mals to Animats: Riceedings of the First International Cordace on Simulation of Adaptive

Behavior(pp. 15-21). Cambridge, MA: MIT Press.
Wilson, S. W(1994). ZCS: a zeroth order classifier systéwnlutionary Computation, 2,-18.

Wilson, S. W, and Goldbeg, D. E. (1989). A critical review of classifier syster®soceedings
of the Thid International Confexnce on Genetic Algorithngp. 244-255). San Mateo, CA:

Morgan Kaufmann.

43

sons ZCS Unpublished Masters dissertation/thesis, University of Sussex.

Smith, R. E. (1991)Default Hierachy Formation and Memory Expoitation in Learning Classifi-

er SystemsPh. D. Dissertation, The University of Alabamasdaloosa, Alabama.

Sutton, R. S. (1991). Reinforcement learning architectures for animats. In J.-A. Meyer.& S. W
Wilson (eds.)From Animals to Animats: Bceedings of the First International Cordace

on Simulation of Adaptive Behavifpp. 288-296). Cambridge, MA: MIT Press.

Twardowski, K. (1993). Credit assignment for pole balancing with learning classifier systems. In
S. Forrest, (ed.Rroceedings of the Fifth International Cordace on Genetic Algorithms

(pp. 238-245). San Mateo, CA: Myan Kaufmann.

Valenzuela-Rendén, M. (1991). The fuzzy classifier system: a classifier system for continuously
varying variablesProceedings of the Fourth International Corgiece on Genetic Algorithms

(pp. 346-353). San Mateo, CA: Myan Kaufmann.

Venturini, G. (1994).Apprentissage Adaptatif et Agmtissage Supervisé par Algorithme Géné-

tique Theése de Docteur en Science (Informatique), Université de Paris-Sud.
Watkins, C. (1989)Learning flom Delayed Rewds Ph.D. Dissertation, Cambridge University
Watkins, C. and Dayan, F1992). EBchnical note: Q-LearningMachine Learning, 8279-292.

Wilson, S. W(1985). Knowledge growth in an artificial animalo€eedings of the First Interna-
tional Confeence on Genetic Algorithms and Their Applicatigms. 16-23). Hillsdale, New

Jersey: Lawrence Erlbaum Associates.
Wilson, S.W (1987a). Classifier systems and the animat probMathine Learning, 2199-228.

Wilson, S. W(1987b). Hierarchical credit allocation in a classifier systtmceedings of the
Tenth International Joint Confence on Atrtificial Intelligencép. 217-220). Los Altos, CA:

Morgan Kaufmann.

Wilson, S. W(1991). The animat path to Al. In J.-A. Meyer & S.Wilson (eds.)From Ani-

42

tems. Physica D, 41188-201.

Holland, J. H., Holyoak, K. J., Nisbett, R. E., and ThagarR, P1L986).Induction: Pocesses of

Inference, Learning, and Discovergambridge, MA: MIT Press.

Horn, J., Goldbey, D. E., and Deb, K. (1994). Implicit niching in a learning classifier system: na-

ture’s way Evolutionary Computation,(2), 37-66.
Koza, J. R. (1992)Genetic Pogramming Cambridge, MA: The MIT Press/Bradford Books.

Lin, L.-J. (1993). Reinfocement Learning for Robots Using Neural NetworRE.D. Thesis,

School of Computer Science, Carnegie Mellon University

Mahadevan, S. and Connell, J. (1992). Automatic programming of belaged robots using

reinforcement learningAtrtificial Intelligence, 55311-365.

Parodi, A. and Bonelli,.R1993). A new approach to fuzzy classifier systems. In S. Forrest, (ed.),
Proceedings of the Fifth International Cordace on Genetic Algorithnipp. 223-230). San

Mateo, CA: Mogan Kaufmann.

Poggio, T& Edelman, S. (1990). A network that learns to recognize three-dimensional objects.

Nature, 343, 263-266.

Riolo, R. L. (1991). Lookahead planning and latent learning in a classifier system. In J.-A. Meyer
& S. W. Wilson (eds.)From Animals to Animats: Bceedings of the First International Con-

ference on Simulation of Adaptive Behajop. 316-326). Cambridge, MA: MIT Press.

Roberts, G. R. (1993). Dynamic planning for classifier systems. In S. Forres®RP{ecegdings
of the Fifth International Confence on Genetic Algorithnipp. 231-237). San Mateo, CA:

Morgan Kaufmann.

Robertson, G. G. and Riolo, R. L. (1988). A tale of two classifier systelashine Learning, 3
139-159.

Ross, S. (1994)Accurate Reaction or Reflective Action? Experiments in adding memoity to W

41

Cambridge, MA: MIT Press/Bradford Books.

DrescherG. L. (1991). Made-Up Minds: A Constructivist Apgach to Artificial Intelligence.
Cambridge, MA: MIT Press.

Frey, P W. and Slate, D. J. (1991). Letter recognition using Holland-style adaptive classifiers.
Machine Learning6, 161-182.

Goldbeqg, D. E. (1988).Probability matching, the magnitude @imforcement, and classifier sys-
tem bidding(Technical Report TCGA-88002)u$caloosa, AL: University of Alabama, De-

partment of Engineering Mechanics. (AMachine Learning, 5407-425.)

Grefenstette, J. J. (1988). Credit assignment in rule discovery systems based on genetic algo-

rithms.Machine Learning, 3225-245.

Grefenstette, J. J. (1991). Lamarckian learning in multi-agent environni&oteedings of the
Fourth International Confemnce on Genetic Algorithnggp. 303-310). San Mateo, CA: Mor-

gan Kaufmann.

Grefenstette, J. J., Ramséy L., & Schultz, A.C. (1990). Learning sequential decision rules us-

ing simulation models and competitionlachine Learning, 5355-381.

Holland, J. H. (1976)Adaptation In R. Rosen & FM. Snell (Eds.)Progress in theaetical biol-

ogy, 4. New York: Plenum.

Holland, J. H. & Reitman, J. S. (1978). Cognitive systems based on adaptive algorithms. In D. A.
Waterman & FHayes-Roth (Eds.RPattern-diected infeence systemsNew York: Academic

Press.

Holland, J. H. (1986). Escaping brittleness: the possibilities of general-purpose learning algo-
rithms applied to parallel rule-based systems. In R. S. Michalski, J. G. CarbonéM.& T
Mitchell (Eds.),Machine learning, an artificial intelligence apgch. Wlume Il Los Altos,

California: Mogan Kaufmann.

Holland, J. H. (1990). Concerning the egece of tag-mediated lookahead in classifier sys-

40

quality of learning need not be high. Howe\as research moves on to tackle more complex en-

vironments, increased examination of other concepts of classifier fithess is surely.in order

Acknowledgements

| am grateful to Peter M.old for his interest and suggestions during the course of this work, to
John Holland for his long-term inspiration and breadth of yvéewd to The Rowland Institute for
Science for continued support. The paper benefited from the comments of three anonymous re-

viewers.

References

Albus, J. S. (1975). A new approach to manipulator control: the cerebellar model articulation
controller (CMAC). Journal of Dynamic Systems, Meamment, and Cont, Trans. ASME,
Series G, 9B).

Bonarini, A. (1994). Evolutionary learning of general fuzzy rules with biased evaluation func-
tions: competition and cooperatioRroceedings of the First IEEE Conégice on Evolution-

ary Computatior(pp. 51-56). PiscatawaMJ: IEEE Press.

Booker L. B., (1982). Intelligent behavior as an adaptation to the task eminent Ph.D. Dis-

sertation (Computer and Communication Sciences). The University of Michigan.

Booker L. B. (1989). Tiggered rule discovery in classifier systems. In J. D. $shgfd.),Pro-
ceedings of the Thirinternational Confaance on Genetic Algorithnipp. 265-274). San

Mateo, CA: Mogan Kaufmann.

Dorigo, M. and Bersini, H. (1994). A comparison of Q-learning and classifier systems. InfD. Clif
P. Husbands, J.-A. Meyeand S. WWilson (eds.)From Animals to Animats 3: Bteedings
of the Thid International Confeance on Simulation of Adaptive Beha\jpp. 248-255).

39

complicated systems, though basing fithess on accuracy of prediction instead of the prediction it-

self seems intuitively sounder in systems that are increasingly more cognitive than reactive.

Finally, a fourth and related direction for future research concerns classifier systems that learn
predictive modelsf the environment. XCS models its environment only in the sense of learning
payofs, that is, the X% A => P map. It does not learn what input sensation will follow a given ac-
tion. That is, it does not learn andXA => Y map, where Y is the following sensation. However
Riolo (1991) and Holland (1990) (see also Sutton, 1991 and Dre4&8dy) developed classifier
systems in which each classifier has a condition, an action, and a prediction of the resulting sensa-
tion (which, echoing the use of “taxon” for condition, we could call an “expecton”). The expec-
tons permitted forward chaining of classifier conditions and consequences, so these systems could
look ahead and plan. Howeyétness in both systems was still implicitly based on gayioé
experiments reported did not involve the discovery component). Cléealgoncept of fithess
based on accuracy of prediction could be extended to classifiers with expectons. Besides rating
how well a classifier predicted pafahe fitness might also, or separategpresent the accuracy
of the expecton in predicting the next sensation. The latter fitness could cause the GA to evolve

classifiers that model “what follows what” in the world.

