 0## 0## ### 000 ### #1# ### : 0 708

“If there’s opacity to the W, food is 2 steps N” (3 places).

Holds along the right side of the block.

0## 0## #1# ### ### 0## 0## ### : 1 502

“If there’s opacity to the E, food is 3 steps NE” (3 places).

Holds along the left side of the block.

0## 01# 00# 0## ### ### : 6 708

“If there’s a rock to the SE and a blank to the S, food is 2 steps W” (3 places).

Holds in 3 cells NW of the left side of the block.

Large numbers of such generalizations can be found in the population. XCS gives the impres-

sion of tending to ferret out every possible grouping (permitted by the coding) of situations hav-

ing equal payoff. The result is a network of overlapping generalizations covering the space of X x

A. However, the cover is more than sufficient to solve the problem; that is, many classifiers could

be removed without affecting the system’s performance. Thus while the system’s generalization

drive aids efficiency by grouping situations under single classifiers, the system may find more

generalizations than are actually needed, offsetting the gained efficiency. Nevertheless, XCS’s

ability to arrive at numerous accurate generalizations is an advance compared with previous clas-

sifier systems, which had no natural mechanism for producing them.

5. Discussion

This paper has described and reported experimental results with a classifier system, XCS, in

which fitness is based on the accuracy of a classifier’s prediction, not the prediction itself, and the

genetic algorithm is conducted in the match sets, instead of over the population as a whole. The

results indicate that XCS is capable of forming complete X x A => P maps of its payoff landscape,

and that classifiers that accurately generalize over sets of inputs are discovered and emphasized.

30

er is more accurate and frequent in that situation, it survives.

The classifiers just examined match in exactly one position of the basic repeat pattern of

Woods2. They generalize over the details of the 18 different versions of that pattern. But they do

not match at different positions within the pattern. We now give examples of classifiers that do

match, and therefore generalize over, several such positions. They were identifiable in the popu-

lation as classifiers with both high fitness and high numerosity. Shown are the classifier, its pre-

diction, an interpretation of the prediction, and the number of places in the basic pattern that the

classifier matches. The phrase “food is x steps” in a given direction means: if the system moves in

that direction, the shortest path to food from there will be x-1 steps long. (Note that XCS only

makes payoff predictions and acts on them; the interpretations are strictly from the standpoint of

an observer!)

0## 0## 0## ### ### ### ### ### : 1 503

“Food is 3 steps NW” (16 places).

Holds everywhere. Note that the three 0s are optional. I.e., changing them to # does not in-

crease the number of matching situations.

0## 0## 000 ### ### ### : 2 497

“If there’s a blank to the S, food is 3 steps E” (13 places).

This covers all positions except the three along the top of the block.

0## 0## ### 00# 0## 0## 01# : 6 501

“If there’s a rock NW, food is 3 steps W” (4 places).

Holds for four positions below and to the right of the block.

#1# 0## ### ### 000 ### ### ### : 3 710

“If there’s opacity to the N, food is 2 steps SE” (3 places).

Holds along the bottom of the block.

0#0 #0# ### #1# ### 00# 0## : 0 503

“If there’s opacity to the S, food is 3 steps N” (3 places).

29

quires that the “aroma” bit in direction 7 be a 1, indicating food. Each also has a hash symbol in

most positions corresponding to the redundant right-hand sensor code bit. However, a number of

other positions contain 0, and there is even a 1 in the “opacity” position in direction 5 in all but

one of the classifiers. What is going on? Why are not all of these positions hashed out, since the

aroma bit in direction 7 is necessary and sufficient for predicting 1000 with zero error? The rea-

son is that each of the six classifiers matches in every cell for which food is in direction 7 and no

classifier obtained by changing one of these bits to a # would match (and predict accurately) more

often. As a result they cannot be displaced by a classifier that is formally more general (i.e., has

more #s).

From the point of view of minimizing population size, it would be desirable to see these un-

necessarily specific bits—let us call them “optional”— replaced by hashes. But Woods2 provides

no evolutionary pressure to do so. The six classifiers are, so to speak, on an evolutionary plateau

that is maximal in terms of accuracy and reproductive opportunity. If food objects, i.e., objects

with aroma bit set, occurred in a greater variety of contexts, there would be pressure to hash out

the optionals. In the multiplexer environments, every input bit occurred in the context of every

other input bit value, so the system indeed “drove” toward generalizations that were both formally

and pragmatically maximal. But Woods2 is sparse in the sense that the input strings that actually

occur form a minute fraction of those that are possible under the coding, with the result that win-

ning generalizations will very likely contain bits that could optionally be replaced by #s. The ef-

fect contributes to making populations in sparse environments larger than they might ideally be.

The six classifiers in Figure 8 with action 4 illustrate how the system can discover and main-

tain more than one “concept” to describe a particular situation. Note that three of them have aro-

ma bit 1 in direction 4, as might be expected. But two of the others recognize the “food to the

south” situation via the combination of the opacity bit set to 1 in that direction (which is not in it-

self sufficient) plus the opacity bit set to 0 in direction 3 (south-east). Finally, the sixth classifier

apparently achieves its accuracy through the combination of opacity bit set to 1 in directions 4 and

5, plus the aroma bit set to 0 in direction 3. This “concept” is rather complicated but since no oth-

28

rameter regimes will not trade off performance and population stability.

The actual classifiers evolved by XCS turned out to be a rich source of information. Unfortu-

nately, space limitations preclude exhibiting more than a sample of them. The general picture was

that by 4,000 problems the vast majority predicted, with essentially zero error, either 1000, 710,

or 504; that is, they predicted the values of Q(x,a) precisely. In addition, they covered all (x,a) sit-

uations. A second and surprising observation was that besides discovering and largely exploiting

the generalization that we contrived for the right-hand sensor code bit, XCS discovered in

Woods2 dozens of generalizations that we had not suspected were present. In fact, the landscape

is crisscrossed with intersecting generalizations, some applying in many situations, some in just

two.

We look first at some classifiers predicting 1000. Figure 8 shows the first 13 macroclassifiers

from a listing of the population in descending prediction order. They all match in positions adja-

cent to food. Look first at the six macros (with total numerosity 10) that have action 7. Each re-

Figure 8. First 13 macroclassifiers from experiment of Figure 6 at 4,000 problems.

