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Abstract

The k-nearest neighbor rule is one of the simplest and most attractive pattern classification algorithms. However, it faces serious chal-
lenges when patterns of different classes overlap in some regions in the feature space. In the past, many researchers developed various
adaptive or discriminant metrics to improve its performance. In this paper, we demonstrate that an extremely simple adaptive distance
measure significantly improves the performance of the k-nearest neighbor rule.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The nearest neighbor (NN) rule, first proposed by Fix
and Hodges (1951), is one of the oldest and simplest
pattern classification algorithms. Given a set of n labeled
examples Dn ¼ fð~X 1; Y 1Þ; . . . ; ð~X n; Y nÞg with input vectors
~X i 2 Rd and class labels Yi 2 {x1, . . . ,xM}, the NN rule
classifies an unseen pattern ~X to the class of its nearest
neighbor in the training data Dn. To identify the nearest
neighbor of a query pattern, a distance function has to
be defined to measure the similarity between two patterns.
In the absence of prior knowledge, the Euclidean and Man-
hattan distance functions have conventionally been used as
similarity measures for computational convenience.

The basic rationale for the NN rule is both simple and
intuitive: patterns close in the input space Rd are likely to
belong to the same class. This intuition can be justified
more rigorously in a probabilistic framework in the large
sample limit. Indeed, as one can easily show, as the number
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of training examples n!1, the nearest neighbor of a
query pattern converges to the query pattern with probabil-
ity one, independently of the metric used. Therefore, the
nearest neighbor and the query pattern have the same a

posteriori probability distribution asymptotically, which
leads to the asymptotic optimality of the NN rule:

L� 6 LNN 6 L� 2� M
M � 1

L�
� �

; ð1Þ

where L* is the optimal Bayes probability of error, see
Cover and Hart (1967). According to (1), the NN rule is
asymptotically optimal when L* = 0, i.e., when different
pattern classes do not overlap in the input space. When
the classes do overlap, the sub-optimality of the NN rule
can be overcome by the k-nearest neighbor (k-NN) rule
that classifies ~X to the class that appears most frequently
among its k nearest neighbors (Stone, 1977).

It should be noted that the above results are established
in the asymptotic limit and essentially rely on averaging
over an infinite amount of training examples within an
infinitesimal neighborhood to achieve optimality. In reality,
one most often only has access to a finite number of training
examples, and the performance of the k-NN rule depends
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Table 1
Comparison of error rates

Dataset NN A-NN

Breast cancer 04.85 (0.91) 03.09 (0.71)
Ionosphere 12.86 (1.96) 06.86 (1.36)
Pima 31.84 (1.05) 28.16 (1.57)
Liver 37.65 (2.80) 32.94 (2.23)
Sonar 17.00 (2.26) 13.00 (1.70)
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crucially on how to choose a suitable metric so that accord-
ing to the chosen metric the majority of the k nearest neigh-
bors to a query pattern is from the desired class. In the past,
many methods have been developed to locally adapt the
metric so that a neighborhood of approximately constant
a posteriori probability can be produced. Examples of these
methods include the flexible metric method by Friedman
(1994), the discriminant adaptive method developed by
Hastie and Tibshirani (1996), and the adaptive metric
method by Domeniconi et al. (2002). The common idea
underlying these methods is that they estimate feature rele-
vance locally at each query pattern. The locally estimated
feature relevance leads to a weighted metric for computing
the distance between a query pattern and the training data.
As a result, neighborhoods get constricted along the most
relevant dimensions and elongated along the less important
ones. Although these methods improve the original k-NN
rule due to their capability to produce local neighborhoods
in which the a posteriori probabilities are approximately
constant, the computational complexity of such improve-
ments is high. More recently, there has been considerable
research interest in directly learning distance metrics from
training examples to improve the k-NN rule. For example,
Goldberger et al. (2004) proposed a method for learning
a Mahalanobis distance measure by directly maximizing a
stochastic variant of the leave-one-out k-NN score on the
training data. Weinberger et al. (2005) developed a method
for learning a Mahalanobis distance metric by semidefinite
programming. Many other methods along this line can be
found in the references therein.