5.3 Conclusion

Much work remains to understand how to make >§38apping and generalization fullyfief
cient, and to extend the systamrinciples to more challenging problems and environments. But
the results in this paper demonstrate that accuracy-based fithess and a niche GA can evolve—per-
haps for the first time seen in classifier systems— completefpagpé containing accurate max-
imally general classifiers. The results point to the conclusion that accuracy-based fitness and a
niche GA form a promising foundation for future classifier system research, and underline classi-
fier systems’ relevance to the broader field of reinforcement learning. Furib@erhaps not
premature to suggest that the use of strength as the dominant component of fithess in classifier

systems is fundamentally inadequate. Strength it for simple problems, or where the

38

approach to achieving generalization—the lack of which may wisktofvhatever is gained
through pragmatics—and the solutions cogeerupon are often suboptimal. Nevertheless, in
many problems |lge regions of the X A => P map will be relatively unremunerative, and tech-

niques for reducing exploration there need to be developed.

A second major direction for future research is development of systems thdititezion ap-
proximations In contrast to traditional classifier systems, XCS emphasizes the formation of a
well-defined prediction prior to taking an action or generating a messagéecin ieiproving the
prediction means learning a better and better approximation to a fuffgieof the systens in-
puts and actions. Furthermore, there is no essential reason why theingedisto be binary
They could be continuous, with the classifier condition being a conjunct of “receptive fields” hav-
ing adaptive centers and widths corresponding to each input varialelemd, the condition

could be an s-expression.

From this perspective, XCS could be used to learn approximations to furittipnserex is
a vector of input variables, by providifigx) as the value to be “predicted” and defining just one
(dummy) action. There are already course, well-developed approaches to such problems (Al-
bus 1975, Poggio & Edelman 1990), and classifier systems have been combined with fuzzy logic
to a similar end (¥lenzuela-Renddn, 1991; Parodi & Bonelli, 1993; Bonarini, 1994). Generally
missing, howevehave been mechanisms that automatically adapt the approximatiuctures
to the functiors curvature, so that fewer resources (basis functions, classifiers) are employed
where the function is changing slowl)XCS's generalization ability may be able to contribute

significantly in this respect.

A third major research direction concerns the problem of classifier systentemybrary
memoryi.e., systems that either post messages to an internal message list (Holland, 1986; Robert-
son & Riolo, 1988; Smith, 1991) or set register bits that can be matched on the next time-step
(Ross, 1994; \ilson, 1994). Broad success with temporary memory would open the way to sys-
tems with variable event-granularity (e.g., getting demgfgetting a degree) and hierarchical be-

havior (Wlson, 1987b). At this point it is still not clear how best tgamize these more

37

needed to achieve such control successfully in learning systems represgatadhrelatively
unexplored research area.e\Ate not speaking here of finding the “right” fixed explore/exploit
regime, but instead of dynamic control of the explore/exploit regime throughout learning. In fact,
experiments were done with the multiplexers using annealing of the percentage of explore trials
from 100% at the start down to 0%, and a switched regime in which 100% explore was conducted
up to a certain trial after which the system changed to 100% exploit. The total number of explore
trials required for a given performance was found to be comparable in both these and the 50-50
regime of Section 4.2. Thus XCS would appear suitable for a variety of explore/exploit regimes.
What is more dficult, howeveris to find ways of controlling exploration adaptivetshere ex-
ploration includes both exploratory actions and search via the GA. Initial experiments indicate
that XCSs error measures may be useful in this regard, somewhat in the spirit of @sldber

(1988) variance-sensitive-bidding.

Another approach to increasedi@éncy would be through changes in input representation
that would more concisely capture the regularities of the environment. This is the potential bene-
fit of s-classifiergWilson, 1994), i.e., classifiers whose conditions are expressed in the language
of Lisp s-expressions (the systasndiscovery component would employ a version of genetic pro-
gramming (Koza, 1992)). As a simple example, Bool@nould be represented in a single clas-
sifier condition, permitting a single classifier to express a generalization that regfiréa
contrast, traditional classifier syntax can only represeribeof variables and their negations,
so that a generalization involviidR requires at least two classifiers. If s-classifiers were extend-
ed tocalculatetheir prediction (instead of merely asserting a statistic) single classifiers might be

evolved that were capable of predicting correct values in an even wider variety of situations.

Adherents of paydfbased fithess might suggest that tHesieincy issue arises because accu-
racy-based fitness, as demonstrated, results in relatively complete maps of thipdycépe,
whereas traditional classifier systems “go for the best” (-paying classifiers) and ignore the rest.
They might say that the latter pragmatic approach is the only practical ongeiptablems (Hol-

land et al, 1986). Against this one can note that the traditional classifier system has no principled

36

XCS through use of accuracy-based fithess and a niche GA. Hotevease for these changes

is not quite closed, because the two systems employfededif action-selection regimes. ZCS
employed roulette-wheel action selection. A tax on classifiers not selected increased the probabil-
ity of choosing the highest strength action, but also tended to causegameson suboptimal
classifiers. Had ZCS used some form of pure explore/pure exploit regime as in XCS, the results
might have been betteilhis is an experimental question and should be investigagegratlict

that ZCSs inability to suppress ovgenerals, together with the distribution of the prediction over

multiple classifiers would still result in a performance and accuracy shortfall versus XCS.

5.2 Future reseach directions

An important objective in future XCS research is to increase tisg2aty with which the X A

=> P map is represented. One point of attack would be to reduce the number of accurate, general
classifiers that nevertheless contain “optional” specific bits. This can perhaps be accomplished
through a modified fitness function that favors formal generality (i.e. more #s)vidbelow a

low threshold (initial experiments indicate that this techniquees®fe). A second approach

would be development of methods of “condensing” the population to remove classifiers unneces-
sary to the generalization covefor example, the first classifier shown in Section 4.3.3 renders
redundant all other classifiers with action 1; eliminating them would substantially shrink the pop-
ulation. Informally we have been able to reduce the population without loss of performance by
running the GA with mutation and crossover turnddiat is, classifiers were selected, repro-
duced, and deleted without the formation of any new macroclassifierge (eag., 75%) reduc-

tions in population size were obtained before a needed classifier was finally deleted and system
performance decreased. Similartyregular experiments, we have noticed a rather strong depen-
dence of ultimate population size on the mutation and cross@esearch, rates. So it would

appear important to investigate techniques that adaptively control the search rate.

In principle, search should be vigorous when little is known or the system is in trouble; once a

problem is solved, search is unnecess&fcourse, the information and decision procedures

35

strength as the payfadstimate minus the variance. Action selection is based probabilistically on
strength, so that the selection is biased toward classifiers with high aagiddw variance. This
technique was used as part of Grefensee8&AMUEL system, in which the genetic algorithm op-
erates on classifier sets, not individual classifiers, so that the concept of the fitness of individual
classifiers does not apply.ater howevey Grefenstette (1991) extended the use in SAMUEL of
the above kind of strength tof@dt the probabilities of deletion and the application of certain mu-
tation operators, so that pajgariance had an influence on the survival and modification of indi-

vidual rules.

Separatelymention should be made of Grefenstst{@988) study of classifier system credit
assignment. He exhibits circumstances in which strength, as traditionally defined and employed
in the bucket-brigade algorithm, does not correctly predict externalfpailoé problem arises
when two diferent environmental states are matched by a single classifier and the external pay-
offs resulting from that classifieraction are diérent. As a result, earlier classifiers in the corre-
sponding chains acquire strengths reflecting a mixture of the twofpayofefect, the problem
occurs because the matching classifier is ndicgeritly specific to distinguish the two states, yet
it (presumably) survives because its fithess is based onf jrastefad of accuracyFrom the
present perspective, this is a good example of the problem noted under (4) in Sectioge?:-over
eral classifiers can survive under pdylmdsed fitness. Wh XCS, ovegeneral classifiers do not,

in general, survive, and we would not expect to observe the situation Grefenstette presents.

Finally, the present work is related tal8én (1994) in that XCS deliberately changes the fit-
ness measure and GA method of ZCS, but retains many elements of the earlier system. The two
systems can be experimentally compared because ZCS learneddsVa simple version of
Woods2. In Wodsl, ZCS performance never reached the optimum, which, a®od¥2, was
1.7 steps. Instead, ZCS did not do better than about 3.2 steps (see Figs8rm{1894)). In ad-
dition, the Xx A => P map was incomplete in that the match sets contained classifiers for only
one or two of the possible actions (compare Fig. 4 itdofv (1994) with the present Fig. 7). Fi-

nally, no significant accurate generalizations were found. These deficiencies were overcome in

34

system, a classifiex action was a letter name. When it matched an input, the classifier would as-
sert the letter name. The accuracy was the cumulative fraction of the assertions that were in fact
correct. The performance component used it as the classibet”, with the the systera’deci-

sion being the letter asserted by the highest bidding member of the match set. Accuracy was also
used as the fithess measure when the discovery component employed a (panmictic) GA— the au-
thors also experimented with exempgbased and random generation of rules. Apparently be-

cause accuracy alone tended to produce rules that were too specific in a population of a given size,
the authors added a second measure, “utility”. This was “the number of correct winning bids di-
vided by the [total] number of stimulus items presented [to the system] during the lifetime of the
rule”, so that utility measured the frequency with which the rule successfully controlled the sys-
tem. Classifiers whose utilities fell below a threshold were deleted, which pushed the population

towards accurate but also more useful (more frequently matching and correctly bidding) rules.

Although Frey & Slates system predicted a category instead of a payaintity it anticipat-
ed XCSs emphasis on accurackrey & Slates use of the “utility” measure evidently resulted in
greater generalization than would otherwise have occurred, though they do not show any classifi-
ers. They note that their system is not directly applicable to reinforcement learning problems but

might be so adapted.