 Condition Act. Pred. Error Fitn. Num.
 p ε F n

0## 00# 0## ### 000 #1# ### 1## 7 1000. .00 73. 1
0## 0#0 #0# #0# #10 ### 0#0 ### 4 1000. .00 102. 2
0## 0#0 #0# #0# #1# ### 0#0 ### 4 1000. .00 84. 1
0## 0## 0## 000 110 ### 000 00# 4 1000. .00 73. 1
0## 0## 0## 000 11# ### 000 00# 4 1000. .00 384. 5
0## 0## 0## 000 11# ### 0#0 00# 4 1000. .00 76. 1
0## 0## 0## 0## 0## 0## 1## ### 6 1000. .00 119. 1
0## 0## 0## 0## #1# #1# 000 00# 4 1000. .00 79. 1
0## 0## ### 0## 00# #1# 0## 1## 7 1000. .00 158. 2
0## ### ### 0## 000 #1# 0## 1## 7 1000. .00 250. 3
0## ### ### 0## 00# 0## 01# 1## 7 1000. .00 73. 1
0## ### ### 0## 00# #1# 0## 1## 7 1000. .00 155. 2
0## ### ### ### 0#0 #1# 0## 1## 7 1000. .00 88. 1

27

That the X x A => P map has converged to Q(x,a) is suggested by the reduction in system er-

ror to a few percent, and, as will be seen, by the predictions of high-fitness classifiers. The map-

ping may be visualized in a different way in Figure 7, which symbolizes, for each blank position

in the repeat pattern of Woods2, the system prediction associated with each of the eight directions

of movement at 4,000 problems in one run of the experiment. The length of a line segment repre-

sents the prediction for the associated direction, and is scaled so that a prediction of 1000 equals

half a cell side. The diagram shows that the mapping is complete in that all actions are represent-

ed in all cells. It may be seen to be roughly accurate by noting that actions that are one step from

food have predictions of 1000, actions two steps away (i.e., after taking the action, the shortest re-

sulting path to food is one step long) have predictions roughly 1000 γ = 710 in length, and actions

three steps away have predictions roughly 710 γ = 504 in length. Further evidence of accuracy is

given in the next section. (Figure 7 was computed by placing the system in 16 cells with O’s and

F as neighboring objects, so it does not represent predictions over all positions in Woods2 and is

strictly only suggestive of the mapping’s convergence.)

4.3.3 Evidence of generalization in Woods2

The population size result in Figure 6 is a first indication of the system’s generalization ability in

this kind of environment. Note that 500 is less than the size of the table required by standard Q-

learning for Woods2. Since Woods2 produces 70 distinct inputs for the system and there are eight

directions of movement, the table size would be 560. This is not a dramatic difference, but may

imply that XCS’s advantage would be bigger in larger problems. Recall that the 6-multiplexer re-

quired about 200 classifiers peak and settled to about 100. The Q table size for that problem

would be 64 x 2 = 128, again not a dramatic difference. However, the 11-multiplexer required

600 classifiers peak and settled to around 300. For that problem, the Q table requires 2048 x 2 =

4096 entries, suggesting an increasing advantage for the classifier system in larger problems. It

should be mentioned that not all experiments with Woods2 had a steady or falling population size

by 4,000 problems. However, population sizes like that in Figure 6 were obtained by lowering the

mutation and crossover rates. This in fact improved performance, suggesting that appropriate pa-

26

1,000 explore problems. For Woods2, optimal performance is 1.7 steps to food. This is the aver-

age of the shortest path to food from every starting position; no system having the same actions

can do better in Woods2. Figure 6 shows performance (in average steps to food), system error (av-

erage absolute difference between the system prediction for the chosen action, and P), and popu-

lation size curves for the experiment with the best performance so far (to show the curves on the

same scale, performance and population size were divided by the factors indicated before plot-

ting). The performance curve begins off-scale, with steps-to-food generally at least 27 (the ran-

dom value), then falls rapidly within 500 problems (or about 250 explore problems) to 2.0 and

gradually approaches the optimum over the next 500 problems. The system error, shown as a frac-

tion of the external reward value (1000) is about 10% by 100 problems, then falls slowly to

around 2%. The population size in macroclassifiers rises rapidly at the beginning to around 500,

and stays near that value for the rest of the experiment.

Figure 7. Example of system predictions learned in Woods2. Line length is proportional
to the prediction in that direction, scaled so half the length of a cell edge equals the external
reward.

O O F

O O O

O O O

25

be random (explore) or deterministic (exploit). In explore mode, both the reinforcement and dis-

covery components operated normally, but in the performance component, actions were selected

at random from among those that had non-null predictions in the prediction array. In exploit

mode, the performance component selected the action with the maximum prediction. The discov-

ery component was turned off (except for covering), but in the reinforcement component updates

occurred normally for [A]-1 (but not [A]). Updates to [A]-1 were maintained to allow escape, via

covering, from occasional loops early in a run. To keep track of exploit mode performance, the

system kept a moving average, over the past 50 exploit problems, of the length of each problem in

time-steps. As with the multiplexers, the population was initially empty.

Experiments were typically run for several thousand problems. Under a variety of parameter

regimes and initializations, XCS quite reliably achieved optimal performance within roughly

Problems (1000s)

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0
Steps to food (/10)
System error
Pop. size (/1000)
Optimum (/10)

Figure 6. Results in a Woods2 experiment. Solid curve: Performance, average steps to
food in last 50 exploit problems (divided by 10). Dotted curve: System error as a fraction
of external reward. Dashed curve: Population size in macroclassifiers (divided by 1000).
Dash-dot curve, Optimum performance (divided by 10). Parameters the same as in Figure
3 except N = 800, µ = 0.01, and P# = 0.5. Curves are averages of 10 runs.

24

000000000000000010010110. The left-hand three bits are always those due to the object occupy-

ing the cell directly north of *, with the remainder corresponding to cells proceeding clockwise

around it. The animat’s available actions consist of the eight one-step moves into adjacent cells,

with the move directions similarly coded from 0 for north clockwise to 7 for north-west. If a cell

is blank, * simply moves there. If the cell is occupied by a rock, the move is not permitted to take

place, though one time-step still elapses. If the cell contains food, * moves to the cell, “eats” the

food, and receives a reward (rimm = 1000).

Woods2 was constructed by repeating a basic block of nine objects and 16 blanks, with F’s

and G’s assigned at random to the food position in the upper-right corner of the block, and O’s and

Q’s assigned at random to the other positions. The blank positions of the resulting environment

yield a total of 70 distinct input strings. Due to the random assignment of symbols, the right-hand

bit of the sensor code is not of much use to a food-seeking animat, since its value does not distin-

guish between food and rock, and does not reliably distinguish between object and blank. In con-

trast, the left-hand bit is completely sufficient to determine whether or not an object is food;

fancifully, it might be termed the “aroma” bit. Similarly, the middle bit reliably distinguishes be-

tween object and blank; it could be called “opacity”. We added the right-hand bit to the code with

the intention of introducing regions of the X x A => P mapping that could be generalized over

without introducing errors. The hypothesis was that high-fitness classifiers would “hash out” this

bit, since an accurate classifier that did so would have more matching opportunities than an accu-

rate one that did not.