In our previous work, we proposed a simple adaptive k-
nearest neighbor classification algorithm based on the con-
cept of statistical confidence we borrowed from hypothesis
testing (Wang et al., 2005, 2006). The proposed adaptive k-
NN algorithm involves both a locally adaptive distance mea-
sure for identifying the nearest neighbors to a query pattern
and a weighting scheme that assigns a weight to each nearest
neighbor based on its statistical confidence. We showed that
the adaptive k-nearest neighbor algorithm not only outper-
forms the original k-NN rule with Euclidean distance mea-
sure but also achieves comparable or better performance
than the Support Vector Machines (SVMs) on real-world
datasets. However, due to the presence of both contributing
factors, it is hard to know whether it is the locally adaptive
distance measure or the weighting scheme that contributes
most to the generalization performance improvements. In
this paper, we show that, the extremely simple adaptive
distance measure, which basically normalizes the ordinary
Euclidean or Manhattan distance from a query pattern to
each training example by the shortest distance between the
corresponding training example to training examples of a
different class, is the leading factor for the improvements
over the original k-NN rule using the Euclidean or Manhat-
tan distance measure, while the contribution of the weighting
scheme is only marginal.

The remainder of the paper is organized as follows. In
Section 2, we describe the locally adaptive distance measure
and the k-NN rule using the adaptive distance measure. In
Section 3, we present experimental results of the resulting
adaptive k-NN rule on several real-world datasets and
compare it to the k-NN rule with the Euclidean and Man-
hattan distance measures and the adaptive k-nearest neigh-
bor algorithm we proposed before. Concluding remarks
are given in Section 4.

2. Adaptive nearest neighbor rule

We briefly describe the k-NN rule to introduce notation.
Let us assume that patterns to be classified are represented
as vectors in a d-dimensional Euclidean space Rd . Given
a set of training examples fð~X 1; Y 1Þ; . . . ; ð~X n; Y nÞg and a
query pattern ~X , the k-NN rule first finds the k nearest
neighbors of ~X , denoted by ~X ð1Þ; . . . ; ~X ðkÞ, and assigns ~X
to the majority class among Y(1), . . . ,Y(k), where Y(i) are
the corresponding class labels of ~X ðiÞ. Without prior knowl-
edge, the Euclidean distance (L2)

dð~X ; ~X iÞ ¼
Xd

j¼1

jX j � X j
i j

2

 !1=2

ð2Þ

and the Manhattan distance (L1)

dð~X ; ~X iÞ ¼
Xd

j¼1

jX j � X j
i j ð3Þ

have conventionally been used for measuring the similarity
between ~X and ~X i. For a binary classification problem in
which Y 2 {�1,1}, the k-NN rule amounts to the following
decision rule:

f ð~X Þ ¼ sgn
Xk

i¼1

Y ðiÞ

 !
ð4Þ

To define the locally adaptive distance between a query
pattern ~X and a training example ~X i, we first construct
the largest sphere centered on ~X i that excludes all training
examples from other classes. This can be easily achieved by
setting the radius of the sphere to

ri ¼ min
l:Y l 6¼Y i

dð~X i; ~X lÞ � � ð5Þ

where � > 0 is an arbitrarily small number. Notice that
depending on the metric dð~X i; ~X lÞ that is actually used,
the regions defined by points with distance to ~X i less than
ri may not be a sphere. However, for simplicity, we refer
to such defined regions as spheres for convenience when
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Fig. 1. Error rates at different values of k on the five datasets. The plots are for the Wisconsin Breast Cancer, Ionosphere, Pima, Liver, and Sonar datasets
in the top-down, left-right order respectively. Solid lines: the k-NN rule with the adaptive distance measure. Dashed lines: the k-NN rule with the
Euclidean distance.
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no confusion arises. The locally adaptive distance between
~X and the training example ~X i is defined as

dnewð~X ; ~X iÞ ¼
dð~X ; ~X iÞ

ri
ð6Þ

Several important points are immediately clear from the
above definition. First, although the above distance mea-
sure (6) is only defined between a query pattern ~X and
existing training examples ~X i, the definition can be easily
extended to measure the similarity between ~X and an arbi-
trary point ~X 0 by first defining a radius r 0 associated with
~X 0 similarly to (5). Secondly, by definition, the distance
function (6) is not symmetric. For example,
dnewð~X i; ~X jÞ 6¼ dnewð~X j; ~X iÞ ð7Þ

if the radii ri and rj associated with ~X i and ~X j, respectively
are not the same. Therefore, the new distance measure is
generally not a metric. Finally, according to the new dis-
tance measure, the smallest distance between a training
example and training examples of other classes is one,
and training examples with their distances less than one
to a training example all have the same class label.