The idea of keeping track of the variance of a classffayof occurs in Goldbey (1988).
Goldbeqg discusses an action-selection method in which, for each matching classifeeghted
sum of its strength and a Gaussian based on itsfpaytdnce is calculated. Then the action of
the classifier with the lgest sum is selected. The method, term@@tnce-sensitive bidding
causes action selection to become increasingly deterministic as classifiertegtyudites be-
come increasingly reliable. The variance calculation is similar to the error estimate in XCS, but
the Goldbeg paper does not consider including a function of the variance in the fitness calcula-

tion.

Grefenstette, Ramsey & Schultz (1990) also calculate the variance but redefine classifier

33

specificity Effectiveness is thus a quantity that combines the perspectives of gragaiccuracy
Second, the system employed a deletion method proportional to match set size, which tended to
equalize the resources (classifiers) devoted to each niche of the environment; as noted in Section

3, XCS uses basically the same technique.

Booker presented results of tests on a 6-multiplexer problem in which thé lpagsicape
had reward 1000 for the right answer and O for the wrong andygeng a deterministic measure
of performance, GOFER4 performance exceeded “the 97% level after 2500 input strings”
(2500 explore trials using a form of roulette-wheel selection). This is similar tosX@8or-
mance on the 16-reward-level 6-multiplexer (Figure 3). Since the latter would appear to be a
more dificult problem, it would be interesting to know GOFER-fterformance on it. Booker

also tested his system on the state space search problem of Grefenstette (1988) with good results.

GOFER-1 anticipates XCS in the niche GA and in the use of at least some accuracy informa-
tion in the fitness measure. Booker states that the sgsg@al is to “build a useful internal mod-
el of the environment, not merely to optimize the strength of rewarded stimulus-response pairs”.
This also anticipates XCS, but it is not clear from the article just what the internal model looks
like, or whether any generalization—accurate or inaccurate—is occurring. No classifiers are ex-
hibited. In addition, the system appears to have more mechanisms and parameters than XCS.
Nevertheless, Booker approach is a very important line of classifier system research from

which, obviouslymuch can be learned.

Frey & Slate (1991) presented a classifier system in which predictive accuracy rather than
payof-based strength was the central quaniityey investigated a letteecognition task in
which the system was first trained on gé&number of exemplars, then tested on additional ex-
emplars. Initial experiments were done with a strength-based system, but the authors found they
could get as good results, with less concern for precise parameter settings, by shifting to the accu-
racy approach. In more detail, a classifier kept a record of its “accuracy”, defined as the “cumula-

tive ratio of the number of [its] correct bids to the total number of [its] bids”. In Frey & Slate’

32

Due to the generalization abilitthe number of classifiers required to solve the multiplexer prob-
lem grows much more slowly than the size of the input space. The results in the multi-step envi-
ronment Vods2 are less certain in this respect, though still promising. A further aspect of XCS
is that, in some contrast with earlier classifier system architectures, the role of the GA is more nat-
ural and constructive. Rather than pitting classifiers against each other for thehgettyad
ability—with the side-dects discussed in Section 2—in XCS they compete based on the accura-
cy and generality of their knowledge of the environment. This kind of competition does not inter-

fere with their ability to cooperate.

5.1 Related Wrk

The first paper on classifier systems (Holland, 1976) proposed that classifier fithess be based not
only on predicted payffbut also on the consistency of the prediction, among other measures of
worth. The idea was implemented in Holland & Reitman (1978). LUabereveyHolland fo-

cussed on paybbased fitness in connection with the bucket-brigade algorithm (e.g., Holland,

1986).

As noted earlieBooker (1982) introduced the idea of conducting the genetic algorithm in the
“niches” defined by classifier match sets. His reasoning was that the classifiers in a match set were
relevant to the same or similar problems, so crossovers among them (a form of “restricted mat-
ing”) were likely to be more fruitful than a panmictic regime that crossed classifiers drawn from
the general population, that is, from probably quite unrelated niches. Booker built on the niche
GA idea in several subsequent papers, culminating in Booker (1989), in which he presented GOF-
ER-1, a classifier system that, via operators triggered in various circumstances, used rion-payof
as well as paybinformation in its discovery componentw® aspects of this sophisticated sys-
tem seem most important here. Firstéefiveness”, Bookés measure of classifier worth or
simplifying somewhat, fithess, was the product of three faatfgmpact”), essentially a predic-
tion of local (i.e., bucket-brigade-like) payod (“consistency”), proportional to one minus nor-

malized mean-squared prediction error; gr{timatch score”), a measure of the classiéier

31

Holds along the top of the block.

O## O## O ##H 000 ### #1# ### . 0 708
“If there’s opacity to the Wood is 2 steps N” (3 places).
Holds along the right side of the block.

O## Of# #1# #H #H Ottt Ot #4# © 1 502
“If there’s opacity to the E, food is 3 steps NE” (3 places).

Holds along the left side of the block.

i # O## 01# 00# O## ### ### . 6 708
“If there’s a rock to the SE and a blank to the S, food is 2 steps W’ (3 places).
Holds in 3 cells NW of the left side of the block.

Large numbers of such generalizations can be found in the population. XCS gives the impres-
sion of tending to ferret out every possible grouping (permitted by the coding) of situations hav-
ing equal paydf The result is a network of overlapping generalizations covering the space of X x
A. However the cover is more than $igfent to solve the problem; that is, many classifiers could
be removed without #&cting the systers’performance. Thus while the systeméneralization
drive aids diciency by grouping situations under single classifiers, the system may find more
generalizations than are actually needefsetting the gained fifiency. Nevertheless, XCS’
ability to arrive at numerous accurate generalizations is an advance compared with previous clas-

sifier systems, which had no natural mechanism for producing them.

5. Discussion

This paper has described and reported experimental results with a classifier system, XCS, in
which fitness is based on the accuracy of a classifieediction, not the prediction itself, and the
genetic algorithm is conducted in the match sets, instead of over the population as a whole. The
results indicate that XCS is capable of forming complete®&=> P maps of its payblandscape,

and that classifiers that accurately generalize over sets of inputs are discovered and emphasized.

30

er is more accurate and frequent in that situation, it survives.

The classifiers just examined match in exactly one position of the basic repeat pattern of
Woods2. They generalize over the details of the I8rdifit versions of that pattern. But they do
not match at dierent positions within the pattern. eMow give examples of classifiers that do
match, and therefore generalize gwaveral such positions. They were identifiable in the popu-
lation as classifiers with both high fithess and high numeroSitpwn are the classifjéts pre-
diction, an interpretation of the prediction, and the number of places in the basic pattern that the
classifier matches. The phrase “food steps” in a given direction means: if the system moves in
that direction, the shortest path to food from there wik-iesteps long. (Note that XGfaly
makes paydifpredictions and acts on them; the interpretations are strictly from the standpoint of

an observer!)

O## O Of# #Hit# #HH ### #H# ##+# . 1 503
“Food is 3 steps NW” (16 places).
Holds everywhere. Note that the three Os are optional. I.e., changing them to # does not in-

crease the number of matching situations.

i # O O## 000 ## #HH# #H# . 2 497
“If there’s a blank to the S, food is 3 steps E” (13 places).

This covers all positions except the three along the top of the block.

O## O## ### 00# O## O## 01# . 6 501
“If there’s a rock NWfood is 3 steps W” (4 places).

Holds for four positions below and to the right of the block.

#1# O## ## ## 000 ## ## ### . 3 710
“If there’s opacity to the N, food is 2 steps SE” (3 places).

Holds along the bottom of the block.

O#0 #O# ### #1# ### 00# 0## : 0 503

“If there’s opacity to the S, food is 3 steps N” (3 places).

29

quires that the “aroma” bit in direction 7 be a 1, indicating food. Each also has a hash symbol in
most positions corresponding to the redundant right-hand sensor code bit. Hawewaber of

other positions contain 0, and there is even a 1 in the “opacity” position in direction 5 in all but
one of the classifiers. What is going on? Why are not all of these positions hashed out, since the
aroma bit in direction 7 is necessary andisiit for predicting 1000 with zero error? The rea-

son is that each of the six classifiers matches in every cell for which food is in direction 7 and no
classifier obtained by changing one of these bits to a # would match (and predict accurately) more
often. As a result they cannot be displaced by a classifier that is formally more general (i.e., has

more #s).

From the point of view of minimizing population size, it would be desirable to see these un-
necessarily specific bits—let us call them “optional”— replaced by hashes. ddas@/provides
no evolutionary pressure to do so. The six classifiers are, so to speak, on an evolutionary plateau
that is maximal in terms of accuracy and reproductive opportuliifgod objects, i.e., objects
with aroma bit set, occurred in a greater variety of contexts, there would be pressure to hash out
the optionals. In the multiplexer environments, every input bit occurred in the context of every
other input bit value, so the system indeed “drove” toward generalizations that were both formally
and pragmatically maximal. Butads2 is sparse in the sense that the input strings that actually
occur form a minute fraction of those that are possible under the coding, with the result that win-
ning generalizations will very likely contain bits that could optionally be replaced by #s. The ef-

fect contributes to making populations in sparse environmeges ldran they might ideally be.