4.3.2 Experiments in Woods2

In an experiment, the animat repeatedly executed “problems” each consisting of being placed in a

randomly chosen blank cell of Woods2 and then moving under control of the system until a food

object was eaten, at which point the food instantly re-grew and a new problem began. As with the

multiplexers, the experiments used a 50-50 explore/exploit regime. At the start of a problem, XCS

would decide with probability 0.5 whether or not action selection throughout the problem would

23

may be reasonable. In Section 4.2, we observed XCS’s generalization ability in the multiplexer

problem, a single-step environment. We next test it in a multi-step one.

4.3.1 Woods2

Wilson (1994) reported experiments in a two-dimensional, Class 1 environment called Woods1.

For experiments with XCS, we retained Woods1’s basic pattern, but made it more challenging by

defining Woods2, shown in Figure 5 (the left and right edges of Woods2 are connected, as are the

top and bottom). Woods2 has two kinds of “food” and two kinds of “rocks”, compared with one

kind of each in Woods1. F and G are the two kinds of food, with sensor codes 110 and 111, re-

spectively. O and Q are the two kinds of rocks, with sensor codes 010 and 011, respectively.

Blanks, denoted by “.”, have sensor code 000. The system, here regarded as an animat (Wilson,

1985) or artificial animal, is represented by *. To sense its environment, * is capable of detecting

the sensor codes of objects occupying the eight nearest cells (sensing 000 if the cell is a blank).

For example, in the position shown, *’s detector input is the 24-bit string

..............................

.QQF..QQF..OQF..QQG..OQG..OQF.

.OOO..QOO..OQO..OOQ..QQO..QQQ.

.OOQ..OQQ..OQQ..QQO..OOO..QQO.

..............................

..............................

.QOF..QOG..QOF..OOF..OOG..QOG.

.QQO..QOO..OOO .OQO..QQO..QOO.

.QQQ..OOO..OQO..QOQ..QOQ..OQO.

..............................

..............................

.QOG..QOF..OOG..OQF..OOG..OOF.

.OOQ..OQQ..QQO..OQQ..QQO..OQQ.

.QQO..OOO..OQO..OOQ..OQQ..QQQ.

..............................

∗

Figure 5. Environment “Woods2” with animat. Empty cells are indicated by “.”

22

tion is distributed over sets of classifiers, sets that are subject to abrupt membership changes due

to the GA. In XCS, however, the relation to Q-learning is closer and more stable because each

classifier uses Q-learning to predict the payoff directly, independent of the other classifiers, and

the system prediction is an average instead of a sum.

Recall that XCS, as shown in Figure 1, updates predictions pj of classifiers in [A]-1 with a Q-

learning-like quantity P that is based on the system predictions contained in the prediction array

(and any prior-step external reward). The system predictions are fitness-weighted averages of the

predictions of classifiers in [M], and as noted should be more accurate than the sums of strengths

in other classifier systems. The update procedure is not quite identical with Q-learning, in that Q-

learning updates a single (x,a) value (stored in a table) and not a number of predictors (classifi-

ers) whose predictions get averaged. But the connection is close enough to suggest that the X x A

=> P map constructed by XCS should converge to predict Q(x,a). In single-step problems like the

multiplexers, the map converged to predict the external reward, as indicated both by convergence

of the predictions of high-fitness classifiers, and the reduction of the system prediction error to

near zero. In a multi-step problem, XCS adjusts classifier predictions to predict a payoff P which

is in fact the Q-learning-like combination of the current reward and the next time-step’s maximum

system prediction. The question is whether the system predictions and the predictions of high-fit-

ness classifiers converge to the same values that Q-learning would converge to.

If so, there is the further possibility that XCS’s generalization mechanism will cause it to ex-

ploit any generalization possibilities in Q(x,a), i.e., to evolve classifiers that generalize over inputs

x having the same Q value for a given a. Generalization using Q-learning in multi-step environ-

ments has been difficult to achieve. Proofs of convergence of the basic algorithm are known only

for systems that enumerate all input-action pairs (x,a) in a table and have no natural generalization

mechanism. Some success has been reported by supplementing the table with statistical cluster-

ing methods (Mahadevan & Connell, 1992), or by using neural networks (Lin, 1993) which im-

plicitly generalize but may learn slowly. In contrast, XCS’s generalization mechanism is intrinsic

to the system, explicitly exhibits the generalizations found (as classifiers), and the learning rate

Q̂

21

puts and its own actions that will lead to reward, even when—as with food located sparsely in the

environment—many actions will receive no immediate reward (food). This is the general setting

of the reinforcement learning problem, and has been studied using a variety of methods, including

classifier systems (e.g., Wilson, 1985), neural networks (e.g., Lin, 1993), and, especially formally,

complete listings of state-action pairs and their outcomes (e.g., Sutton, 1991, Watkins & Dayan,

1992).

In a basic kind of multi-step environment, the next input y (and the reward, if any) encoun-

tered by the system depends only on the current input x and the current action a; there is no further

history dependence. Such an environment is described as “Markovian with delayed rewards” or,

in the terminology of Wilson (1991), it is a “Class 1” environment. The predictability of y given x

and a makes it possible for the widely used technique called Q-learning (Watkins, 1989) to learn a

policy (i.e., which a to choose for each x) that is optimal in the sense that it maximizes the dis-

counted sum of future rewards that the system receives. In this paper we shall not review Q-learn-

ing except to note that the algorithm works by associating a quantity with every input-action

pair. As experience occurs, the algorithm updates that value, using the Widrow-Hoff rule, with an

adjustment equal to the sum of the current external reward, if any, and the product of a discount

factor γ (0< γ <1) and the largest of the values associated with the following input y. Watkins

proved that in Class 1 environments this procedure, if done often enough for every input, would

converge to a function Q(x,a) such that the policy that always executed the action with the maxi-

mum Q for each x would be optimal in the above sense.

Several articles (e.g., Roberts, 1993; Twardowski, 1993; Dorigo & Bersini, 1994; Wilson,

1994) have drawn attention to the relationship between the Q-learning update procedure and vari-

ous versions of the classifier system bucket-brigade algorithm, especially a version in which the

payoff value is, as in Q-learning, a discounted sum of immediate reward and the sum of strengths

of the maximum strength action in the next match set (Wilson, 1994). The major difference is

precisely that it is this sum of strengths that represents the value, not a single number as in Q-

learning. That is, assuming sharing of strength as discussed in Section 2, the system’s informa-

Q̂

Q̂

Q̂

Q̂

20

maximally general classifiers, together with a residue of low-fitness slight specializations of the

generals. Figure 4 is a graph of the results. Note its similarity in form to Figure 3, but note also

that the horizontal scale is different by a factor of two. Broadly, it appears that the 11-multiplexer

is approximately 3 times as difficult as the 6-multiplexer. For example, the performance reaches

100% and system error reaches zero at about 12,000 problems instead of 4,000, the population

peak is at about 600 macroclassifiers instead of 200, and the final size is around 300 instead of

100.