After adopting the new distance measure (6), the adap-
tive nearest neighbor rule works exactly the same as the ori-
ginal nearest neighbor rule except that we use the adaptive
distance measure to replace the original L2 or L1 distance
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Fig. 2. Error rates at different values of k on the five datasets. Solid lines: the k-NN rule with the adaptive distance measure. Dashed lines: the k-NN rule
with the Manhattan distance measure.
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measure for identifying the nearest neighbors. Formally,
given a query pattern ~X for a binary classification problem,
the adaptive nearest neighbor rule first identifies its k near-
est neighbors, denoted again by ~X ð1Þ; . . . ; ~X ðkÞ, according to
the new distance measure dð~X ; ~X iÞ=ri for i = 1, . . . ,n, and
classifies ~X to the class

f ð~X Þ ¼ sgn
Xk

i¼1

Y ðiÞ

 !
: ð8Þ
1 http://www.ics.uci.edu/�mlearn/MLRepository.html.
3. Results and discussion

In this section, we present experimental results on sev-
eral real-world benchmark datasets from the UCI machine
learning repository.1 Throughout our experiments, we used
the 10-fold cross validation method to estimate the gen-
eralization error. Table 1 shows the error rates and the
standard deviations of the NN rule using the Euclidean dis-
tance measure (2) and our adaptive nearest neighbor (A-
NN) rule using the adaptive distance measure (6).

The results show that the adaptive NN rule using the
simple adaptive distance measure outperforms the NN rule
using the Euclidean distance measure on all five datasets
being tested. On most datasets, the improvements of the
adaptive NN rule is statistically significant. These results
confirm that the first nearest neighbor identified according

http://www.ics.uci.edu
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Fig. 3. The largest spheres associated with training examples that are
inside the classes or near the class boundaries.
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to the adaptive distance measure is more likely to have the
same class label as the query pattern than the first nearest
neighbor identified according to the Euclidean distance.

Fig. 1 shows the generalization errors of the k-NN rule
using the two different distance measures on the five data-
sets at various k values. The solid lines represent the results
of the k-NN rule using the adaptive distance measure, and
the dashed lines are the corresponding results of the k-NN
rule with the Euclidean distance. From the five plots in
Fig. 1, we see that the 1-NN using the adaptive distance
measure always outperforms the 1-NN rule using the
Euclidean distance measure, just as shown in detail in
Table 1. For k greater than 1, the k-NN rule using the
adaptive distance measure also outperforms k-NN rule
using the Euclidean distance measure on all five datasets
when k is less than 9. On some datasets, such as the Breast
Cancer, Ionosphere and Sonar datasets, using the adaptive
distance measure is almost always better than using the
Euclidean distance measure for k up to 50. Although on
some specific datasets, there are particular k values at
which the Euclidean distance measure actually performs
better, it is nevertheless clear from Fig. 1 that the adaptive
distance measure significantly improves the k-NN rule in
general, especially at the lower k range.

Fig. 2 shows similar results of the k-NN rule using the
adaptive distance measure and the Manhattan distance
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Fig. 4. Nearest neighbors according
measure on the five datasets. Note that in this case, the
adaptive distance measure is based on the Manhattan met-
ric, i.e., both dð~X ; ~X iÞ and the radius ri in the definition of
the adaptive distance measure dnewð~X ; ~X iÞ are measured in
the Manhattan metric. The five plots are in the same order
as in Fig. 1. The solid lines again represent the results of the
k-NN rule using the adaptive distance measure, and the
dashed lines represent the corresponding results of the k-
NN rule with the Manhattan distance measure. Similarly
to Fig. 1, we see from the five plots in Fig. 2 that the k-
NN rule with the adaptive distance measure significantly
outperforms the k-NN rule with the Manhattan distance
measure on all five datasets when k is less than 11. On
the Breast Cancer, Ionosphere and Sonar datasets, the per-
formance of the k-NN rule using the adaptive distance
measure is again always better than using the Manhattan
distance measure for k up to 50.

The improvements of the adaptive distance measure on
the k-NN rule can be explained as follows. We first note
that, according to the locally adaptive distance measure,
each training example ~X i is associated with a scaling factor
ri, which is defined to be the radius of the largest sphere
centered on ~X i that excludes all training examples of other
classes. The largest sphere associated with each training
example defines the largest spherical region within which
its class label can be generalized to other training examples
reliably, i.e., without making an error. It is easy to see that
spheres associated with training examples inside the classes
will have relatively larger radii than those associated with
training examples near the class boundaries, as illustrated
in Fig. 3 that shows four spheres associated with four train-
ing examples from the two classes, with the lines connect-
ing the centers of the spheres to a query pattern. As a
result of the locally dependent scaling factor, training
examples that are farther away from a query pattern
according to the L2 or L1 metric may actually become clo-
ser to the query pattern according to the adaptive distance
measure if their associated spheres are large enough, as
illustrated in Fig. 4, where the left plot shows the nine near-
est neighbors according to the Euclidean distance measure
and the right plot shows the nine nearest neighbors accord-
ing to the adaptive distance measure. For a query pattern
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that is located far from other classes, the adaptive distance
measure is unlikely to change the classification result
because all the close neighbors are from the same class.
However, for a query pattern near the class boundaries
where different classes may overlap or the noise level is
high, this feature is beneficial because it tends to identify
training examples with relatively large spheres as its nearest
neighbors. Compared to training examples that are near
the class boundaries and have smaller spheres, which
would otherwise be identified as nearest neighbors should
the ordinary L2 or L1 metric be used, training examples
with larger spheres are closer to the class centers and their
class labels are more reliable, see Figs. 3 and 4. By dividing
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Fig. 5. Error rates at different values of k on the five datasets. The plots are f
down, left-right order respectively. Solid lines: k-NN rule with the adaptive d
measure and the weighting scheme.
the distance dð~X ; ~X iÞ from a query pattern to the training
example ~X i by the corresponding sphere radius ri, the adap-
tive k-NN rule relies more on training examples with larger
spheres to generalize to boundary regions where local
information is of high variance and unreliable.