The six classifiers in Figure 8 with action 4 illustrate how the system can discover and main-
tain more than one “concept” to describe a particular situation. Note that three of them have aro-
ma bit 1 in direction 4, as might be expected. But two of the others recognize the “food to the
south” situation via the combination of the opacity bit set to 1 in that direction (which is not in it-
self suficient) plus the opacity bit set to 0 in direction 3 (south-east). Fila#ysixth classifier
apparently achieves its accuracy through the combination of opacity bit set to 1 in directions 4 and

5, plus the aroma bit set to 0 in direction 3. This “concept” is rather complicated but since no oth-

28

Condi tion Act. Pred. Error Fitn. Num

p € F n
O## 00# O## ### 000 #1# ### 1## 7 1000. .00 73. 1
O## O#0 #0# #0# #10 ### O#0 ### 4 1000. .00 102. 2
O## O#0 #O0# #O0# #1# ### O#0 ### 4 1000. .00 84. 1
O## O## O## 000 110 ### 000 00# 4 1000. .00 73. 1
O## O## O## 000 11# ### 000 00# 4 1000. .00 384. 5
O## O## O## 000 11# ### O#0 00# 4 1000. .00 76. 1
O## O## O## O## O## O## 1## ### 6 1000. .00 119. 1
O## O## O## O## #1# #1# 000 00# 4 1000. .00 79. 1
O## O## ### O## O00# #1# O## 1## 7 1000. .00 158. 2
O## ### ### O## 000 #1# O## 1## 7 1000. .00 250. 3
O## ### ### O## 00# O## O1l# 1## 7 1000. .00 73. 1
O## ### ### O## 00# #1# O## 1## 7 1000. .00 155. 2
O## ### ### ### O#0 #1# O## 1## 7 1000. .00 88. 1

Figure 8. First 13 macroclassifiers from experiment of Figure 6 at 4,000 problems.

rameter regimes will not tradefgferformance and population stability

The actual classifiers evolved by XCS turned out to be a rich source of information. Unfortu-
nately space limitations preclude exhibiting more than a sample of them. The general picture was
that by 4,000 problems the vast majority predicted, with essentially zerpestiner 1000, 710,
or 504; that is, they predicted the valueQg@k,a) precisely In addition, they covered dk,a) sit-
uations. A second and surprising observation was that besides discoveringagcehgploiting
the generalization that we contrived for the right-hand sensor code bit, XCS discovered in
Woods?2 dozens of generalizations that we had not suspected were present. In fact, the landscape
is crisscrossed with intersecting generalizations, some applying in many situations, some in just

two.

We look first at some classifiers predicting 1000. Figure 8 shows the first 13 macroclassifiers
from a listing of the population in descending prediction ordérey all match in positions adja-

cent to food. Look first at the six macros (with total numerosity 10) that have action 7. Each re-

27

That the Xx A => P map has convged toQ(x,a)is suggested by the reduction in system er-
ror to a few percent, and, as will be seen, by the predictions of high-fitness classifiers. The map-
ping may be visualized in a tBfent way in Figure 7, which symbolizes, for each blank position
in the repeat pattern of &ds2, the system prediction associated with each of the eight directions
of movement at 4,000 problems in one run of the experiment. The length of a line segment repre-
sents the prediction for the associated direction, and is scaled so that a prediction of 1000 equals
half a cell side. The diagram shows that the mapping is complete in that all actions are represent-
ed in all cells. It may be seen to be roughly accurate by noting that actions that are one step from
food have predictions of 1000, actions two steps away (i.e., after taking the action, the shortest re-
sulting path to food is one step long) have predictions roughlyy 80010 in length, and actions
three steps away have predictions roughly y£®04 in length. Further evidence of accuracy is
given in the next section. (Figure 7 was computed by placing the system in 16 cellssvatidO’
F as neighboring objects, so it does not represent predictions over all positicosds2/énd is

strictly only suggestive of the mappisgonvegence.)

4.3.3 Evidence of generalization iro¥ds2

The population size result in Figure 6 is a first indication of the sysgeneralization ability in

this kind of environment. Note that 500 is less than the size of the table required by standard Q-
learning for Wbods2. Since WWbds2 produces 70 distinct inputs for the system and there are eight
directions of movement, the table size would be 560. This is not a dramfatiertie, but may

imply that XCS$ advantage would be bigger indar problems. Recall that the 6-multiplexer re-
quired about 200 classifiers peak and settled to about 100. The Q table size for that problem
would be 64 x 2 = 128, again not a dramatitedénce. Howevethe 1L-multiplexer required

600 classifiers peak and settled to around 300. For that problem, the Q table requires 2048 x 2 =
4096 entries, suggesting an increasing advantage for the classifier systgeripriaolems. It

should be mentioned that not all experiments witoWé2 had a steady or falling population size

by 4,000 problems. Howevgropulation sizes like that in Figure 6 were obtained by lowering the

mutation and crossover rates. This in fact improved performance, suggesting that appropriate pa-

26

O 0 0| F| ¥
OO0 O|F|¥*
Olo M x|k
SN N4 2
K| K| K |[¥]| ¥

Figure 7. Example of system predictions learned in Woods2. Line length is proportional
to the prediction in that direction, scaled so half the length of a cell edge equals the extern:
reward.

1,000 explore problems. Fora®ds2, optimal performance is 1.7 steps to food. This is the aver-
age of the shortest path to food from every starting position; no system having the same actions
can do better in Wbds2. Figure 6 shows performance (in average steps to food), system error (av-
erage absolute ddrence between the system prediction for the chosen actioR),zexd popu-

lation size curves for the experiment with the best performance so far (to show the curves on the
same scale, performance and population size were divided by the factors indicated before plot-
ting). The performance curve begingsdale, with steps-to-food generally at least 27 (the ran-
dom value), then falls rapidly within 500 problems (or about 250 explore problems) to 2.0 and
gradually approaches the optimum over the next 500 problems. The systeshemor as a frac-

tion of the external reward value (1000) is about 10% by 100 problems, then falls slowly to
around 2%. The population size in macroclassifiers rises rapidly at the beginning to around 500,

and stays near that value for the rest of the experiment.

25

1.0 T I T I T I T l
- Steps to food (/10)
08 F System error

Problems (1000s)

Figure 6. Results in a Woods2 experiment. Solid curve: Performance, average steps t
food in last 50 exploit problems (divided by 10). Dotted curve: System error as a fraction
of external reward. Dashed curve: Population size in macroclassifiers (divided by 1000).
Dash-dot curve, Optimum performance (divided by 10). Parameters the same as in Figur
3 excepiN = 800,u = 0.01, andP; = 0.5. Curves are averages of 10 runs.

be random (explore) or deterministic (exploit). In explore mode, both the reinforcement and dis-
covery components operated normgtiyt in the performance component, actions were selected

at random from among those that had non-null predictions in the prediction Erexploit

mode, the performance component selected the action with the maximum prediction. The discov-
ery component was turned @¢éxcept for covering), but in the reinforcement component updates
occurred normally for [A} (but not [A]). Updates to [A] were maintained to allow escape, via
covering, from occasional loops early in a rum. KEep track of exploit mode performance, the
system kept a moving average, over the past 50 exploit problems, of the length of each problem in

time-steps. As with the multiplexers, the population was initially empty

Experiments were typically run for several thousand problems. Under a variety of parameter

regimes and initializations, XCS quite reliably achieved optimal performance within roughly

24

0000000000000000100100. The left-hand three bits are always those due to the object occupy-
ing the cell directly north of *, with the remainder corresponding to cells proceeding clockwise
around it. The animat’available actions consist of the eight one-step moves into adjacent cells,
with the move directions similarly coded from O for north clockwise to 7 for north-west. If a cell
is blank, * simply moves there. If the cell is occupied by a rock, the move is not permitted to take
place, though one time-step still elapses. If the cell contains food, * moves to the cell, “eats” the

food, and receives a rewaig,, = 1000).

Woods2 was constructed by repeating a basic block of nine objects and 16 blanks with F’
and G5 assigned at random to the food position in the upglet corner of the block, and ©and
Q’s assigned at random to the other positions. The blank positions of the resulting environment
yield a total of 70 distinct input strings. Due to the random assignment of symbols, the right-hand
bit of the sensor code is not of much use to a food-seeking animat, since its value does not distin-
guish between food and rock, and does not reliably distinguish between object and blank. In con-
trast, the left-hand bit is completely 8aient to determine whether or not an object is food;
fancifully, it might be termed the “aroma” bit. Similarthe middle bit reliably distinguishes be-
tween object and blank; it could be called “opacity”e &dded the right-hand bit to the code with
the intention of introducing regions of thexXA => P mapping that could be generalized over
without introducing errors. The hypothesis was that high-fitness classifiers would “hash out” this
bit, since an accurate classifier that did so would have more matching opportunities than an accu-

rate one that did not.

4.3.2 Experiments ind@ds2

In an experiment, the animat repeatedly executed “problems” each consisting of being placed in a
randomly chosen blank cell ofad/ds2 and then moving under control of the system until a food
object was eaten, at which point the food instantly re-grew and a new problem began. As with the
multiplexers, the experiments used a 50-50 explore/exploit regime. At the start of a problem, XCS

would decide with probability 0.5 whether or not action selection throughout the problem would

23

Figure5. Environment “Woods2” with animat. Empty cells are indicated by “.”

may be reasonable. In Section 4.2, we observed X@Sieralization ability in the multiplexer

problem, a single-step environment.e Wiext test it in a multi-step one.

4.3.1 Vods2

Wilson (1994) reported experiments in a two-dimensional, Class 1 environment caddd MV

For experiments with XCS, we retaine@¥®ds1s basic pattern, but made it more challenging by
defining Wbods2, shown in Figure 5 (the left and right edges @bd%2 are connected, as are the
top and bottom). Wbds2 has two kinds of “food” and two kinds of “rocks”, compared with one
kind of each in Wods1. F and G are the two kinds of food, with sensor cddkarid 11, re-
spectively O and Q are the two kinds of rocks, with sensor codes 010 ance8fectively

Blanks, denoted by “.”, have sensor code 000. The system, here regardatiasaafyVilson,

1985) or artificial animal, is represented by &.Sense its environment, * is capable of detecting
the sensor codes of objects occupying the eight nearest cells (sensing 000 if the cell is a blank).