This difference in difficulty would not be suggested by the difference in the search space sizes

for the two problems. The ratio of input space sizes is 211/26 = 32. The ratio of classifier space

sizes is 2 x 311/2 x 36 = 243. At the same time, the ratio of the number of maximal generaliza-

tions in the two problems is 2. This suggests the hypothesis that the difficulty of learning a payoff

landscape scales more according to the number of concepts (generalizations) it contains than ex-

ponentially with its dimensionality—at least for systems that can detect and exploit the generali-

zations, as XCS is apparently able to do. We will test this hypothesis on the 20-multiplexer

(k = 4) in future experiments.

4.3 Multi-step environments

The multiplexer problems of the previous two sections were single-step in that external reward

was received on every time-step and the environmental input for each time-step was completely

independent of that for the prior time-step. Problems involving categorization of data examples

are typically single-step, since a decision is made, and reinforcement as to the quality of the deci-

sion is received, in a single time-step, and the examples to be categorized are usually independent.

In a sequential, or multi-step problem, reward may occur (though not necessarily) on any time-

step, and the input on a time-step is dependent on at least the prior input and the system’s last ac-

tion. A major research use of sequential problems is to model, in part, the adaptive interaction of

a system such as an animal or robot with its environment. In this simplified view, the system

seeks to get as much reward as possible, and must learn associations between environmental in-

19

range.

The system error falls to zero at about the point the performance reaches 100%. Zero error

means that the X x A => P map is both complete and highly accurate. The population size curve

shows the change in the number of macroclassifiers, which grows from zero, then settles back to

about half its peak value. Informal observation suggests that the size grows until the system has

found accurate, though still fairly specialized, classifiers for all parts of its map, then “condenses”

as the population finds maximally general classifiers and eliminates many of the specialists.

4.2.2 The 11-multiplexer

A similar experiment was done using the 11-multiplexer function (l=11). Because the 11-multi-

plexer has 32 maximally general covering classifiers, the landscape was designed with 32 payoffs

instead of 16. As in Figure 2, the population evolved to contain a complete set of high-fitness

Problems (1000s)

0 4 8 12 16 20
0.0

0.2

0.4

0.6

0.8

1.0

Performance
System error
Pop. size (/1000)

Figure 4. Results in an 11-multiplexer experiment. Curves have same meaning as in Fig.
3. Parameters the same as in Figure 3, except N = 800. Curves are averages of 10 runs.

18

mally general classifiers that drive out all other classifiers except for a few that are slight special-

izations of the generals.

Figure 3 shows performance, system error, and macroclassifier population size averaged over

10 runs of the experiment. Performance is the fraction of the last 50 exploit trials that were cor-

rect. System error is the absolute difference between the system prediction (Sect. 3.1) for the cho-

sen action and the actual external payoff, divided by the total payoff range (1000) and averaged

over the last 50 exploit trials. Population size is M, the number of macroclassifiers. Note that

since XCS was in pure explore during about half of the total number of trials, the graph indicates

that essentially 100% performance was reached within approximately 2000 explore trials. Since

the system only adjusted parameters and performed the GA during explore trials, one can say that

XCS “learned the 6-multiplexer” within about 2000 explore trials, and in a situation where the

payoff difference between correct and incorrect differed by just a fraction of the total payoff

Problems (1000s)

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

Performance
System error
Pop. size (/1000)

Figure 3. Results in a 6-multiplexer experiment. Solid curve: Performance, the fraction
of last 50 exploit problems correct. Dotted curve: System error as a fraction of total payoff
range. Dashed curve: Population size in macroclassifiers (divided by 1000). Parameters: N
= 400, β = 0.2, γ = 0.71, θ = 25, ε0 = 0.01, α = 0.1, χ = 0.8, µ = 0.04, δ = 0.1, φ = 0.5, P#
= 0.33, pI = 10.0, εI = 0.0, FI = 10.0,. Curves are averages of 10 runs.

17

are its condition, action, prediction p, prediction error ε, fitness F, and numerosity n. The predic-

tion error is expressed as a fraction of the total payoff range, 1000. The fitness is multiplied by

the payoff range. The list is in ascending prediction order.

Notice that high fitness, high numerosity macroclassifiers correspond to maximal generaliza-

tions. Note also that classifiers with non-zero errors have low fitness—so they contribute little in

the prediction array calculation. The remaining 69 macroclassifiers in [P] exhibit the same pat-

tern, with a dominant macroclassifier for each of the 16 levels of the payoff landscape. Thus in

this experiment—Fig. 2 is typical of all runs— XCS not only maps the landscape, but finds maxi-

Figure 2. Macroclassifiers from a 6-multiplexer experiment.
Figure 2. Macroclassifiers from a 6-multiplexer experiment.

 Cond. Act Pred. Error Fitn. Num.
 p ε F n

00 01 ## 1 0. .00 57. 1
00 00 ## 1 0. .00 109. 2
00 0# 0# 1 0. .00 43. 1
00 0# ## 1 0. .00 637. 14
00 11 ## 0 100. .00 48. 1
00 10 ## 0 100. .00 43. 1
00 1# 1# 0 100. .00 47. 1
00 1# #1 0 100. .00 43. 1
00 1# ## 0 100. .00 725. 16
#0 0# #1 1 133. .22 4. 1
01 00 #0 1 200. .15 14. 1
01 00 ## 1 200. .00 43. 1
01 #0 #0 1 200. .00 48. 1
01 #0 ## 1 200. .00 760. 18

 (...69 others...)

10 #0 1# 1 800. .00 38. 1
11 #0 ## 0 800. .10 28. 1
10 ## 1# 1 800. .00 782. 23
1# 0# #0 0 809. .11 0. 1
11 #0 00 0 900. .00 30. 1
11 #1 #0 0 900. .00 128. 3
11 #0 #0 0 900. .00 68. 2
11 ## #0 0 900. .00 638. 19
11 #0 #1 1 1000. .00 77. 2
11 ## 01 1 1000. .00 38. 1
11 ## #1 1 1000. .00 719. 20

16

dicting the payoff associated with each X x A pair and will it evolve the above eight general clas-

sifiers, together with the eight classifiers (for the “wrong” answers) that are identical to the above

except that their actions are complemented?

In the experiment, input strings were randomly presented to XCS, which would choose an ac-

tion, receive the associated payoff from the environment, make its internal adjustments including

the GA, and go on to the next random string. The population was initially empty, so that the first

classifiers were created through covering. Values of the basic system parameters are given in the

caption to Figure 3.