There are two differences between the k-NN rule using
the adaptive distance measure and the adaptive nearest
neighbor algorithm we proposed previously. First, the
radius used in the definition of the adaptive distance mea-
sure is different. In this work, the radius ri associated with
training example ~X i is defined to be simply the smallest dis-
tance between ~X i and training examples of a different class,
while in our previous work, the radius ri associated with ~X i
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or Breast Cancer, Ionosphere, Pima, Liver, and Sonar datasets in the top-
istance measure. Dashed lines: k-NN rule with both the adaptive distance



Table 2
Comparison of results

Dataset k-NN (L2) A-k-NN (L2) k-NN (L1) A-k-NN (L1) SVMs

Breast cancer 2.79 (0.67) 2.79 (0.74) 3.24 (0.81) 2.79 (0.60) 3.68 (0.66)
Ionosphere 12.86 (1.96) 4.86 (1.28) 8.86 (1.93) 4.29 (0.88) 4.86 (1.05)
Pima 24.61 (1.36) 25.13 (1.46) 23.03 (1.75) 25.26 (1.54) 27.50 (1.68)
Liver 30.88 (3.32) 30.88 (1.77) 30.00 (2.43) 30.59 (2.37) 31.47 (2.63)
Sonar 17.00 (2.26) 13.00 (1.70) 15.00 (2.47) 12.00 (2.60) 11.00 (2.33)
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may have to be increased from the smallest distance to
meet a preset statistical confidence requirement. In fact,
the two definitions coincide with each other if we set the
minimum required statistical confidence level to 50%. Sec-
ondly, once the k nearest neighbors are identified, in this
work, we simply used the plain k-NN rule, while in our pre-
vious work, each nearest neighbor is weighted differently
according to its associated statistical confidence, see (Wang
et al., 2005) for details. To see if the weighting scheme plays
any significant role, we obtained the error rates of the k-
NN rule using the adaptive distance measure and the adap-
tive nearest neighbor algorithm with the weighting scheme
at different values of k. To ensure that the only difference is
in the weighting scheme, we used the same L2-based radius
definition (5) in both algorithms. The results are shown in
Fig. 5. The solid lines illustrate the results of the k-NN rule
with adaptive distance measure and the dashed lines illus-
trate the results of the adaptive nearest neighbor algorithm
with the weighting scheme. As we can clearly see from the
five plots, the weighting scheme does not significantly
improve the performance. Therefore, we conclude that
the most important factor that leads to the performance
improvements is the adaptive distance measure, which is
simply the original Euclidean distance measure divided
by the smallest distance to other classes.

In Table 2, we report the lowest error rates of the k-NN
rule using the Euclidean (L2) and Manhattan (L1) metrics
and the corresponding adaptive distance measures and
compare them to the lowest error rates of the SVMs with
Gaussian kernels. On each dataset, we run the k-NN rule
using all four distance measures at various values of k from
1 to 50 and picked the lowest error rate. As we can see from
Table 2, the k-NN rule with the adaptive distance measures
performs significantly better than the k-NN rule with the
Euclidean and Manhattan distance measures on the Breast
Cancer and Sonar datasets, making the adaptive k-NN rule
overall better than or comparable to the state-of-the-art
SVMs.

4. Conclusion

In this paper, we demonstrated that an extremely simple
adaptive distance measure significantly improves the per-
formance of the k-NN rule. In our tests on several real-
world datasets, the resulting adaptive k-NN rule actually
achieves consistently better or comparable performance
to the state-of-the-art Support Vector Machines. The
advantage of our adaptive k-NN rule over SVMs and
other adaptive metric methods, however, is apparent. The
adaptive k-NN rule is simply the k-NN rule with the
conventional distance measure, be it the Euclidean or Man-
hattan metric, divided by the smallest distances from the
corresponding training examples to training examples of
different classes. We believe the simplicity of this algorithm
and its great performance makes it an appealing tool for
pattern classification.
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