For example, in the position showns tetector input is the 24-bit string

22

tion is distributed over sets of classifiers, sets that are subject to abrupt membership changes due
to the GA. In XCS, howevgthe relation to Q-learning is closer and more stable because each
classifier uses Q-learning to predict the pagokctly, independent of the other classifiers, and

the system prediction is an average instead of a sum.

Recall that XCS, as shown in Figure 1, updates predigioofsclassifiers in [Al, with a Q-
learning-like quantityP that is based on the system predictions contained in the prediction array
(and any priosstep external reward). The system predictions are fitness-weighted averages of the
predictions of classifiers in [M], and as noted should be more accurate than the sums of strengths
in other classifier systems. The update procedure is not quite identical with Q-learning, in that Q-
learning updates a sing@(x,a) value (stored in a table) and not a number of predictors (classifi-
ers) whose predictions get averaged. But the connection is close enough to suggest that the X
=> P map constructed by XCS should cogeetio predicQ(x,a) In single-step problems like the
multiplexers, the map conged to predict the external reward, as indicated both by cpeves
of the predictions of high-fitness classifiers, and the reduction of the system prediction error to
near zero. In a multi-step problem, XCS adjusts classifier predictions to predictfapayoth
is in fact the Q-learning-like combination of the current reward and the next timg+si@gmum
system prediction. The question is whether the system predictions and the predictions of high-fit-

ness classifiers conwg to the same values that Q-learning would cae/é.

If so, there is the further possibility that XGSjeneralization mechanism will cause it to ex-
ploit any generalization possibilities@(x,a) i.e., to evolve classifiers that generalize over inputs
x having the sam@ value for a givera. Generalization using Q-learning in multi-step environ-
ments has been dult to achieve. Proofs of conggnce of the basic algorithm are known only
for systems that enumerate all input-action p@i@)in a table and have no natural generalization
mechanism. Some success has been reported by supplementing the table with statistical cluster-
ing methods (Mahadevan & Connell, 1992), or by using neural networks (Lin, 1993) which im-
plicitly generalize but may learn slowlyn contrast, XCS' generalization mechanism is intrinsic

to the system, explicitly exhibits the generalizations found (as classifiers), and the learning rate

21

puts and its own actions that will lead to reward, even when—as with food located sparsely in the
environment—many actions will receive no immediate reward (food). This is the general setting
of the reinforcement learning problem, and has been studied using a variety of methods, including
classifier systems (e.g.,iMbn, 1985), neural networks (e.g., Lin, 1993), and, especially formally
complete listings of state-action pairs and their outcomes (e.g., Sutton, 1&8ihs/§ Dayan,

1992).

In a basic kind of multi-step environment, the next inp{nd the reward, if any) encoun-
tered by the system depends only on the current xgud the current actiay there is no further
history dependence. Such an environment is described as “Markovian with delayed rewards” or
in the terminology of Wson (1991), it is a “Class 1” environment. The predictability givenx
anda makes it possible for the widely used technique called Q-learniatki{Wy, 1989) to learn a
policy (i.e., whicha to choose for eack) that is optimal in the sense that it maximizes the dis-
counted sum of future rewards that the system receives. In this paper we shall not review Q-learn-
ing except to note that the algorithm works by associating a quéntitith every input-action
pair. As experience occurs, the algorithm updates that value, usingdr@vHoff rule, with an
adjustment equal to the sum of the current external reward, iaadyhe product of a discount
factory (O<y <1) and the layest of theQ values associated with the following inutWatkins
proved that in Class 1 environments this procedure, if done often enough for every input, would
convege to a functior®(x,a)such that the policy that always executed the action with the maxi-

mumQ for eachx would be optimal in the above sense.

Several articles (e.g., Roberts, 199&afdowski, 1993; Dorigo & Bersini, 1994;il&bn,
1994) have drawn attention to the relationship between the Q-learning update procedure and vari-
ous versions of the classifier system bucket-brigade algorithm, especially a version in which the
payof value is, as in Q-learning, a discounted sum of immediate reward and the sum of strengths
of the maximum strength action in the next match sés@W, 1994). The major ddrence is
precisely that it is this sum of strengths that represent® tr&ue, not a single number as in Q-

learning. That is, assuming sharing of strength as discussed in Section 2, thes §ystdanma-

20

maximally general classifiers, together with a residue of low-fitness slight specializations of the
generals. Figure 4 is a graph of the results. Note its similarity in form to Figure 3, but note also
that the horizontal scale is fifent by a factor of two. Broadly appears that thelAmultiplexer

is approximately 3 times as fidult as the 6-multiplexefFor example, the performance reaches
100% and system error reaches zero at about 12,000 problems instead of 4,000, the population
peak is at about 600 macroclassifiers instead of 200, and the final size is around 300 instead of

100.

This difference in dificulty would not be suggested by thefeiience in the search space sizes
for the two problems. The ratio of input space sizedli®®=32. The ratio of classifier space
sizes is 2 x 3/2 x P = 243. At the same time, the ratio of the number of maximal generaliza-
tions in the two problems is 2. This suggests the hypothesis thatfitdtglibf learning a pay®f
landscape scales more according to the number of concepts (generalizations) it contains than ex-
ponentially with its dimensionality—at least for systems that can detect and exploit the generali-
zations, as XCS is apparently able to doe WMl test this hypothesis on the 20-multiplexer

(k = 4) in future experiments.

4.3 Multi-step environments

The multiplexer problems of the previous two sections wergle-stepn that external reward

was received on every time-step and the environmental input for each time-step was completely
independent of that for the prior time-step. Problems involving categorization of data examples
are typically single-step, since a decision is made, and reinforcement as to the quality of the deci-
sion is received, in a single time-step, and the examples to be categorized are usually independent.
In asequentiglor multi-stepproblem, reward may occur (though not necessarily) on any time-

step, and the input on a time-step is dependent on at least the prior input and the Bstany

tion. A major research use of sequential problems is to model, in part, the adaptive interaction of
a system such as an animal or robot with its environment. In this simplifiediveesystem

seeks to get as much reward as possible, and must learn associations between environmental in-

19

Performance
System error

~
Bl ank SN

16 20
Problems (1000s)

Figure4. Results in an 11-multiplexer experiment. Curves have same meaning as in Fig.
3. Parameters the same as in Figure 3, exte800. Curves are averages of 10 runs.

range.

The system error falls to zero at about the point the performance reaches 100%. Zero error
means that the X A => P map is both complete and highly accurate. The population size curve
shows the change in the number of macroclassifiers, which grows from zero, then settles back to
about half its peak value. Informal observation suggests that the size grows until the system has
found accurate, though still fairly specialized, classifiers for all parts of its map, then “condenses”

as the population finds maximally general classifiers and eliminates many of the specialists.

4.2.2 The 1-multiplexer
A similar experiment was done using tHerhultiplexer functionlE11). Because thelimulti-
plexer has 32 maximally general covering classifiers, the landscape was designed with32 payof

instead of 16. As in Figure 2, the population evolved to contain a complete set of high-fitness

18

Performance
System error
Pop. size (/1000)
04 .
02 . e .
0.0 / . |. ----- feoon | ! | !
0 2 4 6 8 10
Problems (1000s)

Figure 3. Results in a 6-multiplexer experiment. Solid curve: Performance, the fraction
of last 50 exploit problems correct. Dotted curve: System error as a fraction of total payoff
range. Dashed curve: Population size in macroclassifiers (divided by 1000). Pardineters:
=400,4=0.2,y=0.71,0 = 25,6 = 0.01,0 = 0.1,X =0.8,u = 0.04,0 = 0.1,(= 0.5 P4
=0.33,p,= 10.0,§, = 0.0,F; = 10.0,. Curves are averages of 10 runs.

mally general classifiers that drive out all other classifiers except for a few that are slight special-

izations of the generals.

Figure 3 shows performance, system emad macroclassifier population size averaged over
10 runs of the experimenkerformancas the fraction of the last 50 exploit trials that were cor-
rect. System eor is the absolute dérence between the system prediction (Sect. 3.1) for the cho-
sen action and the actual external pgyaizided by the total paybfange (1000) and averaged
over the last 50 exploit trialf?opulation sizes M, the number of macroclassifiers. Note that
since XCS was in pure explore during about half of the total number of trials, the graph indicates
that essentially 100% performance was reached within approximately 2000 explore trials. Since
the system only adjusted parameters and performed the GA during explore trials, one can say that
XCS “learned the 6-multiplexer” within about 2000 explore trials, and in a situation where the

payof difference between correct and incorrecledéd by just a fraction of the total paf/of

17

Cond. Act Pr ed. Error Fitn. Num

p € F n
00 01 ## 1 0. .00 57. 1
00 00 ## 1 0. .00 1009. 2
00 O# O# 1 0. .00 43. 1
00 O# ## 1 0. .00 637. 14
00 11 ## O 100. .00 48. 1
00 10 ## O 100. .00 43. 1
00 1# 1# O 100. .00 47, 1
00 1# #1 O 100. .00 43. 1
00 1# ## O 100. .00 725. 16
#0 O# #1 1 133. .22 4, 1
01 00 #0 1 200. .15 14. 1
01 00 ## 1 200. .00 43. 1
01 #0 #0 1 200. .00 48. 1
01 #0 ## 1 200. .00 760. 18

(...69 others...)