Since our aim in the experiment was to test the generalization hypothesis, we were not imme-

diately concerned with the system’s ability to chose the “right” answer. Rather, we wanted to

know if it could form a complete payoff map expressed in terms of the 16 maximally general clas-

sifiers. At the same time, we were of course curious as to whether XCS could in fact learn to

choose the right answer if it had to! To address both purposes, we set the system’s action-selection

regime so that, given an input, it would with probability 0.5 choose an action (1 or 0) at random,

or it would choose the action that in the prediction array had the higher prediction (note that high-

er payoff was always associated with the right answer). Thus the system either acted randomly to

gain information, or acted deterministically to gain maximum payoff. The action selection regime

thus alternated probabilistically between what one might term “pure explore” and “pure exploit”

modes. In pure exploit mode classifier parameter adjustments and the GA did not occur. To de-

termine how well the system was doing at getting the right answer, we simply kept track of the

fraction of its decisions that were correct over the preceding 50 exploit trials. (XCS has been run

successfully in a variety of other action-selection regimes.)

Figure 2 shows a portion of the macroclassifier population after 10,000 trials, or “problems”,

from one run of the experiment. Each line represents a macroclassifier. The total number of mac-

roclassifiers in the population was 94; the total of their numerosities, and thus N, the number of

regular classifiers represented by the macroclassifiers, was 400. Shown for each macroclassifier

15

value may be determined by treating the first k bits as an address that indexes into the remaining

2k bits, and returning the indexed bit. For example, in the 6-multiplexer (l=6), the value for the

input string 100010 is 1, since the “address”, 10, indexes bit 2 of the remaining four bits. In dis-

junctive normal form, the 6-multiplexer is fairly complicated (the primes indicate negation):

F6 = x0'x1'x2 + x0'x1x3 + x0x1'x4 + x0x1x5.

There are exactly eight classifiers that would give the right answer for the example string

above. The most specific is 100010:1 and the most general is 10##1#:1 (the other six replace one

or more of the #s in the latter by 0s). Notice that 10##1#:1 is correct for all (eight) inputs it can

match; in fact, it is maximally general in the sense that no further #s can be added to its condition

without producing an error.

The 64-string input space can be covered by exactly eight such maximally general classifiers,

each having three #s in its condition so it matches eight strings. They are

000###:0
001###:1
01#0##:0
01#1##:1
10##0#:0
10##1#:1
11###0:0
11###1:1.

To construct our payoff landscape, we associated two payoff values, 300 and 0, with the eight

strings matched by the first classifier above: payoff 300 was for the right answer, 0; payoff 0 was

for the wrong answer, 1. Thus for that part of the landscape, X x 0 => 300, and X x 1 => 0. With

the eight strings matched by the second classifier, we similarly associated payoffs 400 and 100 for

right and wrong answers, respectively. The payoffs continued to rise in 100 point increments,

ending with 1000 and 700 for strings matched by the last classifier in the list. The result was a

landscape in which the mapping X x A => P had 16 levels each associated with a generalization

over eight input strings. The question then was: can XCS learn this landscape in the sense of pre-

14

Suppose that C1 and C2 are equally accurate in that their values of ε are the same. Whenever C1

and C2 occur in the same action set, their fitness values will be updated by the same amounts.

However, since C2 is a generalization of C1, it will tend to occur in more match sets than C1.

Since the GA occurs in match sets, C2 would have more reproductive opportunities and thus its

number of exemplars would tend to grow with respect to C1’s (or, in macroclassifier terms, the ra-

tio of C2’s numerosity to C1’s would increase). Consequently, when C1 and C2 next meet in the

same action set, a larger fraction of the constant fitness update amount would be “steered” toward

exemplars of C2, resulting through the GA in yet more exemplars of C2 relative to C1. Eventual-

ly, it was hypothesized, C2 would displace C1 from the population.

The generalization process should continue as long as more-general classifiers (strictly, classi-

fiers with more matching opportunities) can be formed without losing accuracy; otherwise, it

should stop. The stopping point should be controllable in the accuracy function. Indeed, this is

the role of ε0 in the function of Section 3.4: classifiers with error greater than ε0 have sharply

lower fitness. So classifiers should evolve that are as general as possible while still having errors

less than ε0—the “accuracy criterion” referred to earlier. (Naturally, there is the possibility of

tradeoff in which it is some function of both accuracy and generality—for instance their prod-

uct—that determines the point of maximum generalization.)

4.2 Tests on a single-step problem

To test the generalization hypothesis, we sought a problem having a payoff landscape that (1) con-

tained potential generalizations, and (2) the generalizations were expressible in the syntax of clas-

sifier conditions. We also wanted to start with a single-step problem to avoid any complications

that might result from deferred external payoff. We designed a modified form of the Boolean

multiplexer function in which different payoffs were associated with different parts of the func-

tion’s domain.

4.2.1 The 6-multiplexer

Boolean multiplexer functions are defined for binary strings of length l = k + 2k. The function’s

13

δ Value of the fraction used in the second deletion method of Section 3.3.

φ If the total prediction of [M] is less than φ times the mean prediction of [P], covering

occurs.

P# Probability of a # at an allele position in the condition of a classifier created through

covering, and in the conditions of classifiers in an initial randomly generated popula-

tion.

pI, εI, and FI Prediction, prediction error, and fitness assigned to each classifier in the initial

population.

4. Experiments with XCS

4.1 Generalization hypothesis

As noted in Section 2, our intention with XCS was to form accurate maps of the X x A => P

space, or payoff landscape, of the problem. We also hoped by basing fitness on accuracy to sup-

press overgeneral classifiers. However, it appeared that the interaction of accuracy based fitness

and the use of a niche GA could result in evolutionary pressure toward classifiers that would be

not only accurate, but both accurate and maximally general. That is, given an accuracy criterion,

classifiers would evolve to be as general as possible while still satisfying the criterion. In this

way, niches of the “landscape” that had the same payoff to within the accuracy criterion, but pre-

sented different sensory inputs to the system, might be merged into a single niche through evolu-

tion of classifiers that generalized over the differences. The resulting population would be

efficient in the sense of minimizing the number of separate “concepts” represented by the classifi-

ers’ conditions. In terms of macroclassifiers, the population’s physical size would be minimized

as well.

The hypothesized mechanism was as follows. Consider two classifiers C1 and C2 having the

same action, where C2’s condition is a generalization of C1’s. That is, C2’s condition can be gen-

erated from C1’s by changing one or more of C1’s specified (1 or 0) alleles to don’t cares (#).

12

ity times its match set size estimate, as described in Section 3.3. If it is selected for deletion and

its numerosity is greater than one, the numerosity is simply decremented; if not, the macroclassifi-

er is entirely deleted. The population as a whole is always treated as though it contains N regular

classifiers, though the actual number of macroclassifiers, M, may be substantially less than N—

which gives the computational advantage.

A potential question is whether in fact a population of macroclassifiers, even when treated like

the equivalent regular classifiers, in fact behaves the same way. We have conducted informal ex-

periments to test this and found no apparent difference. Consequently, our recent classifier system

work, including that reported here, was done with macroclassifiers. However, classifier system

mechanics and theory appear to be more easily communicated and understood in terms of regular

classifiers, so that language will be used in most of this paper, and the term “classifier” will have

the standard meaning. The term macroclassifier will be reserved for the few situations in which it

makes the explanation clearer.