10 #0 1# 1 800. .00 38. 1
11 #0 ## O 800. .10 28. 1
10 ## 1# 1 800. .00 782. 23
1# 0# #0 O 809. .11 0. 1
11 #0 00 O 900. .00 30. 1
11 #1 #0 O 900. .00 128. 3
11 #0 #0 O 900. .00 68. 2
11 ## #0 O 900. .00 638. 19
11 #0 #1 1 1000. .00 77. 2
11 ## 01 1 1000. .00 38. 1
11 ## #1 1 1000. .00 719. 20

Figure2. Macroclassifiers from a 6-multiplexer experiment.

are its condition, action, predictigm prediction errog, fithessF, and numerositp. The predic-
tion error is expressed as a fraction of the total gagofye, 1000. The fitness is multiplied by

the payof range. The list is in ascending prediction order

Notice that high fitness, high numerosity macroclassifiers correspond to maximal generaliza-
tions. Note also that classifiers with non-zero errors have low fithess—so they contribute little in
the prediction array calculation. The remaining 69 macroclassifiers in [P] exhibit the same pat-
tern, with a dominant macroclassifier for each of the 16 levels of thef payd$cape. Thus in

this experiment—Fig. 2 is typical of all runs— XCS not only maps the landscape, but finds maxi-

16

dicting the paydfassociated with each XA pair and will it evolve the above eight general clas-
sifiers, together with the eight classifiers (for the “wrong” answers) that are identical to the above

except that their actions are complemented?

In the experiment, input strings were randomly presented to XCS, which would choose an ac-
tion, receive the associated pdyodm the environment, make its internal adjustments including
the GA, and go on to the next random string. The population was initially esogtyat the first
classifiers were created through coveringlu¥s of the basic system parameters are given in the

caption to Figure 3.

Since our aim in the experiment was to test the generalization hypothesis, we were not imme-
diately concerned with the systenability to chose the “right” answeRatherwe wanted to
know if it could form a complete payiahap expressed in terms of the 16 maximally general clas-
sifiers. At the same time, we were of course curious as to whether XCS could in fact learn to
choose the right answer if it had ta address both purposes, we set the systaation-selection
regime so that, given an input, it would with probability 0.5 choose an action (1 or 0) at random,
or it would choose the action that in the prediction array had the higher prediction (note that high-
er payof was always associated with the right answer). Thus the system either acted randomly to
gain information, or acted deterministically to gain maximum gayitie action selection regime
thus alternated probabilistically between what one might term “pure explore” and “pure exploit”
modes. In pure exploit mode classifier parameter adjustments and the GA did noffoates
termine how well the system was doing at getting the right answeesimply kept track of the
fraction of its decisions that were correct over the preceding 50 exploit trials. (XCS has been run

successfully in a variety of other action-selection regimes.)

Figure 2 shows a portion of the macroclassifier population after 10,000 trials, or “problems”,
from one run of the experiment. Each line represents a macroclasBifeetotal number of mac-
roclassifiers in the population was 94; the total of their numerosities, and, tthesnumber of

regular classifiers represented by the macroclassifiers, was 400. Shown for each macroclassifier

15

value may be determined by treating the firisits as an address that indexes into the remaining
2% bits, and returning the indexed bit. For example, in the 6-multiples@), the value for the
input string 100010 is 1, since the “address”, 10, indexes bit 2 of the remaining four bits. In dis-

junctive normal form, the 6-multiplexer is fairly complicated (the primes indicate negation):

Fe = XoX1'X2 + XgX1X3 + XX1'Xq + XpX1Xs.

There are exactly eight classifiers that would give the right answer for the example string
above. The most specific is 100010:1 and the most general is 10##1#:1 (the other six replace one
or more of the #s in the latter by 0s). Notice that 10##1#:1 is correct for all (eight) inputs it can

match; in fact, it is maximally general in the sense that no further #s can be added to its condition

without producing an error

The 64-string input space can be covered by exactly eight such maximally general classifiers,
each having three #s in its condition so it matches eight strings. They are
000###:0
001###:1
01#0##:0
01#1##:1
10##0#:0
10##1#:1

11###0:0
11###1:1.

To construct our paybfandscape, we associated two payaiues, 300 and 0, with the eight
strings matched by the first classifier above: pga3@® was for the right answe; payof 0 was

for the wrong answefl.. Thus for that part of the landscapex & => 300, and X 1 => 0. Wth

the eight strings matched by the second classiesimilarly associated pays#400 and 100 for
right and wrong answers, respectiveljhe paydk continued to rise in 100 point increments,
ending with 1000 and 700 for strings matched by the last classifier in the list. The result was a
landscape in which the mappingd@ => P had 16 levels each associated with a generalization

over eight input strings. The question then was: can XCS learn this landscape in the sense of pre-

14

Suppose that C1 and C2 are equally accurate in that their valuaseahe same. Whenever C1

and C2 occur in the same action set, their fithess values will be updated by the same amounts.
However since C2 is a generalization of C1, it will tend to occur in more match sets than C1.
Since the GA occurs in match sets, C2 would have more reproductive opportunities and thus its
number of exemplars would tend to grow with respect tg @ik’in macroclassifier terms, the ra-

tio of C2's numerosity to C&'would increase). Consequenthhen C1 and C2 next meet in the
same action set, a ggar fraction of the constant fithess update amount would be “steered” toward
exemplars of C2, resulting through the GA in yet more exemplars of C2 relative to C1. Eventual-

ly, it was hypothesized, C2 would displace C1 from the population.

The generalization process should continue as long as more-general classifiers ¢k&tsstly
fiers with more matching opportunities) can be formed without losing accuracy; otherwise, it
should stop. The stopping point should be controllable in the accuracy function. Indeed, this is
the role ofeg in the function of Section 3.4: classifiers with error greatergpiave sharply
lower fitness. So classifiers should evolve that are as general as possible while still having errors
less thargg—the “accuracy criterion” referred to earligiNaturally there is the possibility of
tradeof in which it is some function of both accuracy and generality—for instance their prod-

uct—that determines the point of maximum generalization.)

4.2 Tests on a single-step j@blem

To test the generalization hypothesis, we sought a problem having &lpaglstape that (1) con-

tained potential generalizations, and (2) the generalizations were expressible in the syntax of clas-
sifier conditions. W also wanted to start with a single-step problem to avoid any complications
that might result from deferred external pdydiVe designed a modified form of the Boolean
multiplexer function in which dierent paydk were associated with tBfent parts of the func-

tion's domain.

4.2.1 The 6-multiplexer

Boolean multiplexer functions are defined for binary strings of length+ X The functiors

13

o) Value of the fraction used in the second deletion method of Section 3.3.
(0] If the total prediction of [M] is less thaptimes the meaprediction of [P], covering
occurs.

Py Probability of a # at an allele position in the condition ofeasifier created through
covering, and in the conditions cfssifiers in an initial randomly generated popula-

tion.

P, €, andF, Prediction, prediction errpand fitness assigned to eatdssifier in the initial

population.

4. Experiments with XCS
4.1 Generalization hypothesis

As noted in Section 2, our intention with XCS was to form accurate maps ofxtide=>% P

space, or paybfandscape, of the problem.e/dlso hoped by basing fithess on accuracy to sup-
press ovageneral classifiers. Howevdrappeared that the interaction of accuracy based fitness
and the use of a niche GA could result in evolutionary pressure toward classifiers that would be
not only accurate, but both accurate and maximally general. That is, given an accuracy criterion,
classifiers would evolve to be as general as possible while still satisfying the criterion. In this
way, niches of the “landscape” that had the same payeftithin the accuracy criterion, but pre-
sented diierent sensory inputs to the system, might begekinto a single niche through evolu-

tion of classifiers that generalized over théeddnces. The resulting population would be

efficient in the sense of minimizing the number of separate “concepts” represented by the classifi-
ers’ conditions. In terms of macroclassifiers, the populatiphysical size would be minimized

as well.

The hypothesized mechanism was as follows. Consider two classifiers C1 and C2 having the
same action, where G2tondition is a generalization of G1'That is, CZ condition can be gen-

erated from CE by changing one or more of @Xpecified (1 or 0) alleles to dbnares (#).

12

ity times its match set size estimate, as described in Section 3.3. If it is selected for deletion and
its numerosity is greater than one, the numerosity is simply decremented; if not, the macroclassifi-
er is entirely deleted. The population as a whole is always treated as though it ¢dneginisr
classifiers, though the actual number of macroclassifi€rsiay be substantially less thisir—

which gives the computational advantage.

A potential question is whether in fact a population of macroclassifiers, even when treated like
the equivalent regular classifiers, in fact behaves the sameWeakliave conducted informal ex-
periments to test this and found no appareferihce. Consequentiyur recent classifier system
work, including that reported here, was done with macroclassifiers. Howéassifier system
mechanics and theory appear to be more easily communicated and understood in terms of regular
classifiers, so that language will be used in most of this papethe term “classifier” will have
the standard meaning. The term macroclassifier will be reserved for the few situations in which it

makes the explanation clearer

3.6 Parameter list

The foregoing description of XCS has mentioned most of the syspamameters. They are sum-

marized below Some typical values can be seen in the captions to Figs. 3, 4, and 6.

N Population size.
B Learning rate for prediction, prediction errand fitnessipdates.
% Discount factar

0 Do a GA in this [M] if the average number of time-steps since th&lkass greater

than®.
€9, 0 Parameters of the accuracy function.
X Probability of crossover per invocation of the GA.

VI Probability of mutation per allele in anfgipring. Mutatiortakes 0,1,# equiprobably

into one of the other allowed alleles.

1

Since the relative accuracies sum to 1, the total of the fitness adjustments to the members of
[A] .1 is constant. The f&ct is that the various action sets within a given match set [M] have ap-
proximately the same total fithess. Because reproduction depends on fitness, approximately the
same number of classifiers will be associated with each action that is represented in [M], support-

ing the general goal of assigning equal resources to all parts ofxtiAe=% P map.

However within a given action set, the more accurate classifiers will have higher fithesses
than the less accurate ones. They will consequently have nfgpargf. But by becoming rela-
tively more numerous, those classifiers will gain gdafraction of the total relative accuracy
(which always equals 1), and so will have yet mofgpoing compared to their less accurate
brethren. Eventuallyhe most accurate classifiers in the action set will drive out the others, in
principle leaving the X% A => P map with the best classifier (assuming the GA has discovered it)

for each situation-action combination.

3.5 Macroclassifiers

Whenever XCS generates a new classiéigher at system initialization or laténe popula-
tion is scanned to see if the new classifier has the same condition and action as any existing classi-
fier. If so, the new classifier is not actually added to the population,furheosityfield in the
existing classifier is incremented by one. If, instead, there is no existing classifier with identical
condition and action, the new classifier is added to the population with its own numerosity field
initialized to one. W term such classifiersacioclassifiers They are essentially a programming
technique that speeds up matching [P] against an input (and speeds other aspects of processing),

since one macroclassifier with numerositig the structural equivalent nfregular classifiers.

To be sure that the system still behaves as though it condiétegilar classifiers, all system
functions are written so as to be sensitive to the numeraosities, if that is relevant. For example, in
calculating the relative accuracy shares of the last section, a macroclassifier with numerosity
will be treated as though it rsseparate classifiers; i.e., it will get a shatenes bigger than if it

had numerosity 1. Similarla macroclassifies probability of suering a deletion is its numeros-

10

use in two special circumstances. First, it sometimes happens that no classifiers match a given in-
put—[M] is null. In this case, XCS simply creates a classifier with a condition matching the input
and a randomly chosen action. The new classifier is inserted into [P], and a classifier is deleted as
in the GA. Then the system forms a new [M] and proceeds as usual. Covering is also used as a
way of escaping if the system seems to be stuck in a loop—for example if the action selection
mechanism causes the system persistently to go back and forth between two positions in the envi-
ronment. The situation is detectable because the sgstisubunting mechanism will cause the
predictions of the classifiers involved to fall steadilyhe creation of a new matching classifier

with a random action can usually be relied upon to break the loop; if it ticasother round of

covering will do so, etc. In practice, loops are rare, and break as soon as the discounting mecha-
nism causes one of the current actions’ predictions to fall below that for some other action. Cov-
ering has only been needed occasionally at the beginning of a run when alternative classifiers

were not yet available.

3.4 The fitness calculation

As noted earliera classifies fithess is updated every time it belongs tQ{£dr [A], in single-

step problems). Broadlthe fitness is updated by a quantity that depends on the cl&éssitieu-
racy relative to the accuracies of the other classifiers in the set. There are three steps in the calcu-
lation. First, each classifferaccuracyk;, is computed Accuracyis defined as a function of the
current value ofj. We have experimented with a number of functional forms. The best one so
far iskj = exp[(Ina)(g; - €0)/eg)] for g > g, otherwise 1. This function fallsfaxponentially for

g >€o. The rate is such that the accuracy, at 2eg equalsa (0 <a < 1), so smallea means a
steeper falldf Next, arelative accuracx’j is computed for each classifier by dividing its accura-
cy by the total of the accuracies in the set. Fin#ily relative accuracy is used to adjust the clas-
sifier'sfitnessF; using the MAM procedure. If the fitness has been adjusted at [aishas,

Fj - Fj +B3 (Kj' - Fj) . OtherwiseF; is set to the average of the current and previous values of

Kj'

compensating deletion occurs. Otherwise, two classifiers are deleted stochastically from [P] to

make room. W have experimented with two methods of selecting the classifiers to be deleted:

1. Every classifier keeps an estimate of the size of the match sets in which it occurs. The es-
timate is updated every time the classifier takes part in an [M], using the MAM technique with
ratef3. A classifiers deletion probability is set proportional to the match set size estimate, which
tends to make all match sets have about the same size, so that classifier resources are allocated
more or less equally to all niches (match sets). This deletion technique is similar to one intro-

duced in Booker (1989) for the same purpose.

2. A classifiers deletion probability is as in (1), except if its fitness is less than a small frac-
tion o of the population mean fitness. Then the probability from (1) is multiplied by the mean fit-
ness divided by the classifieffitness. If for exampl&is 0.1, the result is to delete such low-

fitness classifiers with a probability 10 times that of the others.

Like the basic deletion technique of (1), the rate of incidence of the GA is controlled with the
aim of allocating classifier resources approximately equally to tfexeht match sets (such an
allocation being consistent with the purpose of forming a relatively complete mapping). This can-
not in general be achieved if the GA simply occurs with a certain probability in each match set.
Depending on the environment, some match sets (niches) may occur much more often than oth-
ers. Instead, the GA is run in a match set if the number of time-steps since the last GA in that
match set exceeds a threshold. As a result, the rate of reproduction per match set per unit time is
approximately constant—except in the most rarely occurring match seisiplement this re-
gime, each classifier is time-stamped at birth with the reading of a counter that is incremented on
every time-step. When a match set is formed, XCS computes the average time-stamp of its classi-
fiers and executes the GA if thefdience between that average and the current counter reading
exceeds a threshold This technique and the deletion algorithm result in approximately equal al-

location of classifiers to the various niches.

Besides the GA, the discovery component contacwvaringmechanism (WWson, 1985) for

However for each classifier in [A], the update in fact begins by first re-calculating the fit-
nessk; using the current value ef; according to a technique to be described in Section 3.4. Sec-
ondg; is itself adjusted using and the current value pf. For this, the Wrow-Hoff technique
is used to adjus toward the absolute défrenceff - g|. That s, g < & +p3 (\P - pj\ - ej) .

Finally, pj is adjusted as described above. (The adjustméhtntie makes the term “reinforce-
ment component” something of a misnontrrt we shall stick with this traditional usage for the

component that modifies classifier parameters.)

The Widrow-Hoff procedure is used fq, €, and as part of the adjustmentFobnly after a
classifier has been adjusted at leg$tiivies. Prior to that, the new values in each case are simple
averages of the previous values and the current one. For example, the pparetbé fourth ad-
justment will be just one-fourth of the sum of the first fBwalues, if 1 > 4. This two-phase
technique causes the early parameter values to move more quickly to their “true” average values,
and makes the system less sensitive to initial, possibly arbgettings of the parameters. The
technique, called “MAM” (“moyenne adaptive modifiée”), was introducedeimiini (1994).
To keep track of the number of updates, a classifier maintaiegp@niencgarameter that is in-

cremented every time the classifier belongs to [A].

Finally, we note that in single-step problems such as the Boolean multiplexer the updates oc-
cur as described, but in the set [A], since each problem involves just a single action set. In addi-
tion, P consists only of the current reward. Similailya multi-step problem happens to take just
one step (e.g., food is found within one step and that defines the end of the current problem), the

updates occur in [A] anél is just the current reward.

3.3 Discovery component

As can be seen in Figure 1, the genetic algorithm acts on the match set [M]. It selects two classi-
fiers from [M] with probabilities proportional to their fithnesses, copies the classifiers, performs
crossover on the copies with probabilityand with probabilityt per allele performs mutation on

them. If [P] contains less th&hmembers, the copies are inserted into the population and no

little effect on performance.

3.1 Performance component

Given an input, anatch sefM] is formed in the usual way (Mgon, 1994). The system then

forms asystem mdictionP(g) for each actiom; represented in [M]. There are several reason-
able ways to determirf&(g;). We have experimented primarily with a fithess-weighted average of
the predictions of classifiers advocatagg Presumablyone wants a method that yields the sys-
tem’s “best guess” as to the pafredinternal and/or external—to be receivedyifs chosen. The
P(g) values are placed inprediction array(some of whose slots will receive no values if there is

no corresponding action in [M]), and an action is selected.

Many action-selection methods are possible. The system may simply pick the action with the
largest prediction; for brevifywe shall call thisleterministicaction selection. Alternativelthe
action may be selected probabilisticallyth the probability of selection proportionalR¢s;); we
shall call this roulette-wheel action selection. In some cases the action may be selected complete-
ly at random (from actions with non-null predictions), ignoringR(&). There are of course ad-
ditional schemes. Once an action is selected, the system foraxdian sefA] consisting of the
classifiers in [M] advocating the chosen action. That action is then sent téettterefand an im-

mediate reward;,,,, may (or may not) be returned by the environment.

3.2 Reinforcement component

XCS’s reinforcement component consists in updatingtlseandF parameters of classifiers
in the previous time stepaction set [A}, as shown in Figure 1. Tipevalues are adjusted by the
technique of Q-learning (8kins, 1989), which is implemented as shown in the figure by the
combination of taking the maximuR(g) of the prediction arraydiscounting” it by multiplying
by a factory (0 <y < 1), and adding in any external reward from the previous time-step. The re-
sulting quantitycalled simplyP, is used to adjust the predictiqnof the classifiers in [A] using
the standard Wirow-Hoff delta rule (Wson, 1994) with learning rate paramegi0 <3 < 1).