3.6 Parameter list

The foregoing description of XCS has mentioned most of the system’s parameters. They are sum-

marized below. Some typical values can be seen in the captions to Figs. 3, 4, and 6.

N Population size.

β Learning rate for prediction, prediction error, and fitness updates.

γ Discount factor.

θ Do a GA in this [M] if the average number of time-steps since the last GA is greater

than θ.

ε0, α Parameters of the accuracy function.

χ Probability of crossover per invocation of the GA.

µ Probability of mutation per allele in an offspring. Mutation takes 0,1,# equiprobably

into one of the other allowed alleles.

11

Since the relative accuracies sum to 1, the total of the fitness adjustments to the members of

[A] -1 is constant. The effect is that the various action sets within a given match set [M] have ap-

proximately the same total fitness. Because reproduction depends on fitness, approximately the

same number of classifiers will be associated with each action that is represented in [M], support-

ing the general goal of assigning equal resources to all parts of the X x A => P map.

However, within a given action set, the more accurate classifiers will have higher fitnesses

than the less accurate ones. They will consequently have more offspring. But by becoming rela-

tively more numerous, those classifiers will gain a larger fraction of the total relative accuracy

(which always equals 1), and so will have yet more offspring compared to their less accurate

brethren. Eventually, the most accurate classifiers in the action set will drive out the others, in

principle leaving the X x A => P map with the best classifier (assuming the GA has discovered it)

for each situation-action combination.

3.5 Macroclassifiers

Whenever XCS generates a new classifier, either at system initialization or later, the popula-

tion is scanned to see if the new classifier has the same condition and action as any existing classi-

fier. If so, the new classifier is not actually added to the population, but a numerosity field in the

existing classifier is incremented by one. If, instead, there is no existing classifier with identical

condition and action, the new classifier is added to the population with its own numerosity field

initialized to one. We term such classifiers macroclassifiers. They are essentially a programming

technique that speeds up matching [P] against an input (and speeds other aspects of processing),

since one macroclassifier with numerosity n is the structural equivalent of n regular classifiers.

To be sure that the system still behaves as though it consists of N regular classifiers, all system

functions are written so as to be sensitive to the numerosities, if that is relevant. For example, in

calculating the relative accuracy shares of the last section, a macroclassifier with numerosity n

will be treated as though it is n separate classifiers; i.e., it will get a share n times bigger than if it

had numerosity 1. Similarly, a macroclassifier’s probability of suffering a deletion is its numeros-

10

use in two special circumstances. First, it sometimes happens that no classifiers match a given in-

put—[M] is null. In this case, XCS simply creates a classifier with a condition matching the input

and a randomly chosen action. The new classifier is inserted into [P], and a classifier is deleted as

in the GA. Then the system forms a new [M] and proceeds as usual. Covering is also used as a

way of escaping if the system seems to be stuck in a loop—for example if the action selection

mechanism causes the system persistently to go back and forth between two positions in the envi-

ronment. The situation is detectable because the system’s discounting mechanism will cause the

predictions of the classifiers involved to fall steadily. The creation of a new matching classifier

with a random action can usually be relied upon to break the loop; if it doesn’t, another round of

covering will do so, etc. In practice, loops are rare, and break as soon as the discounting mecha-

nism causes one of the current actions’ predictions to fall below that for some other action. Cov-

ering has only been needed occasionally at the beginning of a run when alternative classifiers

were not yet available.

3.4 The fitness calculation

As noted earlier, a classifier’s fitness is updated every time it belongs to [A]-1 (or [A], in single-

step problems). Broadly, the fitness is updated by a quantity that depends on the classifier’s accu-

racy relative to the accuracies of the other classifiers in the set. There are three steps in the calcu-

lation. First, each classifier’s accuracy, κj, is computed. Accuracy is defined as a function of the

current value of εj. We have experimented with a number of functional forms. The best one so

far is κj = exp[(ln α)(εj - ε0)/ε0)] for εj > ε0, otherwise 1. This function falls off exponentially for

εj > ε0. The rate is such that the accuracy at εj = 2ε0 equals α (0 < α < 1), so smaller α means a

steeper falloff. Next, a relative accuracy κ'j is computed for each classifier by dividing its accura-

cy by the total of the accuracies in the set. Finally, the relative accuracy is used to adjust the clas-

sifier’s fitness Fj using the MAM procedure. If the fitness has been adjusted at least 1/β times,

. Otherwise, Fj is set to the average of the current and previous values of

κj'.

Fj Fj β κj′ Fj−()+←

9

compensating deletion occurs. Otherwise, two classifiers are deleted stochastically from [P] to

make room. We have experimented with two methods of selecting the classifiers to be deleted:

1. Every classifier keeps an estimate of the size of the match sets in which it occurs. The es-

timate is updated every time the classifier takes part in an [M], using the MAM technique with

rate β. A classifier’s deletion probability is set proportional to the match set size estimate, which

tends to make all match sets have about the same size, so that classifier resources are allocated

more or less equally to all niches (match sets). This deletion technique is similar to one intro-

duced in Booker (1989) for the same purpose.

2. A classifier’s deletion probability is as in (1), except if its fitness is less than a small frac-

tion δ of the population mean fitness. Then the probability from (1) is multiplied by the mean fit-

ness divided by the classifier’s fitness. If for example δ is 0.1, the result is to delete such low-

fitness classifiers with a probability 10 times that of the others.

Like the basic deletion technique of (1), the rate of incidence of the GA is controlled with the

aim of allocating classifier resources approximately equally to the different match sets (such an

allocation being consistent with the purpose of forming a relatively complete mapping). This can-

not in general be achieved if the GA simply occurs with a certain probability in each match set.

Depending on the environment, some match sets (niches) may occur much more often than oth-

ers. Instead, the GA is run in a match set if the number of time-steps since the last GA in that

match set exceeds a threshold. As a result, the rate of reproduction per match set per unit time is

approximately constant—except in the most rarely occurring match sets. To implement this re-

gime, each classifier is time-stamped at birth with the reading of a counter that is incremented on

every time-step. When a match set is formed, XCS computes the average time-stamp of its classi-

fiers and executes the GA if the difference between that average and the current counter reading

exceeds a threshold θ. This technique and the deletion algorithm result in approximately equal al-

location of classifiers to the various niches.

Besides the GA, the discovery component contains a covering mechanism (Wilson, 1985) for

8

However, for each classifier in [A]-1, the update in fact begins by first re-calculating the fit-

ness Fj using the current value of εj, according to a technique to be described in Section 3.4. Sec-

ond, εj is itself adjusted using P and the current value of pj . For this, the Widrow-Hoff technique

is used to adjust εj toward the absolute difference |P - pj|. That is, .

Finally, pj is adjusted as described above. (The adjustment of F and ε makes the term “reinforce-

ment component” something of a misnomer, but we shall stick with this traditional usage for the

component that modifies classifier parameters.)

The Widrow-Hoff procedure is used for p, ε, and as part of the adjustment of F only after a

classifier has been adjusted at least 1/β times. Prior to that, the new values in each case are simple

averages of the previous values and the current one. For example, the value of pj on the fourth ad-

justment will be just one-fourth of the sum of the first four P values, if 1/β > 4. This two-phase

technique causes the early parameter values to move more quickly to their “true” average values,

and makes the system less sensitive to initial, possibly arbitrary, settings of the parameters. The

technique, called “MAM” (“moyenne adaptive modifiée”), was introduced in Venturini (1994).

To keep track of the number of updates, a classifier maintains an experience parameter that is in-

cremented every time the classifier belongs to [A].

Finally, we note that in single-step problems such as the Boolean multiplexer the updates oc-

cur as described, but in the set [A], since each problem involves just a single action set. In addi-

tion, P consists only of the current reward. Similarly, if a multi-step problem happens to take just

one step (e.g., food is found within one step and that defines the end of the current problem), the

updates occur in [A] and P is just the current reward.

3.3 Discovery component

As can be seen in Figure 1, the genetic algorithm acts on the match set [M]. It selects two classi-

fiers from [M] with probabilities proportional to their fitnesses, copies the classifiers, performs

crossover on the copies with probability χ, and with probability µ per allele performs mutation on

them. If [P] contains less than N members, the copies are inserted into the population and no

εj εj β P pj− εj−()+←

7

little effect on performance.

3.1 Performance component

Given an input, a match set [M] is formed in the usual way (Wilson, 1994). The system then

forms a system prediction P(ai) for each action ai represented in [M]. There are several reason-

able ways to determine P(ai). We have experimented primarily with a fitness-weighted average of

the predictions of classifiers advocating ai. Presumably, one wants a method that yields the sys-

tem’s “best guess” as to the payoff—internal and/or external—to be received if ai is chosen. The

P(ai) values are placed in a prediction array (some of whose slots will receive no values if there is

no corresponding action in [M]), and an action is selected.

Many action-selection methods are possible. The system may simply pick the action with the

largest prediction; for brevity, we shall call this deterministic action selection. Alternatively, the

action may be selected probabilistically, with the probability of selection proportional to P(ai); we

shall call this roulette-wheel action selection. In some cases the action may be selected complete-

ly at random (from actions with non-null predictions), ignoring the P(ai). There are of course ad-

ditional schemes. Once an action is selected, the system forms an action set [A] consisting of the

classifiers in [M] advocating the chosen action. That action is then sent to the effectors and an im-

mediate reward rimm may (or may not) be returned by the environment.

3.2 Reinforcement component

XCS’s reinforcement component consists in updating the p, ε, and F parameters of classifiers

in the previous time step’s action set [A]-1, as shown in Figure 1. The p values are adjusted by the

technique of Q-learning (Watkins, 1989), which is implemented as shown in the figure by the

combination of taking the maximum P(ai) of the prediction array, “discounting” it by multiplying

by a factor γ (0 < γ ≤ 1), and adding in any external reward from the previous time-step. The re-

sulting quantity, called simply P, is used to adjust the predictions pj of the classifiers in [A]-1 using

the standard Widrow-Hoff delta rule (Wilson, 1994) with learning rate parameter β (0 < β ≤ 1).

That is, .pj pj β P pj−()+←

6

in the definition of classifier fitness, the GA mechanism, and the more sophisticated action selec-

tion that accuracy-based fitness makes possible.

The box labeled [P] contains the classifier population, and shows some example classifiers.

The left side of each classifier consists of a single condition; the right side codes an environmental

action. Associated with each classifier are prediction, prediction error, and fitness parameters,

symbolized by p, ε, and F, respectively. The population has a fixed maximum size N and may be

initialized in a variety of ways: with N randomly generated classifiers; with potentially useful

“seed” classifiers; with no classifiers; or with one general (condition consisting of #’s) classifier

for each action; etc. The initial values of p, ε, and F can be set more or less arbitrarily; there is

Environment

[P]

[M]
Match Set

Prediction
Array

Action Set
[A]

Previous Action Set
[A] -1

Detectors Effectors

“left”

delay = 1discount
max

match

action

selection

GA

+
P

#011 : 01 43 .01 99
11## : 00 32 .13 9
#0## : 11 14 .05 52
001# : 01 27 .24 3
#0#1 : 11 18 .02 92
1#01 : 10 24 .17 15
 ...etc.

#011 : 01 43 .01 99
#0## : 11 14 .05 52
001# : 01 27 .24 3
#0#1 : 11 18 .02 92

nil 42.5 nil 16.6
#011 : 01 43 .01 99
001# : 01 27 .24 3

Update:
 fitnesses,
 errors,
 predictions

(Reward)

01

 p ε F

0011

Figure 1. Schematic illustration of XCS.

5

eral rules would be suppressed.

A second source of inspiration came from reinforcement learning (Sutton, 1991), which em-

phasizes the formation of relatively complete mappings X x A => P from the product set of situa-

tions and actions to payoffs. In contrast, the general classifier system philosophy (see, e.g.,

Holland, Holyoak, Nisbett, & Thagard, 1986) attempts more pragmatically to discover the best

rule in each niche without worrying too much about knowing the payoff consequences of every

possible action. However, should a suboptimal rule be converged upon as a consequence of in-

complete exploration, it may be difficult for the standard system to discover and switch to a better

one. If, on the other hand—as in reinforcement learning—the system were oriented toward learn-

ing relatively complete maps of the consequences of each action in each niche, then determining

the most remunerative action would be straightforward. For this, it seemed logical to base fitness

on some measure of accuracy.

Out of the above considerations, it was decided to investigate systems in which the classifier

strength parameter would be replaced by three new ones: (1) prediction, an average of the payoff

received—internal or external—when that classifier’s action controlled the system; (2) prediction

error, an average of a measure of the error in the prediction parameter; and (3) fitness, an inverse

function of the prediction error. The prediction (and possibly the prediction error) would be used

in the performance component—that is, in selecting actions. The fitness parameter would be used

in the genetic algorithm, which would occur in the niches defined by the match sets.

3. Description of XCS

Figure 1 gives an overall picture of the system, which is shown in interaction with an environment

via detectors for sensory input and effectors for motor actions. In addition, the environment at

times provides a scalar reinforcement, here termed reward. Many aspects of XCS are copied from

ZCS (Wilson, 1994), a “zeroth level” classifier system intended to simplify Holland’s canonical

framework while retaining the essence of the classifier system idea. Some descriptive material is

omitted here because it can be found in the ZCS paper. The differences between XCS and ZCS lie

4

en classifier, with its single strength value, is often involved in numerous distinct matching sets,

so that the meaning of the strength value becomes unclear.