That is, pj - pj +|3(P—pj).

| 0011 Environment
y A
“left”
Y Y €
Detectors Effectors
[p] * match A
p & F

#011:01 43 .01 99
11##:00 32 .13 9
#0##:11 14 .05 52 01
001#:01 27 .24 3
#0#1:11 18 .02 92
1#01:10 24 .17 15

.. EtC.
i (Reward)
'[\,/\I/laimh Setl o Action Set
Prediction [A]
#011:01 43 .01 99 Array

#O##:11 14 .05 52 - - action | 4011:01 43 .01 99
oo1#i01 27 24 3 [—| "M 425 0l 166Lpl oosio1 27 24 3

#0#1:11 18 .02 92 \ /selection
4

|
| discount |—— delay =1
(eA) i
Update:

fitnesses, Previous Action Set
errors, » [A] .1
predictions

Figurel. Schematic illustration of XCS.

in the definition of classifier fitness, the GA mechanism, and the more sophisticated action selec-

tion that accuracy-based fithess makes possible.

The box labeled [P] contains the classifier population, and shows some example classifiers.
The left side of each classifier consists of a single condition; the right side codes an environmental
action. Associated with each classifier are prediction, prediction anwfitness parameters,
symbolized byp, €, andF, respectively The population has a fixed maximum dizand may be
initialized in a variety of ways: witN randomly generated classifiers; with potentially useful
“seed” classifiers; with no classifiers; or with one general (condition consisting) alassifier

for each action; etc. The initial values pf €, andF can be set more or less arbitrarily; there is

eral rules would be suppressed.

A second source of inspiration came from reinforcement learning (Sutton, 1991), which em-
phasizes the formation of relatively complete mappings®=> P from the product set of situa-
tions and actions to payef In contrast, the general classifier system philosophy (see, e.g.,
Holland, Holyoak, Nisbett, & Thagard, 1986) attempts more pragmatically to discover the best
rule in each niche without worrying too much about knowing the paposequences of every
possible action. Howeveshould a suboptimal rule be conyed upon as a consequence of in-
complete exploration, it may be filiult for the standard system to discover and switch to a better
one. If, on the other hand—as in reinforcement learning—the system were oriented toward learn-
ing relatively complete maps of the consequences of each action in each niche, then determining
the most remunerative action would be straightforward. For this, it seemed logical to base fithess

on some measure of accuracy

Out of the above considerations, it was decided to investigate systems in which the classifier
strength parameter would be replaced by three new ongseligtion an average of the payof
received—internal or external—when that classgiection controlled the system; (&gdiction
error, an average of a measure of the error in the prediction parameter; ditdg$Sy an inverse
function of the prediction errorThe prediction (and possibly the prediction error) would be used
in the performance component—that is, in selecting actions. The fitness parameter would be used

in the genetic algorithm, which would occur in the niches defined by the match sets.

3. Description of XCS

Figure 1 gives an overall picture of the system, which is shown in interaction with an environment
via detectors for sensory input anfeefors for motor actions. In addition, the environment at

times provides a scalar reinforcement, here termed reward. Many aspects of XCS are copied from
ZCS (Wilson, 1994), a “zeroth level” classifier system intended to simplify Hokacahonical
framework while retaining the essence of the classifier system idea. Some descriptive material is

omitted here because it can be found in the ZCS pabperdiferences between XCS and ZCS lie

en classifierwith its single strength value, is often involved in numerous distinct matching sets,

so that the meaning of the strength value becomes unclear

3. Moreoverit is still the case under sharing that more remunerative niches will get more re-
sources (classifiers) than less remunerative ones. That may be reasonable in single-step decision
problems. But classifier systems dealing with sequential problems involving deferred reward of-
ten employ some form of payafiscounting so as to encourage expeditious behaVioe result
is that early-matching classifiers that “set up” later ones in a chain will, due to the discounting, ap-

pear inherently less fit, so that long chains cannot be sustainedr{\& Goldbeg, 1989).

The last problem can be alleviated by conducting the genetic algorithm using populations re-
stricted to the match sets (Book&982), instead of panmictically using the population as a
whole. Differences in paybbetween match sets will thus noteatt a given classifiés selection
chances. Competition will be restricted to classifiers within (i.e., matching) a niche (sharing may
or may not be maintained). Howeyeven with such aiche GA there remain at least two prob-

lems:

4. The GA cannot distinguish an accurate classifier with moderatd frayofan overly
general classifier having the same pagofthe average. Thus ogenerals— “guessers™—will
be unduly encouraged, and in fact may proliferate since they occur in many match sets and (espe-

cially under a niche GA) have many chances to reproduce.

5. Classifier systems employ a “docare” (#) symbol in the syntax of their conditions and
thus permit the formation of generalizations. Howgeneder paydtbased fitness, there appears

to be no clear tendency, andeed, theoretical reason, for accurate generalizations to evolve.

Given the above problems, it seemed reasonable to inquire whether there might exist a more
appropriate basis for classifier fithess than expectedfpaydist hint was provided by problems
4 and 5 above: if estimated pafydbes not distinguish between accurate andgaresral classifi-
ers, why not base fitness on accuracy itself? The system might need to be bigger since the number

of accurate classifiers could exceed the number of highly remunerative ones. Howeagen-

wide range of reinforcement learning situations where generalization over states is important.

The next section of the paper motivates the shift from doased to accuracy-based fitness.
Section 3 presents XCS in 8aient detail to permit implementation. Section 4 tests the system in
single-step (Boolean multiplexer) and sequential (“woods”-like) environments, focusing in both
cases on mapping performance and generalization. In Section 5 we summarize flikscapsr

related work and directions for future research, and present our main conclusions.

2. How to measue fithess?

In many classifier systems (Holland, 1986|36h, 1994), a classifieystrengthparameter esti-

mates the paybthat the classifier will receive when, given satisfaction of its condition, its action

is chosen by the system. Strength is therefore important to the sypormance component,
which is generally interested in choosing the most remunerative action. But strength is also used
as the measure of fitness for the discovery compangeatietic algorithm; that is, higher strength
classifiers are more likely to be selected for reproduction and modification by genetic operators.

Strength thus forms the basis for the syssesearch for improved structures.

Basing fitness on strength is reasonable: after all, showletier performing classifiers lead

the search? On closer examination, howethere are several problems.

1. Different niches of the environment usually haviediint paydflevels. (Here, following
Booker (1982)nichemeans a set of environmental states each of which is matched by approxi-
mately the same set of classifiersg pFevent population takeover by classifiers in high-gdayof
niches, it is necessary to implement a sharing technigue in which the availabfagdivided
among active classifiers instead of giving each one the full value (for an analysis, see Horn, Gold-

bely, & Deb, 1994).

2. Sharing eliminates takeovefestts but then a classifisrstrength no longer directly pre-
dicts paydf, instead, the total of the shared strength (among matching classifiers advocating the

same action) predicts the pafyoT his division of the prediction becomes problematic since a giv-

1. Introduction

Traditionally in classifier systems, the classifigengthparameter serves both as a predictor of
future payof and as the classifierfithess for the genetic algorithm. Howeyeedicted paydf

may inadequately represent fithess. For example, a low-predicting classifier may nevertheless be
the best one for its environmental nichee MWestigate a classifier system, XCS, in which each
classifier maintains a prediction of expected piymft the classifiés fitness iot given by the
prediction. Instead, the fitness is a separate number based on an inverse function of theslassifier
average prediction error; that is, it is based on a measureaxfdheacyof the prediction, instead

of the prediction itself. XCS also executes the genetic algorithm in niches defined by the match

sets (Booker1982) rather than panmictically

The present research—an investigation into classifier system technique—stemmed from dis-
satisfaction with the behavior of traditional classifier systems, and the hypothesis that the short-
comings were due in part to the definition of fitness. As discussed in Section 5.1, some previous
work had factored measures of accuracy into the fitness function, . Hotheversults with
XCS show that a complete shift to accuracy-based fitness is not only possible, but yields a classi-

fier system that is superior to traditional systems in important respects.

Specifically accuracy-based fithess, in combination with a niche GA, results irsX0gula-
tion tending to form a complete and accurate mapping X x A => P from inputs and actions to pay-
off predictions. Taditional classifier systems have not theoretically emphasized or actually
produced such mappings, which can make gayakimizing action-selection straightforward.
Further XCS tends to evolve classifiers that are maximally general subject to an accuracy criteri-
on, so that the mapping gains representatiofialexicy. In traditional classifier systems there is
in theory no adaptive pressure toward accurate generalization, and in fact accurate generalized
classifiers have rarely been exhibited, except in studies using pegiofies biased toward for-
mally general classifiers (e.g.,lé6n, 1987a). Besides introducing a new direction for classifier

system research, the mapping and generalization properties of XCS should make it suitable for a

Classifier Fitness Based on Accuracy

Stewart WWilson
The Rowland Institute for Science
100 Edwin H. Land Blvd.
Cambridge, MA 02142
(617) 497-4650
wilson@smith.rowland.gr

Submitted tdEvolutionary Computatiori,0/18/94
Revised, 4/25/95
To appear in ¥l. 3, No. 2

Abstract
In many classifier systems, the classifier strength parameter serves as a predictor of
future payof and as the classifierfitness for the genetic algorithmeWvesti-
gate a classifier system, XCS, in which each classifier maintains a prediction of ex-
pected paydf but the classifiés fitness is given by a measure of the predicion’
accuracy The system executes the genetic algorithm in niches defined by the
match sets, instead of panmicticallijhese aspects of XCS result in its population
tending to form a complete and accurate mappixgA=> P from inputs and ac-
tions to paydfpredictions. FurtheiXCS tends to evolve classifiers that are maxi-
mally general subject to an accuracy criterion. Besides introducing a new
direction for classifier system research, these properties of XCS make it suitable
for a wide range of reinforcement learning situations where generalization over

states is desirable.

Key words
Classifier systems, strength, fitness, accymaapping, generalization, restricted

mating, niche genetic algorithm