3. Moreover, it is still the case under sharing that more remunerative niches will get more re-

sources (classifiers) than less remunerative ones. That may be reasonable in single-step decision

problems. But classifier systems dealing with sequential problems involving deferred reward of-

ten employ some form of payoff discounting so as to encourage expeditious behavior. The result

is that early-matching classifiers that “set up” later ones in a chain will, due to the discounting, ap-

pear inherently less fit, so that long chains cannot be sustained (Wilson & Goldberg, 1989).

The last problem can be alleviated by conducting the genetic algorithm using populations re-

stricted to the match sets (Booker, 1982), instead of panmictically using the population as a

whole. Differences in payoff between match sets will thus not affect a given classifier’s selection

chances. Competition will be restricted to classifiers within (i.e., matching) a niche (sharing may

or may not be maintained). However, even with such a niche GA, there remain at least two prob-

lems:

4. The GA cannot distinguish an accurate classifier with moderate payoff from an overly

general classifier having the same payoff on the average. Thus overgenerals— “guessers”—will

be unduly encouraged, and in fact may proliferate since they occur in many match sets and (espe-

cially under a niche GA) have many chances to reproduce.

5. Classifier systems employ a “don’t care” (#) symbol in the syntax of their conditions and

thus permit the formation of generalizations. However, under payoff-based fitness, there appears

to be no clear tendency or, indeed, theoretical reason, for accurate generalizations to evolve.

Given the above problems, it seemed reasonable to inquire whether there might exist a more

appropriate basis for classifier fitness than expected payoff. A first hint was provided by problems

4 and 5 above: if estimated payoff does not distinguish between accurate and overgeneral classifi-

ers, why not base fitness on accuracy itself? The system might need to be bigger since the number

of accurate classifiers could exceed the number of highly remunerative ones. However, overgen-

3

wide range of reinforcement learning situations where generalization over states is important.

The next section of the paper motivates the shift from payoff-based to accuracy-based fitness.

Section 3 presents XCS in sufficient detail to permit implementation. Section 4 tests the system in

single-step (Boolean multiplexer) and sequential (“woods”-like) environments, focusing in both

cases on mapping performance and generalization. In Section 5 we summarize the paper, discuss

related work and directions for future research, and present our main conclusions.

2. How to measure fitness?

In many classifier systems (Holland, 1986; Wilson, 1994), a classifier’s strength parameter esti-

mates the payoff that the classifier will receive when, given satisfaction of its condition, its action

is chosen by the system. Strength is therefore important to the system’s performance component,

which is generally interested in choosing the most remunerative action. But strength is also used

as the measure of fitness for the discovery component’s genetic algorithm; that is, higher strength

classifiers are more likely to be selected for reproduction and modification by genetic operators.

Strength thus forms the basis for the system’s search for improved structures.

Basing fitness on strength is reasonable: after all, shouldn’t better performing classifiers lead

the search? On closer examination, however, there are several problems.

1. Different niches of the environment usually have different payoff levels. (Here, following

Booker (1982), niche means a set of environmental states each of which is matched by approxi-

mately the same set of classifiers.) To prevent population takeover by classifiers in high-payoff

niches, it is necessary to implement a sharing technique in which the available payoff is divided

among active classifiers instead of giving each one the full value (for an analysis, see Horn, Gold-

berg, & Deb, 1994).

2. Sharing eliminates takeover effects but then a classifier’s strength no longer directly pre-

dicts payoff; instead, the total of the shared strength (among matching classifiers advocating the

same action) predicts the payoff. This division of the prediction becomes problematic since a giv-

2

1. Introduction

Traditionally in classifier systems, the classifier strength parameter serves both as a predictor of

future payoff and as the classifier’s fitness for the genetic algorithm. However, predicted payoff

may inadequately represent fitness. For example, a low-predicting classifier may nevertheless be

the best one for its environmental niche. We investigate a classifier system, XCS, in which each

classifier maintains a prediction of expected payoff, but the classifier’s fitness is not given by the

prediction. Instead, the fitness is a separate number based on an inverse function of the classifier’s

average prediction error; that is, it is based on a measure of the accuracy of the prediction, instead

of the prediction itself. XCS also executes the genetic algorithm in niches defined by the match

sets (Booker, 1982) rather than panmictically.

The present research—an investigation into classifier system technique—stemmed from dis-

satisfaction with the behavior of traditional classifier systems, and the hypothesis that the short-

comings were due in part to the definition of fitness. As discussed in Section 5.1, some previous

work had factored measures of accuracy into the fitness function, . However, the results with

XCS show that a complete shift to accuracy-based fitness is not only possible, but yields a classi-

fier system that is superior to traditional systems in important respects.

Specifically, accuracy-based fitness, in combination with a niche GA, results in XCS’s popula-

tion tending to form a complete and accurate mapping X x A => P from inputs and actions to pay-

off predictions. Traditional classifier systems have not theoretically emphasized or actually

produced such mappings, which can make payoff-maximizing action-selection straightforward.

Further, XCS tends to evolve classifiers that are maximally general subject to an accuracy criteri-

on, so that the mapping gains representational efficiency. In traditional classifier systems there is

in theory no adaptive pressure toward accurate generalization, and in fact accurate generalized

classifiers have rarely been exhibited, except in studies using payoff regimes biased toward for-

mally general classifiers (e.g., Wilson, 1987a). Besides introducing a new direction for classifier

system research, the mapping and generalization properties of XCS should make it suitable for a

1

Classifier Fitness Based on Accuracy

Stewart W. Wilson
The Rowland Institute for Science

100 Edwin H. Land Blvd.
Cambridge, MA 02142

(617) 497-4650
wilson@smith.rowland.org

Submitted to Evolutionary Computation, 10/18/94
Revised, 4/25/95

To appear in Vol. 3, No. 2

Abstract

In many classifier systems, the classifier strength parameter serves as a predictor of

future payoff and as the classifier’s fitness for the genetic algorithm. We investi-

gate a classifier system, XCS, in which each classifier maintains a prediction of ex-

pected payoff, but the classifier’s fitness is given by a measure of the prediction’s

accuracy. The system executes the genetic algorithm in niches defined by the

match sets, instead of panmictically. These aspects of XCS result in its population

tending to form a complete and accurate mapping X x A => P from inputs and ac-

tions to payoff predictions. Further, XCS tends to evolve classifiers that are maxi-

mally general subject to an accuracy criterion. Besides introducing a new

direction for classifier system research, these properties of XCS make it suitable

for a wide range of reinforcement learning situations where generalization over

states is desirable.

Key words

Classifier systems, strength, fitness, accuracy, mapping, generalization, restricted

mating, niche genetic algorithm

